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On the distribution of algebraic numbers
with prescribed factorization properties
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Maciej Radziejewski (Poznań)

1. Introduction. Our objective is to study oscillatory behaviour of
the counting functions of various sets of algebraic numbers with prescribed
factorization properties.

Let K be an algebraic number field of finite degree, OK its ring of al-
gebraic integers, and Γ a subgroup of H∗(K), the class group of K in the
narrow sense. We denote by S the semigroup of non-zero ideals of OK whose
classes belong to Γ . Such a semigroup is a special case of the generalized
Hilbert semigroup defined by F. Halter-Koch [8, Beispiel 4] (cf. also [5]). In
particular, for appropriate choices of Γ , we can have S isomorphic to the
reduced multiplicative semigroup of OK (the case studied most extensively)
or the reduced semigroup of totally positive algebraic integers in K, with
multiplication. S is a subset of the semigroup of non-zero ideals I(OK) and
a Krull monoid (cf. [8]).

We denote the class group of S by Cl(S) and its class number by h.
The characters of Cl(S) are numbered χ0, . . . , χh−1 with χ0 denoting the
principal character. We tacitly identify characters of Cl(S) ∼= H∗(K)/Γ
with the corresponding characters of H∗(K) and I(OK). As usual, s = σ+it
denotes a complex variable. We write

ζ(s, χ) =
∑

a∈I(OK)

χ(a)
N(a)s

, σ > 1,

to denote the Hecke zeta function corresponding to χ ∈ Ĉl(S). All such
functions are in the Selberg class S (see, e.g., [13] or [12]) as χ ∈ Ĉl(S)
induces a primitive Hecke character on I(OK).

For any complex function F (s) regular in a certain half-plane σ > σ0

and non-vanishing in a half-plane σ ≥ σ1 > σ0, and such that argF (σ)
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is close to 0 when σ is large, we choose the branch of logF (s) such that
Im logF (σ) is close to 0 when σ is large and extend it to the half-plane
σ > σ0 with cuts from the edge of the half-plane to the zeros of F (s) in
the unique way. In particular, log s will denote the principal branch of the
logarithm. We let log S denote the set of logarithms of functions from S (cf.
[12]). The multiplicity of a zero of a complex function F (s) at s = %, % ∈ C, is
written as m(%, F ), or, in case F (s) = ζ(s, χ), as m(%, χ). The characteristic
function of a set A is written as charA.

For α ∈ S let L(α) denote the set of lengths of factorizations of α into
irreducibles in S. Let M denote the set of irreducibles in S, Mk the set of
products of k or less irreducibles (i.e. α such that minL(α) ≤ k), M ′k the set
of products of k irreducibles (i.e. k ∈ L(α)), and Ma,b, for a, b ∈ N, a ≤ b,
the set of α ∈ S with L(α) ⊆ [a, b]. Let Ga,b (a, b ∈ N, a ≤ b) denote the set
of α ∈ S with |L(α)| ∈ [a, b]. The set G1,m is usually denoted as Gm, and
Gm,m as Gm. We use the notation Ga,b to treat both of these together.

For a set A ⊆ S letA(x) be the number of elements α ∈ A with N(α) ≤ x,
and let

ζ(s,A) =
∑

a∈A

1
N(a)s

, σ > 1.

If the function ζ(s,A) is regular around [1/2, 1] except for the real points
to the left of 1/2, and C is a contour starting at 1/2− δ, for a small δ > 0,
going closely around [1/2, 1], counterclockwise, and back to 1/2− δ, we call

A(x) =
1

2πi

�

C
ζ(s,A)

xs

s
ds, x ≥ 1,

the main term of A(x), similarly to [11] and [12, Theorem 3]. For x < 1 we
put A(x) = 0. The asymptotic expansion of A(x) as x tends to infinity is
usually quite complicated. We refer the reader to [11] for a detailed treatment
of this problem. We show that the main terms corresponding to the sets M ,
Mk, M ′k, Ma,b, and Ga,b, are well defined and denote them byM(x),Mk(x),
M′k(x), Ma,b(x), and Ga,b(x), respectively.

We say that a real, piecewise continuous function f(x) is subject to os-
cillations of lower logarithmic frequency γ and size xθ−ε (for γ > 0, θ ∈ R)
if there exists an increasing sequence of positive real numbers (xn)∞n=1,
limn→∞ xn =∞, such that:

(1) We have f(xn) 6= 0 for each n and the signs of f(xn) alternate.
(2) If V (Y ) denotes the number of terms of (xn) not exceeding Y , then

lim inf
Y→∞

V (Y )
log Y

= γ.

(3) If ε > 0, then for any Y sufficiently large the segment [Y 1−ε, Y ]
contains at least one element of (xn).
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(4) We have

lim inf
n→∞

|f(xn)|
xθ−εn

=∞

for every ε > 0.

The main arithmetic results of this paper are:

Theorem 1. The error terms M(x)−M(x), Mk(x)−Mk(x) (k ∈ N),
M ′k(x)−M′k(x) (k ∈ N), and Ma,b(x)−Ma,b(x) (a, b ∈ N, a ≤ b) are subject
to oscillations of positive lower logarithmic frequency and size x1/2−ε.

Theorem 2. Suppose h ≥ 3 and let a, b ∈ N, a ≤ b. If a ≥ 2, or a = 1
and b is sufficiently large, then the error term Ga,b(x)−Ga,b(x) is subject to
oscillations of positive lower logarithmic frequency and size x1/2−ε.

