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1. Introduction. Let n and d be positive integers. A sequence A in
Zdn is called a zero-sum if the sum of all elements of A is zero in Zdn. By
sk(Zdn) we denote the smallest integer t such that any sequence of length t in
Zdn contains a zero-sum of length kn. The case k = 1, s1(Zdn) then denoted
by f(n, d), was first studied by Harborth ([7]) and generated a lot of re-
search. Already in 1961 the one-dimensional case had been solved by Erdős,
Ginzburg and Ziv, which initiated a whole new branch in combinatorial
number theory.

Theorem (P. Erdős, A. Ginzburg, A. Ziv, 1961 [3]). For any positive
integer n we have f(n, 1) = s1(Zn) = 2n− 1.

Kemnitz’ Conjecture f(n, 2) = s1(Z2
n) = 4n − 3 (see [8]) was open for

about twenty years and was recently proved by Reiher in [10]. The best
result until then was the following:

Theorem (W. D. Gao, 2001 [4]). Let q be a prime power. Then we have
f(q, 2) = s1(Z2

q) ≤ 4q − 2 and s2(Z2
q) ≤ 4q − 2.

This improves a result of Rónyai ([11]) who showed this only a little
earlier for primes p instead of prime powers q. Up to now the best general
bounds for odd primes p and higher dimensions d are

f(p, d) ≥ 1.125bd/3c2d(p− 1) + 1,

by Elsholtz ([2]), where 2d(p− 1) + 1 is the trivial lower bound, and

f(p, d) ≤ (cd log d)dp

by Alon and Dubiner ([1]). They conjectured that f(p, d) ≤ cdp.
For k 6= 1 the constant sk(Zdn) was first studied by Gao and Thangadurai.

They verified that sk(Z3
p) = (k + 3)p − 3 for k ≥ 4 (see [6]) and in higher

dimensions sk(Zdq) = (k + d)q − d for k ≥ qd−1 (see [5]).
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The sequence consisting of kn − 1 copies of the zero-vector and n − 1
copies of each of the d basis vectors obviously does not contain a zero-sum
of length kn. Therefore we have

sk(Zdn) ≥ kn− 1 + (n− 1)d+ 1 = (k + d)n− d.
For k < d the above example can be extended by

⌊
d−k
d−1n

⌋
− 1 copies of the

vector (1, . . . , 1). So we get

sk(Zdn) ≥ (k + d)n− d+
⌊
d− k
d− 1

n− 1
⌋
.

Again this example can be improved by using vectors with exactly l (> k)
entries 1 and the other entries 0 instead of the all-one vector. But as opposed
to the case k = 1, where a simple example shows that s1(Zdn) > 2d(n − 1),
it is not obvious that for 2 ≤ k < d the growth of sk(Zdn) is not linear in d.

In this paper we suggest the following conjecture:

Conjecture. For positive integers k ≥ d and n we have

sk(Zdn) = (k + d)n− d.
This has been proved by Gao ([5]) for prime powers n = q and k ≥ qd−1

using Olson’s result about Davenport’s Constant ([9]). Here the Conjecture
will be verified for a large class of smaller values of k in the case of general d
(Theorems 2 and 4) as well as for d ≤ 4 (Theorem 1).

These are our main results:

Theorem 1. Let p be a prime and q be a power of p. For any positive
integer k we have

(1) sk(Zq) = (k + 1)q − 1 (Gao, Thangadurai, 2003 [6]),
(2) sk(Z2

q) = (k + 2)q − 2 for k ≥ 2 (Gao, Thangadurai, 2003 [6]),

(3) sk(Z3
q) = (k+ 3)q− 3 for k ≥ 3 and s2(Z3

q) ≤ 6q− 3, both for p > 3,

(4) sk(Z4
q) = (k + 4)q − 4 for k ≥ 4 and p ≥ 7 (actually for p ≥ 5, if k

is even), and s2(Z4
q) ≤ 8q − 4 and s3(Z4

q) ≤ 8q − 4, both for p ≥ 5.