For a subset U of an additively written finite abelian group G let F(U)
denote the free abelian monoid over U . Elements of F(U) are denoted for-
mally

∏
g∈U g

αg and called sequences. The block monoid over U consists
of sequences

∏
g∈U g

αg whose sum
∑

g∈U αgg is zero, and is denoted B(U)
(cf. [19] and [21, Chapter 9]). The set U is called half-factorial if the monoid
B(U) is half-factorial, i.e., each element of B(U) has a unique length of
factorization into irreducibles. A set U is half-factorial if and only if we have

∑

g∈U

αg
ord g

= 1

for each irreducible element
∏
g∈U g

αg of B(U); cf. e.g. [28, 32] for some early
results and [3] for a more recent treatment of half-factorial sets.

Let µ(G) be the maximum cardinality of a half-factorial subset of G. It
is well known (cf. [1]) that µ(G) = |G| if and only if h ≤ 2. In the case
h ≤ 2 the sets Ga,b reduce either to ∅ or to S, otherwise they are non-empty
proper subsets of S (cf. [29]). The remaining case of G1,b(x) for h ≥ 3 and
small b, not covered by Theorem 2, appears to be more difficult as we have
neither sufficient knowledge about the structure of the set G1,b nor about

the multiplicities of the zeros of ζ(s, χ), χ ∈ Ĉl(S).
Let m(S) denote the smallest positive integer m such that for some

complex non-real zeros %1, . . . , %q of
∏
χ∈Cl(S) ζ(s, χ), and some k1, . . . , kq ∈

Z, we have
q∑

j=1

kjm(%j, χ) =
{
m, χ = χ0,

0, χ ∈ Ĉl(S), χ 6= χ0.

We also use the notation m(K) if S is the semigroup of non-zero principal
ideals of OK . Results of [12] imply m(S) < ∞. We show the existence of
oscillations of G1,b(x) under additional assumptions on m(S):
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Theorem 3. Suppose h ≥ 3 and b ∈ N. If m(S) is not a multiple of
h/(h, µ(Cl(S))), then the error term G1,b(x) − G1,b(x) is subject to oscilla-
tions of positive lower logarithmic frequency and size x1/2−ε.

In particular, we get the required oscillations for all S such that (m(S), h)
= 1 and h ≥ 3. Using numerical computations we show

Theorem 4. We have m(K) = 1 for K equal to Q(α), Q(β), Q(γ),
Q(δ), and Q(ω), where α2 = −65, β2 = −9982, γ3 − γ2 + 7γ + 8 = 0,
δ3 − δ2 − 97δ − 384 = 0, and ω2 = 26.

Corollary 1. The error term G1,b(x) − G1,b(x), b ∈ N, is subject to
oscillations of positive lower logarithmic frequency and size x1/2−ε for the
semigroups of non-zero principal integral ideals of Q(α), Q(β), Q(γ), and
Q(δ), where α2 = −65, β2 = −9982, γ3 − γ2 + 7γ + 8 = 0, and δ3 − δ2 −
97δ − 384 = 0.

Another approach to the problem of oscillations of G1,b(x)− G1,b(x) for
small b is related to combinatorial properties of the class group Cl(S). Let
G be a finite abelian group, b ∈ N. Consider all half-factorial U ⊆ G with
|U | = µ(G) and sequences F =

∏
g∈G\U g

αg ∈ F(G \U) such that all blocks
of the form F

∏
g∈U g

βg have at most b distinct factorization lengths in the
block monoid B(G). The maximum of

∑
g∈G\U αg over all such U and F is

denoted by ψ(G, b), as in [4]. Obviously 0 ≤ ψ(G, 1) ≤ ψ(G, 2) ≤ · · · . The
value of ψ(Cl(S), b) is related to the first term in the asymptotic expansion
of G1,b(x):

G1,b(x) ∼ Cx(log x)−1+µ(Cl(S))/h(log log x)ψ(Cl(S),b)

for a C > 0, provided h ≥ 3 (cf. [4]).

Theorem 5. Suppose h ≥ 3 and b ∈ N. If ψ(Cl(S), b) > 0, then the
error term G1,b(x)− G1,b(x) is subject to oscillations of positive lower loga-
rithmic frequency and size x1/2−ε.

In [24] W. A. Schmid and the author prove that ψ(G, 2) > 0 for every
finite abelian group G with at least three elements and that ψ(G, 1) > 0 for
several classes of groups. We state

Conjecture. The inequality ψ(G, 1) > 0 holds for every finite abelian
group G with at least three elements.

Our main technical result is Theorem 6 of Section 2 which allows us to
establish the existence of non-real singularities of the zeta functions of the
sets we study.

The asymptotics of M(x) in the case of the multiplicative semigroup
of OK was found by P. Rémond [25, 26] and refined by J. Kaczorowski
[11]. The counting functions of Gm,m and G1,m (and of the corresponding
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subsets of N) were investigated by W. Narkiewicz [16, 17, 18, 20] (cf. also
[21]), R. Odoni [22], J. Śliwa [28, 29], J. Kaczorowski [11], A. Geroldinger [4],
and, in more generality, by F. Halter-Koch [9], who also considered Mk(x)
and M ′k(x) (see [10]). A general, axiomatic treatment of those and related
sets is due to A. Geroldinger, F. Halter-Koch, and J. Kaczorowski [7, 6].

The first result on oscillations of counting functions of sets mentioned
here was due to J. Kaczorowski and J. Pintz [14] who showed that M(x) os-
cillates around its main term under additional assumptions implying the ex-
istence of singularities of ζ(s,M). J. Kaczorowski and A. Perelli [12] proved
the same unconditionally. Their method is also sufficient to treat the sets
Mk, M ′k, and Ma,b, whose zeta functions are essentially polynomials in log S.
Zeta functions of Gm and related sets are combinations of such polynomials
with complex powers of Hecke zeta functions corresponding to characters of
Cl(S). A theorem that relates singularities of such functions to oscillations
of the corresponding counting functions was demonstrated in [23] where the
oscillations of G1(x) in the special case of the Hilbert semigroup modulo 5
were also treated.

The author wishes to thank Professor Jerzy Kaczorowski for his help
during the preparation of this paper. While writing the paper the author was
supported by the Foundation for Polish Science and by the Polish Research
Committee (KBN grant No. 1P03A00826).

2. Existence of singularities. We need some further notation. Let
ΩX(a) denote the number of prime divisors of a ∈ S in the class X ∈ Cl(S),
counted with multiplicities, Ω(a) the number of all prime divisors. For U ⊆
Cl(S) and A: Cl(S) \U → N∪ {0} we call the pair (U,A) a system (cf. [28])
and put

NU,A = {a ∈ S : ΩX(a) = A(X), X ∈ Cl(S) \ U}.
While 〈U〉 denotes the subgroup of Cl(S) generated by U , we use 〈χ|U〉 for
the scalar product of χ ∈ Ĉl(S) and the characteristic function of U ⊆ Cl(S):

〈χ|U〉 =
1
h

∑

X∈U
χ(X).

We replace “χ ∈ Ĉl(S)” by “χ” (and “ψ ∈ Ĉl(S)” by “ψ”) in the subscripts
of sums or products. Likewise, we write

∑
X 6∈U instead of

∑
X∈Cl(S)\U if U

is a subset of Cl(S). The letter p denotes prime ideals of OK and [a] is the
class of an ideal a in Cl(S). Since ζ(s, χ0) is the Dedekind zeta function, we
also write it as ζK(s). Let D denote a region containing the set

{s ∈ C : σ ≥ 1/2, t 6= 0} ∪ {s ∈ C : σ > 1/2, t = 0}



158 M. Radziejewski

such that each ζ(2s, χ), χ ∈ Ĉl(S), is regular and non-vanishing in D (in
particular 1/2 6∈ D). See [21] for a specific zero-free region.

In this section we prove the following theorem:

Theorem 6. Let (Ui, Ai), i = 1, . . . , n, be systems such that all NUi,Ai

are non-empty. Let M = max|Ui|6=h |Ui| and

Z(s) =
n∑

i=1

αiζ(s,NUi,Ai), σ > 1,(1)

where αi ∈ C, with αi > 0 whenever |Ui| = M . If max|Ui|=M
∑

X 6∈Ui Ai(X)
> 0, then Z(s) has infinitely many singularities in the strip 1/2 ≤ σ < 1. If
M > 0 and m(S) is not a multiple of h/(h,M), then Z(s) has at least one
singularity in {s ∈ C : 1/2 ≤ σ < 1, t 6= 0}.

We make use of the following:

Theorem 7 (Kaczorowski, Perelli [12]). Let logF1, . . . , logFN ∈ log S

be linearly independent over Q and let P be a polynomial in N variables
of positive degree with coefficients regular in a region Ω containing the set

{s ∈ C : σ ≥ 1/2, |t| ≥ T1} ∪ {s ∈ C : σ > 1, |t| < T1}
for some T1 > 0. Then the function

p(s) = P (logF1(s), . . . , logFN (s), s)

has infinitely many singularities in the half-plane σ ≥ 1/2.

Lemma 1 ([23]). Suppose % ∈ C and η > 0. Every function F defined in
the neighbourhood |s− %| ≤ η with the exclusion of the segment [%− η, %] by

F (s) =
m∑

j=1

(s− %)wjPj(log(s− %)),

where m ≥ 0, wj ∈ C, and Pj are polynomials with coefficients regular in
|s− %| ≤ η, j = 1, . . . ,m, can be uniquely represented in the form

F (s) =
m′∑

j=1

(s− %)w
′
jQj(log(s− %))

with m′, w′j , and Qj as m, wj and Pj above, but w′j (j = 1, . . . ,m′) pair-
wise non-congruent mod Z and the coefficients of Qj (j = 1, . . . ,m′) not all
attaining the value 0 at %. Each w′j (j = 1, . . . ,m′) is congruent modZ to
one of the wj’s. F can be analytically continued to a neighbourhood of % if
and only if either m′ = 0 or m′ = 1, w′1 is a non-negative integer and Q1 is
of degree 0.

We also need some other lemmas.
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Lemma 2. Let Ω be the interior of {σ + it ∈ C : σ > f(t)} for a real ,
piecewise continuous function f . Suppose F1, . . . , Fk ∈ S are regular in Ω.
Let G1, . . . , Gm be regular in Ω and non-vanishing in a certain half-plane
σ > σ0 ≥ 1, limσ→∞ argGj(σ) = 0, j = 1, . . . ,m, P1, . . . , Pn polynomials
with coefficients regular in Ω, and αi,j (i = 1, . . . , n, j = 1, . . . ,m) complex
numbers. If the function

Z(s) =
n∑

i=1

( m∏

j=1

Gj(s)αi,j
)
Pi(logF1(s), . . . , logFk(s), s), σ > σ0,

has a regular continuation in Ω, then

Z(s) =
∑

i∈I

( m∏

j=1

Gj(s)αi,j
)
Pi(logF1(s), . . . , logFk(s), s), σ > σ0,(2)

where I = {i ∈ {1, . . . , n} :
∑m

j=1 αi,jm(%,Gj) ∈ Z, % ∈ Ω}. Furthermore, if
I ′ 6= I is an equivalence class of the relation ∼ defined by

i ∼ i′ ⇔
∧

%∈Ω

m∑

j=1

αi,jm(%,Gj) ≡
m∑

j=1

αi′,jm(%,Gj) (modZ), i, i′ = 1, . . . , n,

then
∑

i∈I′

( m∏

j=1

Gj(s)αi,j
)
Pi(logF1(s), . . . , logFk(s), s) = 0, σ > σ0.(3)

If , moreover , Ω contains the set

{s ∈ C : σ ≥ 1/2, |t| ≥ T1} ∪ {s ∈ C : σ > 1, |t| < T1}
for a T1 > 0, then

Z(s) =
∑

i∈I

( m∏

j=1

Gj(s)αi,j
)
Hi(s), σ > σ0,(4)

where Hi(s) denotes the constant term of the polynomial Pi.