Theorem 2. Let p be a prime and q be a power of p. Then the Conjec-
ture holds for snp(Zdq), where n and d are any positive integers:

snp(Zdq) = (np+ d)q − d.
Our next result is a general upper bound for sk(Zdq) with k ≥ d.

Theorem 3. Let d and k ≥ d be positive integers, p > min(2k, 2d) be a
prime and q be a power of p. Then

sk(Zdq) ≤
(

3
8
d2 +

3
2
d− 3

8
+ k

)
q − d.

Certainly this could be improved with some additional effort but we do
not see how to obtain an upper bound for sk(Zdq) with linear growth in d.
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As a corollary of Theorems 2 and 3 we prove the Conjecture for suffi-
ciently large k.

Theorem 4. Let d and k be positive integers, p > 2d be a prime and
q be a power of p. If

⌊
k−d
p

⌋
p ≥ 3

8d
2 + d

2 − 3
8 , then the Conjecture holds for

sk(Zdq).

The cases d = 1 and d = 2 are simple consequences of the Erdős–
Ginzburg–Ziv Theorem and of the above theorem of Gao (s2(Z2

q) ≤ 4q− 2).
To handle the other cases in the following sections we will generalize the
method that Rónyai ([11]) developed to prove f(p, 2) ≤ 4p− 2.

2. Rónyai’s method. In order to prove f(p, 2) ≤ 4p− 2, Rónyai ([11])
used special polynomial functions P : {0, 1}m → Fp, depending on the given
sequence A. For sufficiently large m = |A| there is an x ∈ {0, 1}m, x 6= 0,
such that P (x) 6= 0. This x is related to a zero-sum with length p within A.

In order to adapt these polynomials to prime powers q instead of primes
p we had to change them a bit. Furthermore, in higher dimensions d > 2 this
method can be generalized to prove that, for a given set L = {l1, . . . , ldd/2e},
any sufficiently long sequence in Zdq contains a zero-sum of length lq for at
least one l ∈ L and, iterating this, the existence of zero-sums of length kq
for any given k ≥ d.

We use the following easy fact, proved e.g. by Rónyai ([11]).

Lemma 2.1. Let F be a field and m be a positive integer. Then the mono-
mials

∏
i∈I xi, I ⊆ {1, . . . ,m}, constitute a base of the F-linear space of all

functions f : {0, 1}m → F. (Here 0 and 1 are viewed as elements of F.)

Therefore any polynomial function P : {0, 1}m → Fp, p > 2, has a
unique representation of the form

∑
I⊆{1,...,m} aI

∏
i∈I xi. With respect to

this representation we define the degree of P as

degP = max
I⊆{1,...,m}

aI 6=0

deg
(∏

i∈I
xi

)
= max

I⊆{1,...,m}
aI 6=0

|I|.

Definition 1. Let d > 1 be an integer and L ⊂ N be a set at least of
cardinality

⌈
d
2

⌉
. An integer K is said to have Property (1) if

|L ∪ (K − L)| ≥ d.(1)

Here K − L denotes the set {K − l | l ∈ L}.
Note that all K > 2 maxl∈L l have Property (1).
Now we can prove the following theorem.

Theorem 2.1. Let d > 1 be an integer , p be a prime and q be a power
of p. Let L be a set of at least

⌈
d
2

⌉
positive integers and K be an integer with
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Property (1). If p > max({1, . . . ,K− 1} \ (L∪ (K−L))), then any sequence
(a1, . . . , aKq) in Zdq with

∑Kq
i=1 ai = 0 (in Zdq) contains a zero-sum of length

lq for at least one l ∈ L.

Proof. Assume to the contrary that for no l ∈ L there is a zero-sum of
length lq within (a1, . . . , aKq). Then there is no zero-sum of length (K− l)q,
l ∈ L, either. So if there are zero-sums of length kq > 0 apart from the whole
sequence, k has to be in J = {1, . . . ,K−1}\ (L∪ (K−L)), |J | ≤ K−1−d.