Proof. Let Ω′ denote the region obtained from Ω by making cuts from
each zero of

∏k
i=1 Fi(s)

∏m
j=1Gj(s) in Ω towards the left, to the edge of Ω.

Let % ∈ Ω. For s sufficiently close to %, Im s < Im %, we have s ∈ Ω ′ and
( m∏

j=1

Gj(s)αi,j
)
Pi(logF1(s), . . . , logFk(s), s)

= (s− %)
∑
j αi,jm(%,Gj)Pi,%(log(s− %), s), i = 1, . . . , n,

where Pi,% are polynomials in log(s− %) with coefficients regular in a neigh-
bourhood of %.
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Consider sets J ⊆ {1, . . . , n} such that I ⊆ J and

∑

i∈J

( m∏

j=1

Gj(s)αi,j
)
Pi(logF1(s), . . . , logFk(s), s) = Z(s), s ∈ Ω′,

and choose any J0 minimal among them. If J0 6= I, we pick i0 ∈ J0 \ I and
% ∈ Ω such that

m∑

j=1

αi0,jm(%,Gj) 6∈ Z.

By Lemma 1 and the regularity at % of

Z(s) =
∑

i∈J0

(s− %)
∑
j αi,jm(%,Gj)Pi,%(log(s− %), s)

we get

Z(s) =
∑

i∈J0∑
j αi,jm(%,Gj)∈Z

(s− %)
∑
j αi,jm(%,Gj)Pi,%(log(s− %), s)

=
∑

i∈J0∑
j αi,jm(%,Gj)∈Z

( m∏

j=1

Gj(s)αi,j
)
Pi(logF1(s), . . . , logFk(s), s)

in the neighbourhood of %. The equality can be extended to Ω ′, contradicting
the minimality of J0. Hence J0 = I and (2) is proved.

If we consider I ′ of the second assertion, we may choose a minimal subset
J1 ⊆ {1, . . . , n} among those containing I ′ and such that

∑

i∈J1

( m∏

j=1

Gj(s)αi,j
)
Pi(logF1(s), . . . , logFk(s), s) = 0, s ∈ Ω′.

We know that the set {1, . . . , n} \ I satisfies the above conditions (since I
and I ′ are disjoint), so the family of sets to choose from is indeed non-empty.
If assertion (3) were not satisfied, we could choose i′ ∈ I ′, i′′ ∈ J1 \ I ′, and
% ∈ Ω such that

m∑

j=1

αi′,jm(%,Gj) 6≡
m∑

j=1

αi′′,jm(%,Gj) (modZ).

Then the sum ∑

i∈J1

(s− %)
∑
j αi,jm(%,Gj)Pi,%(log(s− %), s) = 0

would contain powers of s−% with exponents in at least two classes mod Z.
By Lemma 1 the sum over each of these classes must vanish identically,
contradicting the minimality of J1, so (3) must hold.
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Suppose now that Ω satisfies also the assumptions of the last assertion.
The polynomial

P (z1, . . . , zk, s) =
∑

i∈I

( m∏

j=1

Gj(s)αi,j+M
)
Pi(z1, . . . , zk, s), s ∈ Ω′,

has coefficients regular in Ω, provided M is a sufficiently large natural num-
ber. Without loss of generality we may assume that logF1, . . . , logFr are
linearly independent over Q and

logFr+i = Li(logF1, . . . , logFr), i = 1, . . . , k − r,
for some rational linear forms L1, . . . , Lk−r. The regularity of
( m∏

j=1

Gj(s)M
)
Z(s) = P (logF1(s), . . . , logFr(s), L1(logF1(s), . . . , logFr(s)),

. . . , Lk−r(logF1(s), . . . , logFr(s)), s), s ∈ Ω′,
in Ω implies, in view of Theorem 7, that P (z1, . . . , zr, L1(z1, . . . , zr), . . . ,
Lk−r(z1, . . . , zr)) is of degree 0, hence

( m∏

j=1

Gj(s)M
)
Z(s) = P (0, . . . , 0, L1(0, . . . , 0), . . . , Lk−r(0, . . . , 0), s)

= P (0, . . . , 0, s), s ∈ Ω′,
and (4) follows.

Lemma 3. For X ∈ Cl(S), z ∈ C, we have
∑

a∈I(OK)
p|a⇒p∈X

zΩ(a)

N(a)s
=
(∏

ψ

ζ(s, ψ)zψ(X)
)
FX,z(s), σ > 1,

where FX,z(s) is regular and non-vanishing in s ∈ D.

Proof. Let

ZX(s, z) =
∑

a∈I(OK)
p|a⇒p∈X

zΩ(a)

N(a)s
, σ > 1, z ∈ C,

and

PX(s) =
∑

p∈X

1
N(p)s

, σ > 1.

We have

logZX(s, z) = zPX(s) +
z2

2
PX(2s) + gX,z(s), σ > 1,(5)

for gX,z(s) regular in σ > 1/3. Substituting
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PX(s) =
1
h

∑

χ

χ(X)
(

log ζ(s, χ)− 1
2
ζ(2s, χ2)

)
+ gX(s), σ > 1,

in (5), gX(s) being regular in σ > 1/3, we arrive at the desired conclusion.

Lemma 4. For every system (U,A) we have

ζ(s,NU,A) =
(

1
h

∑

χ

χ(Y )
∏

ψ

ζ(s, ψ)〈χψ|U〉
∏

X∈U
FX,χ(X)(s)

)

×
∏

X 6∈U
PX,A(X)(log ζ(s, χ0), . . . , log ζ(s, χh−1), s), σ > 1,

where Y =
∏
X 6∈U X

A(X), FX,z(s) is as in Lemma 3, and PX,m (m ≥ 0) is
a polynomial of degree m in the first h variables, with coefficients regular in
s ∈ D and the coefficient at logm ζ(s, χ0) constant and equal to 1/hmm!.

Proof. We have

ζ(s,NU,A) =
(

1
h

∑

χ

χ(Y )
∏

X∈U
ZX(s, χ(X))

) ∏

X 6∈U
ZX,A(X)(s), σ > 1,

where ZX(s, z) is as in the proof of Lemma 3 and

ZX,m(s) =
∑

a∈I(OK)
p|a⇒p∈X
Ω(a)=m

1
N(a)s

, σ > 1, m ∈ N ∪ {0}.

We have (cf. [11])

ZX,m(s) =
m∑

k=0

1
k!

∞∑

m1=1

. . .

∞∑

mk=1
m1+···+mk=m

1
m1 · · ·mk

PX(m1s) · · ·PX(mks), σ > 1,

with PX(s) as before. Substituting PX(s) again we get the assertion.

Proof of Theorem 6. Without loss of generality we may assume |Ui| < h,
i = 1, . . . , n, since the only summand possible with |Ui| = h is ζ(s,NCl(S),0)
= ζK(s), which has no singularities other than the pole at s = 1, hence does
not affect the assertions. Let

Yi =
∏

X 6∈Ui
XAi(X), i = 1, . . . , n.

The assumption NUi,Ai 6= ∅ implies that Yi ∈ 〈Ui〉. We have

Z(s) =
1
h

n∑

i=1

∑

χ

αiχ(Yi)
(∏

ψ

ζ(s, ψ)〈χψ|Ui〉
)( ∏

X∈Ui
FX,χ(X)(s)

)

×
∏

X 6∈Ui
PX,Ai(X)(log ζ(s, χ0), . . . , log ζ(s, χh−1), s), σ > 1,
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by Lemma 4. To simplify notation we write formally Pi(l0, . . . , lh−1, s) in-
stead of ∏

X 6∈Ui
PX,Ai(X)(log ζ(s, χ0), . . . , log ζ(s, χh−1), s).

Put d = max|Ui|=M
∑

X 6∈Ui Ai(X) and suppose that d > 0 and, contrary
to the first assertion, Z(s) is regular in a region Ω containing the set

{s ∈ C : σ ≥ 1/2, |t| ≥ T1} ∪ {s ∈ C : σ > 1, |t| < T1},
for a T1 > 0. Taking

I =
{

(i, χ) ∈ {1, . . . , n} × Ĉl(S) :
∑

ψ

m(%, ψ)〈χψ|Ui〉 ∈ Z, % ∈ Ω
}

we have

Z(s) =
1
h

∑

(i,χ)∈I
αiχ(Yi)

(∏

ψ

ζ(s, ψ)〈χψ|Ui〉
)( ∏

X∈Ui
FX,χ(X)(s)

)
HUi,Ai(s),

σ > 1,

where HUi,Ai(s) =
∏
X 6∈Ui PX,Ai(X)(0, . . . , 0, s), by Lemma 2. Therefore, in

the neighbourhood of s = 1, we get
∑

(i,χ)∈I
αiχ(Yi)(s− 1)−〈χ|Ui〉Gi,χ(s)HUi,Ai(s)

=
n∑

i=1

∑

χ

αiχ(Yi)(s− 1)−〈χ|Ui〉Gi,χ(s)Pi(l0, . . . , lh−1, s),

where Gi,χ(s) = (s − 1)〈χ|Ui〉
∏
ψ ζ(s, ψ)〈χψ|Ui〉

∏
X∈Ui FX,χ(X)(s) is regular

and non-vanishing in the neighbourhood of 1. We have 〈χ|Ui〉 ≤ M/h, i =
1, . . . , n, χ ∈ Ĉl(S), and 〈χ|Ui〉 = M/h if and only if |Ui| = M and 〈Ui〉 ⊆
kerχ, hence, by Lemma 1, we get

∑

(i,χ)∈I
|Ui|=M
〈Ui〉⊆kerχ

αi(s− 1)−M/hGi,χ(s)HUi,Ai(s)

+
∑

(i,χ)∈I
〈χ|Ui〉=M/h−1

αiχ(Yi)(s− 1)1−M/hGi,χ(s)HUi,Ai(s)

=
∑

|Ui|=M
〈Ui〉⊆kerχ

αi(s− 1)−M/hGi,χ(s)Pi(l0, . . . , lh−1, s)

+
∑

〈χ|Ui〉=M/h−1

αiχ(Yi)(s− 1)1−M/hGi,χ(s)Pi(l0, . . . , lh−1, s)



164 M. Radziejewski

and consequently

(6)
∑

|Ui|=M
〈Ui〉⊆kerχ

αiGi,χ(s)(Pi(l0, . . . , lh−1, s)− charI(i, χ)HUi,Ai(s))

+ (s− 1)
∑

〈χ|Ui〉=M/h−1

αiχ(Yi)Gi,χ(s)

× (Pi(l0, . . . , lh−1, s)− charI(i, χ)HUi,Ai(s)) = 0.