We define the polynomial function P : {0, 1}Kq → Fp as

P (x) = Q(x)
d∏

δ=1

Rδ(x)
∏

j∈J
Sj(x),

where

Q(x) =
(
g(x)− 1
q − 1

)
, Rδ(x) =

(∑Kq
i=1 ai,δxi − 1
q − 1

)
, Sj(x) =

(
g(x)
q

)
− j.

Here g(x) is the Hamming weight of x ∈ {0, 1}Kq,

g(x) =
Kq∑

i=1

xi.

Any vector x ∈ {0, 1}Kq corresponds to a subsequence Bx = (ai)xi=1 of
length g(x). Note that P (x) vanishes in each of the following three cases:

(1) g(x) is not divisible by q (because of Q),
(2) the corresponding subsequence Bx is not a zero-sum (because of

the Rδ),
(3) Bx is of length jq with j ∈ J + pN (because of Sj).

Therefore we get
P (x) = P (0)χ0(x) + P (1)χ1(x)

where χ0(x) =
∏Kq
i=1(1 − xi) and χ1(x) =

∏Kq
i=1 xi are the characteristic

functions of the all-zero resp. the all-one vector and

P (0) =
∏

j∈J
(−j) = (−1)|J |P (1).

So the degree of P is at least degP ≥ Kq − 1.
On the other hand the degree of P can be determined via the repre-

sentation as a linear combination of monomials one gets using the relations
x2
i = xi (xi ∈ {0, 1}). Since this reduction cannot increase the degree, we

have

degP ≤ degQ+
d∑

δ=1

degRδ +
∑

j∈J
degSj ≤ (d+ 1)(q − 1) + |J |q ≤ Kq − d,

a contradiction to degP ≥ Kq − 1.
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In a second step we will start with sequences which are not necessarily
zero-sums of length Kq.

Theorem 2.2. Let p be a prime, q be a power of p and d > 1 be an
integer. Given a set L = {l1, . . . , ldd/2e} ⊂ N let K1 < · · · < Kbd/2c be
the

⌊
d
2

⌋
smallest positive integers with Property (1). Define the set J :=

{1, . . . ,Kbd/2c}\ (L∪{K1, . . . ,Kbd/2c}). Then for m ≥ (Kbd/2c+1)q−d and
p > maxj∈J j any sequence (ai)i=1,...,m in Zdq has a zero-sum of length lq for
at least one l ∈ L.

Proof. Assume to the contrary that a sequence (ai)i=1,...,m contains no
zero-sums of length lq for any l ∈ L. Then by Theorem 2.1 for any K
with Property (1) there are no zero-sums of length Kq either. Now look at
P : {0, 1}m → Fp,

P (x) = Q(x)
d∏

δ=1

Rδ(x)
∏

j∈J
Sj(x),

and proceed as above.

Theorem 2.2 has the following immediate consequences:

Corollary 2.1. For q a power of the prime p and an integer d ≥ 2 let
(ai)i=1,...,m be a sequence in Zdq .

(1) If m ≥
(
2d−

⌈
d
2

⌉
+ 1
)
q−d and p > d, then (ai) contains a zero-sum

of length lq for at least one l ∈
{

1, . . . ,
⌈
d
2

⌉}
.

(2) If m ≥
(
2d−

⌈
d
2

⌉)
q − d and p ≥ d, then (ai) contains a zero-sum of

length lq for at least one l ∈
{

1, . . . ,
⌈
d
2

⌉
, d
}

.
(3) If m ≥ 2dq − d and p ≥ d +

⌈
d
2

⌉
, then (ai) contains a zero-sum of

length lq for at least one l ∈
{

1, . . . ,
⌈
d
2

⌉
− 1, d

}
.

(4) If m ≥
(
2d−

⌈
d
2

⌉)
q − d and p > d, then (ai) contains a zero-sum of

length lq for at least one l ∈
{

1, . . . ,
⌈
d
2

⌉
+ 1
}

.
(5) If m ≥ 2dq − d and p ≥ 2d − 1, then (ai) contains a zero-sum of

length lq for at least one odd l ≤ d.
(6) If m ≥ 2dq − d and p ≥ 2d − 1, then (ai) contains a zero-sum of

length lq for at least one even l ≤ d+ 1.