The left side of (6) is a polynomial in log(s− 1) with coefficients regular
in the neighbourhood of 1. The value at s = 1 of its coefficient at logd(s−1)
is

c = (−1)d
∑

|Ui|=M
〈Ui〉⊆kerχ∑
Ai(X)=d

αiGi,χ(1)
hd

∏

X 6∈Ui
(Ai(X)!)−1.

For all i, χ such that |Ui| = M and 〈Ui〉 ⊆ kerχ we have αi > 0 and, for
σ > 1,

(σ − 1)−〈χ|Ui〉Gi,χ(σ) =
(∏

ψ

ζ(σ, ψ)〈ψ|Ui〉
)( ∏

X∈Ui
FX,1(σ)

)

=
∑

a∈I(OK)
p|a⇒[p]∈Ui

N(a)−σ > 0,

where the last equality follows from Lemma 3. Since Gi,χ(1) 6= 0, the above
implies Gi,χ(1) > 0. Therefore c 6= 0, contradicting (6) in view of Lemma 1.
The first assertion must therefore be true.

Assume now that m(S) is not a multiple of h/(h,M) and let %1, . . . , %q ∈
C \ R and k1, . . . , kq ∈ Z be such that

q∑

j=1

kjm(%j, χ) =
{
m(S), χ = χ0,

0, χ ∈ Ĉl(S), χ 6= χ0.

We are free to assume Re %j ≥ 1/2, j = 1, . . . , q, since m(%, χ) = m(1−%, χ),

χ ∈ Ĉl(S), by the functional equation (cf. e.g. [15]). We also assume that
there are no zeros % of

∏
χ ζ(s, χ) other than %1, . . . , %q such that Im % =

Im %j and Re % > Re %j for any j (if there are, we append them to %1, . . . , %q).
We are going to show that Z(s) must have a singularity at one of the %j ’s
at least.

To this end assume the converse and put

I ′ =
{

(i, χ) ∈ {1, . . . , n} × Ĉl(S) :
∑

ψ

m(%j , ψ)〈χψ|Ui〉 ∈ Z, j = 1, . . . , q
}
.
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We have

Z(s) =
1
h

∑

(i,χ)∈I′
αiχ(Yi)

(∏

ψ

ζ(s, ψ)〈χψ|Ui〉
)

×
( ∏

X∈Ui
FX,χ(X)(s)

)
Pi(l0, . . . , lh−1, s), σ > 1,

using Lemma 2 again. Therefore, in a neighbourhood of s = 1, we have
∑

(i,χ)6∈I′
αiχ(Yi)(s− 1)−〈χ|Ui〉Gi,χ(s)Pi(l0, . . . , lh−1, s) = 0(7)

with Gi,χ(s) as before. Lemma 1 and (7) imply
∑

(i,χ)6∈I′
|Ui|=M
〈Ui〉⊆kerχ

αiGi,χ(s)Pi(l0, . . . , lh−1, s)(8)

+ (s− 1)
∑

(i,χ)6∈I′
〈χ|Ui〉=M/h−1

αiχ(Yi)Gi,χ(s)Pi(l0, . . . , lh−1, s) = 0

for s close to 1. The left side of (8) is again a polynomial in log(s− 1) and
the value at 1 of its coefficient at logd(s− 1) is

c′ = (−1)d
∑

(i,χ)6∈I′
|Ui|=M,

∑
Ai(X)=d

〈Ui〉⊆kerχ

αiGi,χ(1)
hd

∏

X 6∈Ui
(Ai(X)!)−1.(9)

Each summand in (9) is positive. On the other hand, c′ = 0 by (8) and
Lemma 1. Therefore, for each i0 such that |Ui0 | = M and

∑
Ai0(X) = d we

must have (i0, χ0) ∈ I ′, i.e.
∑

ψ

m(%j, ψ)〈ψ|Ui0〉 ∈ Z, j = 1, . . . , q.

However, there is at least one such i0 and we have

q∑

j=1

kj
∑

ψ

m(%j , ψ)〈ψ|Ui0〉 =
∑

ψ

( q∑

j=1

kjm(%j, ψ)
)
〈ψ|Ui0〉

= m(S)〈χ0|Ui0〉 =
m(S)M

h
6∈ Z,

a contradiction.
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3. The constant m(S). First we show that, indeed, m(S) <∞.

Lemma 5 (Kaczorowski, Perelli [12]). Let logF1, . . . , logFN ∈ log S be
linearly independent over Q and let ν(%) = (m(%, F1), . . . ,m(%, FN)) for
every % ∈ C. Then there exist infinitely many disjoint N -tuples (%1, . . . , %N )
of non-trivial zeros of

∏N
j=1 Fj(s), with Re %j ≥ 1/2 for j = 1, . . . , N , such

that the vectors ν(%1), . . . , ν(%N) form a basis of RN .

Corollary 2. Let F1, . . . , FN ∈ S and let logF1 be linearly independent
of logF2, . . . , logFN over Q. Then there exist some complex non-real zeros
%1, . . . , %q of

∏N
i=1 Fi(s) and k1, . . . , kq ∈ Z such that

q∑

j=1

kjm(%j, Fi) =
{
m, i = 1,

0, i = 2, . . . , N ,

for certain m ∈ N.

Proof. We may assume that logF1, . . . , logFr are linearly independent
and logFr+1, . . . , logFN depend on logF2, . . . , logFn. Then there must be
some %1, . . . , %q ∈ C \ R, k1, . . . , kq ∈ Z, and m ∈ N such that

q∑

j=1

kjm(%j, Fi) =
{
m, i = 1,

0, i = 2, . . . , r,

by Lemma 5. The remaining equalities follow from linear dependence.

Corollary 3. We have m(S) <∞.

Proof. Because of the pole at 1, log ζ(s, χ0) is linearly independent of
log ζ(s, χ1), . . . , log ζ(s, χh−1), and we can apply the previous corollary.

In order to prove Theorem 4 we need some effective upper bounds for
the derivatives of the Hecke zeta functions involved. For fields with a large
discriminant one could obtain better asymptotic estimates using the method
of K. Wiertelak [31].

Lemma 6. Let n be the degree of K, dK the absolute value of the dis-
criminant of K, and χ a character of the class group H(K). Then we have∣∣∣∣

d2

ds2 (s− 1)ζK(s)

∣∣∣∣ ≤ 4 max(dKπ−n, 2n)(|t|+ 3)n+1

and
|ζ ′(s, χ)| ≤ 4

3
max(dKπ−n, 2n)(|t|+ 3)n, χ 6= χ0,

in the strip 1/4 ≤ σ ≤ 3/4.

Proof. Let r1, 2r2 be the number of real, respectively complex, embed-
dings of K in C. For all χ ∈ Ĥ(K) we have

|ζ(3/2 + it, χ)| ≤ ζK(3/2) ≤ 2n, t ∈ R,
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and by the functional equation (cf. e.g. [15])

|ζ(−1/2 + it, χ)|

= 2−2r2dKπ
−n
∣∣∣∣
Γ
(
3/4− 1

2 it
)

Γ
(
−1/4 + 1

2 it
)
∣∣∣∣
r1
∣∣∣∣
Γ (3/2− it)
Γ (−1/2 + it)

∣∣∣∣
r2

|ζ(3/2− it, χ)|

= 2−2r2dKπ
−n∣∣−1/4 + 1

2 it
∣∣r1 |(1/2 + it)(−1/2 + it)|r2ζ(3/2− it, χ)

≤ dKπ−n(t2 + 1/4)
n/2
, t ∈ R.

The function
F (s) = (s− 5/2)−n−1(s− 1)ζK(s)

is of finite order, regular in the strip −1/2 ≤ σ ≤ 3/2, and we have

|F (3/2 + it, χ)| ≤ 2n, |F (−1/2 + it, χ)| ≤ dKπ−n

for all t ∈ R. Using the Phragmèn–Lindelöf theorem we get

|F (s)| ≤ max (2n, dKπ−n), −1/2 ≤ σ ≤ 3/2.

Hence

|(s− 1)ζK(s)| ≤ max (2n, dKπ−n)(|t|+ 3)n+1, −1/2 ≤ σ ≤ 3/2.

In a similar way we obtain

|ζ(s, χ)| ≤ max (2n, dKπ−n)(|t|+ 3)n, −1/2 ≤ σ ≤ 3/2, χ 6= χ0.

Using the formula

f (k)(s0) =
k!

2πi

�

C

f(s)
(s− s0)k+1 ds

for f(s) = ζ(s, χ), χ ∈ Ĥ(K), s0 in the strip 1/4 ≤ Re s0 ≤ 3/4, and C a
circle of radius 3/4 and centre s0 we obtain the assertions.

Lemma 7. Let f(s) be a function regular at s0 ∈ C, f ′(s0) 6= 0, and
suppose f(s) is regular in an open set containing the disc

|s− s0| ≤ 2
|f(s0)|
|f ′(s0)|

and |f ′′(s)| ≤M , M > 0, for all s in the disc. If

|f(s0)| < |f
′(s0)|2
2M

then f(s) has a simple zero in the disc.

Proof. For |s− s0| = 2|f(s0)|/|f ′(s0)| we have

|f(s)− (s− s0)f ′(s0)| ≤ 1
2M |s− s0|2 + |f(s0)| < |(s− s0)f ′(s0)|,

so the assertion follows from Rouché’s Theorem.
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Using the PARI/GP system by C. Batut, K. Belabas, D. Bernardi, H. Co-
hen, and M. Olivier [30] and the ComputeL package by T. Dokchitser [2]
we can find a zero of the appropriate Dedekind zeta function. The loca-
tion of such zeros is given in Table 1. We list the generating polynomial of

Table 1. Zeros of ζK(s) (K = Q(α), f(α) = 0)

f(x) H(K) Im %

x2 − 26 C2 1.370583964578 . . .

x2 + 65 C2 ⊕ C4 1.05325893699922446326153 . . .

x2 + 9982 C8 ⊕ C2
2 0.27659701748718108818108 . . .

x3 − x2 + 7x+ 8 C6 1.35047419556160885557154 . . .

x3 − x2 − 97x− 384 C4 ⊕ C2 0.43063928124489314683107 . . .

the field, the imaginary part of the first zero of ζK(s) (the real part was
always 0.5 ± 10−18), and the class group structure. The five cases studied
include three quadratic fields and two non-normal, cubic fields. With Lem-
mas 6 and 7 we can verify (all the required inequalities being satisfied with
ample margin of error) that each Dedekind zeta function considered has a
simple zero close to the point we have found and that none of the other
functions ζ(s, χ) have zeros close to that point. Thus Theorem 4 is demon-
strated. The PARI scripts used in the computations can be found at http://
www.amu.edu.pl/˜maciejr.