Proof. This directly follows by an application of Theorem 2.2 with the
following choice of the sets J :

(1) J =
{⌈

d
2

⌉
+ 1, . . . , d

}
,

(2) J =
{⌈

d
2

⌉
+ 1, . . . , d− 1

}
,

(3) J =
{⌈

d
2

⌉
, . . . , d+

⌈
d
2

⌉
− 1
}
\ {d},

(4) J =
{⌈

d
2

⌉
+ 2, . . . , d

}
,

(5) J = {2, 4, . . . , 2(d− 1)},
(6) J =

{
1, 3, . . . , 2

⌈
d
2

⌉
− 1
}
∪
{

2
⌈
d
2

⌉
+ 2, 2

⌈
d
2

⌉
+ 4, . . . , 2(d− 1)

}
.
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A slightly weaker result than item (5) in the above corollary is due to
Gao and Thangadurai ([6]) who showed that for primes p > 2 any sequence
of length 2(d + 1)(p − 1) + 1 in Zdp has a zero subsequence of length lp for
some odd l.

3. Proofs of our main results. To handle the higher-dimensional
problem we combine the parts of Corollary 2.1 in order to ensure the ex-
istence of a zero-sum of length kq for a fixed k ≥ d within a sufficiently
large sequence in Zdq . We point out that a slightly weaker version of part (3)
of Theorem 1 (for primes p > 3 and k ≥ 4) has been proved by Gao and
Thangadurai in [6], using different methods.

Proof of Theorem 1. Since sk(Zdq) ≥ (k + d)q − d (see introduction) we
only have to show that the claimed constants are upper bounds.

(3) Let p > 3 and A be a sequence in Z3
q of length 6q−3. First we search

for zero-sums of length 2q and 3q. By Corollary 2.1(1), (3), A contains a
zero-sum of length q or two zero-sums of length 2q and of length 3q. In the
first case there are 5q − 3 elements left, which provide by Corollary 2.1(1)
another zero-sum of length 2q (then we are done) or of length q. In this
last case, to find a zero-sum of length 3q, we apply Corollary 2.1(2) to the
remaining 4q − 3 elements. So we have s2(Z3

q), s3(Z3
q) ≤ 6q − 3. Therefore

any sequence in Z3
q of cardinality (k + 3)q − 3 (k ≡ 2, 3 modulo 3, k ≥ 3)

contains disjoint zero-sums, one of length 2q resp. 3q and
⌊
k−2

3

⌋
of length

3q. We get sk(Zdq) ≤ (k + 3)q − 3 for all k ≡ 2, 3 modulo 3, k ≥ 3.
To show the upper bound for k = 4 take a sequence of length 7q − 3.

Repeated application of Corollary 2.1(1) proves the existence either of a
zero-sum of length 4q or of two zero-sums of lengths q and 2q. In this second
case 4q − 3 elements are left which by Corollary 2.1(2) contain a zero-sum
of length q, 2q or 3q. Therefore we have sk(Zdq) ≤ (k + 3)q − 3 for all k ≡ 1
modulo 3, k ≥ 4.

(4) We get s2(Z4
q) ≤ 8q − 4 from Corollary 2.1(1), and Corollary 2.1(2)

tells us s4(Z4
q) ≤ 8q − 4, both for p ≥ 5.

Let now p ≥ 7. To show s3(Z4
q) ≤ 8q − 4 let A be a sequence in Z4

q of
length 8q−4. By Corollary 2.1(5) it contains a zero-sum of length q or 3q. In
the first case within the 7q−4 remaining elements we find by Corollary 2.1(1)
a zero-sum of length q or 2q. If this again is a zero-sum of length q, then the
last 6q − 4 elements contain a zero-sum of length q, 2q or 3q and so we are
done.