4. Applications. In this section we prove Theorems 1, 2, 3 and 5. We
use an earlier result:

Theorem 8 ([23]). Let f(x) be a real , piecewise continuous function,
defined for x > 0. Suppose the integral � ∞0 f(x)x−s−1 dx is absolutely con-
vergent in a half-plane σ ≥ σ1 with σ1 ∈ R. Let F (s) = � ∞0 f(x)x−s−1 dx
in that half-plane and let θ ∈ R be the smallest number such that F (s) can
be continued analytically to a function regular in the half-plane σ > θ. As-
sume that F (s) can be analytically continued to a function regular in a larger
half-plane σ > θ − c0 (c0 > 0) with the exclusion of some horizontal cuts
starting at its edge. The right ends of the cuts, denoted %, contained in the
strip θ − c0 ≤ σ ≤ θ, having non-zero imaginary parts and no point of ac-
cumulation, are assumed to be singular points of F (s), i.e., F (s) cannot be
extended further to a function regular at any of the %. In the neighbourhood
of radius η% > 0 of a singularity % assume that , off the cut ,

F (s) =
m%∑

j=1

(s− %)w%,jP%,j(log(s− %)),(10)
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where m% ≥ 1, w%,j ∈ C, and P%,j are polynomials with coefficients regular
in the entire η%-neighbourhood of %, j = 1, . . . ,m%. Let γ = minRe %=θ |Im %|
and γ = ∞ if there are no singularities on the line σ = θ. Then f(x) is
subject to oscillations of lower logarithmic frequency greater than or equal
to γ/π and size xθ−ε.

Let E denote the neutral element of Cl(S). Consider the setA=A(Cl(S))
of irreducible elements (atoms) of the block monoid B(Cl(S)). Let A′k =
A· . . . ·A (k times), k ∈ N, Ak = A′1∪ · · ·∪A′k, and let Aa,b, a, b ∈ N, a ≤ b,
be the set of the elements of Ab not contained in any A′k for k 6∈ [a, b]. The
set A is finite and so are Ak, A′k, and Aa,b. It is obvious that A, Ak and A′k
are non-empty. Aa,b is also non-empty, as it contains Ea. Moreover, treating
the blocks formally as functions from Cl(S) to N ∪ {0}, we get

M =
∑

A∈A
N∅,A, Mk =

∑

A∈Ak
N∅,A, M ′k =

∑

A∈A′k

N∅,A, k ∈ N,

Ma,b =
∑

A∈Aa,b
N∅,A, a, b ∈ N, a ≤ b.

From [28], [29], and [11] it follows (the arguments work in our, slightly more
general, case without change) that, for a, b ∈ N, a ≤ b, there exist systems
(Ui, Ai) and integers αi, i = 1, . . . ,m, such that

charGa,b =
m∑

i=1

αicharNUi,Ai ,(11)

αi0 > 0 for all i0 such that |Ui0 | = maxi |Ui|, and each Ui is half-factorial
(cf. [27] or [28]).

If B is one of the sets M , Mk, M ′k, Ma,b, or Ga,b, then the above state-
ments imply that ζ(s,B) is a finite combination of zeta functions of type
ζ(s,NU,A) associated to systems (U,A). The proofs of Lemmas 3 and 4 show
that for any system (U,A) the function ζ(s,NU,A) admits an analytic con-
tinuation to the half-plane σ > 1/3 with cuts from possible singularities
(located at the zeros of

∏
χ∈Ĉl(S)

ζ(s, χ)ζ(2s, χ) or at 1 or 1/2) to the edge
of the half-plane. The type of singularities is as described in Lemma 1. Now
it suffices to see that, for the main term B(x) defined as before and the error
term E(x) = B(x)− B(x), we have (cf. [14])

∞�

0

E(x)x−s−1 dx =
1
s
ζ(s,B)− 1

2πi

�

C

1
s− z

ζ(z,B)
z

dz, σ > 1.

The function � ∞0 E(x)x−s−1 dx is regular inside C and the difference

1
s
ζ(s,B)−

∞�

0

E(x)x−s−1 dx
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is regular outside [1/2− δ, 1], therefore it suffices to prove the existence of a
singularity of ζ(s,B) in {s ∈ C : σ ≥ 1/2, t 6= 0} to prove the assertions of
Theorems 1, 2, 3 and 5.

For Theorem 1 this is immediate from Theorem 6.
In the case a ≥ 2 of Theorem 2 we use (11) and notice that for i0

such that |Ui0 | = maxi |Ui| we must have NUi0 ,Ai0
∩ Ga,b 6= ∅. If we had∑

X 6∈Ui0
Ai0(X) = 0, then NUi0 ,Ai0

⊆ G1,1 by half-factoriality of Ui0 , hence
G1,1 ∩ Ga,b 6= ∅, a contradiction. Let us take a U ⊆ Cl(S) half-factorial,
|U | = µ(Cl(S)), and any non-zero A: Cl(S) \U → N∪{0}. We have NU,A ⊆
G1,b0 for a b0 ≥ 1 (cf. [28]). For all b ≥ b0 we have NU,A ⊆ G1,b and NU,A

has the maximum possible dimension, so it must be one of the summands
of (11), and we have

∑
X 6∈U A(X) > 0 again. Theorem 2 is thus proven.

Theorem 3 is immediate from Theorem 6.
To prove Theorem 5 we note that if ψ(Cl(S), b) > 0 and if U ⊆ Cl(S)

and F =
∏
g∈G\U g

αg are as in the definition of ψ(Cl(S), b),
∑

g∈G\U αg > 0,
then NU,F ⊆ G1,b and the assertion follows as in the proof of Theorem 2.
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