Now we search for a zero-sum of length 5q within an arbitrary sequence
in Z4

q of length 9q − 4. We already know that there must be a zero-sum
of length 3q. By Corollary 2.1(2) the 6q − 4 remaining elements contain
a zero-sum of length q, 2q or 4q. In the case of length 2q we are done. If
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there is a zero-sum of length q, we delete these q elements from the original
sequence and because of s4(Z4

q) ≤ 8q−4 we find a zero-sum of length 4q and
so have a zero-sum of length 5q. In the last case (i.e. of disjoint zero-sums of
lengths 3q and 4q) we apply Theorem 2.1 to the zero-sum of length 7q and
L = {1, 5}. So either we directly get a zero-sum of length 5q or in the case of
length q we proceed as above. So we have shown s5(Z4

q) ≤ 9q−4. Combining
the results in this part we get sk(Z4

q) = (k + 4)q − 4 for all k ≥ 4.

Proof of Theorem 2. The proof of sp(Zdq) = (p+ d)q − d is analogous to
that of Theorem 2.2 with m = (p+ d)q− d and P : {0, 1}m → Fp defined as

P = Q

d∏

δ=1

Rδ

p−1∏

j=1

Sj

where Q, Rδ and Sj are as above. So, within a sequence of length (np+d)q−d
there are n disjoint zero-sums of length pq.

Proof of Theorem 3. First let k be in {d, . . . , 2d − 1}. The idea is to
use Theorem 2.2 in order to extract

⌈
d
2

⌉
− 1 pairwise disjoint zero-sums

of different lengths ljq (6= kq) first and then to find a zero-sum of length
(k − lj)q or kq.

So let A be a sequence in Zdq of length
(

3
8
d2 +

3
2
d− 3

8
+ k

)
q − d ≥

(
3
8
d2 − d

2
+

5
8

+ 2k
)
q − d.

By Theorem 2.2 the sequence A1 := A contains a zero-sum of length l1q for
at least one l1 ∈ L1 :=

{
1, 2, . . . ,

⌈
d
2

⌉
− 1, k

}
. Let A2 be the sequence A1

without this zero-sum. So either A2 has length at least |A1| −
(⌈

d
2

⌉
− 1
)
q or

we have already obtained a zero-sum of length kq.
We use Theorem 2.2 with Lj :=

{
1, 2, . . . ,

⌈
d
2

⌉
− 2 + j, k

}
\ {l1, . . . , lj−1}

iteratively where Aj is the sequence Aj−1 without the zero-sum of length
lj−1q until we have found a zero-sum of length kq or

⌈
d
2

⌉
−1 pairwise disjoint

zero-sums of lengths ljq. In both cases A′ := Add/2e has length at least

|A| −
dd/2e−1∑

j=1

(⌈
d

2

⌉
− 2 + j

)
q ≥

(
d+ 2k −

⌈
d

2

⌉)
q − d.

Therefore by Theorem 2.2 the sequence A′ contains a zero-sum of length l′q
for at least one l′ ∈ L′ = {k − l1, . . . , k − ldd/2e−1, k}.

Note that in all these steps maxJ does not exceed 2k, so p > 2k guar-
antees p > maxJ .
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Now if k ≥ 2d, then A contains
⌊
k
d

⌋
− 1 disjoint zero-sums of length dq

and because of
3
8
d2 +

3
2
d− 3

8
+ k −

(⌊
k

d

⌋
− 1
)
d ≥ 3

8
d2 − d

2
+

5
8

+ 2
(
k −

(⌊
k

d

⌋
− 1
)
d

)

︸ ︷︷ ︸
≤2d−1

there is a zero-sum of length
(
k −

(⌊
k
d

⌋
− 1
)
d
)
q within the remaining se-

quence.

Proof of Theorem 4. Let A be a sequence in Zdq of length (d + k)q − d
where k is of the form np+ r with d ≤ r ≤ p+ d− 1 and np ≥ 3

8d
2 + d

2 − 3
8 .

Since d+ k = d+ np+ r ≥ 3
8d

2 + 3
2d− 3

8 + r the given sequence A contains
by Theorem 3 a zero-sum of length rq. Within the remaining (d+ np)q − d
elements there is by Theorem 2 a zero-sum of length npq.
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