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On the arithmetic mean of Dedekind sums

by

Kurt Girstmair (Innsbruck)
and Johannes Schoißengeier (Wien)

Introduction and main result. In what follows, N denotes the set
of positive integers. We consider a number N ∈ N (which will often tend
to infinity) and integers m with (m,N) = 1. The classical Dedekind sum
s(m,N) is defined by

s(m,N) =
N∑

k=1

((k/N))((mk/N)),

where ((. . .)) is the usual sawtooth function (see [2]). In the present setting
it is more natural to work with

S(m,N) = 12s(m,N).

Since S(m+N,N) = S(m,N), it suffices to study S(m,N) for numbers m
in the range 0 ≤ m < N , (m,N) = 1.

The values of S(m,N) lie between −N and N ; their distribution has at-
tracted considerable interest (see [2] for a survey). For instance, the limiting
distribution of these sums shows that, on average, |S(m,N)| ≤ 12 logN for
about 90% of all possible m ∈ [0, N [ when N tends to infinity (see [12]). On
the other hand, in the neighbourhood of Farey points N · c/d, 0 ≤ c ≤ d,
(c, d) = 1, d ≤

√
N , there is quite a number of integers m with rela-

tively large values of |S(m,N)|. This phenomenon was studied (among other
things) in [1], [3], and also in [5], [6]. It is responsible for the fact that the
quadratic mean value of the sums S(m,N) is relatively large. Indeed,

(
1

ϕ(N)

∑

0≤m<N
(m,N)=1

|S(m,N)|2
)1/2

� N1/2

for N →∞ (here ϕ(N) is the Euler function; see [4], [13] for details).
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Whereas higher power mean values and related moments of Dedekind
sums have been studied thoroughly (see [8], [7]), it seems that not much is
known about the asymptotic behaviour of the arithmetic mean

1
ϕ(N)

∑

0≤m<N
(m,N)=1

|S(m,N)|.

The only result we know of is the upper bound

1
ϕ(N)

∑

0≤m<N
(m,N)=1

|S(m,N)| ≤ 6
π2 log2N +O(logN)(1)

(for N → ∞), which is an easy corollary to a result about continued frac-
tions, as we shall point out below. In this paper we show

1
ϕ(N)

∑

0≤m<N
(m,N)=1

|S(m,N)| ≥ 3
π2 log2N +O(log2N/log logN)

for N →∞. In fact, we present a more precise statement. For N ≥ 2 put

x = min{
√
N/logN,

√
N/τ(N)},(2)

where τ(N) denotes the number of divisors of N . Let c, d be integers such
that 0 ≤ c ≤ d ≤ x and (c, d) = 1. For these we define

Ic/d = [ 0, N ] ∩ {z ∈ R : |z −N · c/d| ≤ x/d}.
So Ic/d is a certain interval around the Farey point N · c/d (but it is in
general larger than the Farey neighbourhood of [6] denoted in the same
way). Further put

F =
⋃

1≤d≤x

⋃

0≤c≤d
(c,d)=1

Ic/d.

It is not hard to see that this union is disjoint if N is large (see Section 1
below). The set F contains only relatively few of all integers m, 0 ≤ m < N ,
(m,N) = 1; indeed, |F ∩ Z| = O(ϕ(N)/logN) for large values of N (see
Section 2). We show

Theorem 1. Let N tend to infinity. Then

1
ϕ(N)

∑

m∈F
(m,N)=1

|S(m,N)| = 3
π2 log2N +O(log2N/log logN).

We should say some words about the upper bound (1). Fix N for a
moment. Let a1, . . . , an ∈ N be the continued fraction expansion of m/N ,
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i.e.,

m/N =
1|
|a1

+ · · ·+ 1|
|an

(so n depends on m and an ≥ 2). Put T (m,N) = a1 + · · ·+ an. Then
1

ϕ(N)

∑

0≤m<N
(m,N)=1

T (m,N) =
6
π2 log2N +O(logN)(3)

(see [9] and [10]). The Dedekind sum S(m,N) is nearly the same as the
alternating sum a1 − a2 + · · ·+ (−1)n−1an. More precisely,

|S(m,N)− (a1 − a2 + · · ·+ (−1)n−1an)| ≤ 5

(see [4, Lemma 4]). Together with (3) this clearly implies (1).
So this upper bound is in some sense trivial since it is just based on the

estimate |a1 − a2 + · · · ± an| ≤ a1 + · · ·+ an. Nevertheless, numerical com-
putations suggest that (1) is basically sharp. We have the following expla-
nation for this somewhat strange observation: Apparently the sign changes
in a1 − a2 + · · · ± an have no influence on the main term of (3) but only on
the error term. One can see from the original papers that the error term of
(3) is ≥ C logN for some positive constant C. It seems likely that a lower
bound of the following kind is nearly optimal: There are constants C ′ < 0
and k ≥ 1 such that, for N →∞,

1
ϕ(N)

∑

0≤m<N
(m,N)=1

|S(m,N)| ≥ 6
π2 log2N + C ′ logN logk logN.

In this sense the contribution of the relatively few values |S(m,N)|, m ∈ F ,
is just half of the conjectured asymptotic arithmetic mean of all Dedekind
sums. It seems that our method does not yield more.

1. Plan of the proof. For the time being, let N ≥ 5 and x be as in (2).
In addition, assume 0 ≤ m < N , 0 ≤ c ≤ d ≤ x, and (m,N) = (c, d) = 1.
Our first observation concerns the disjointness of the intervals Ic/d as men-
tioned above. Indeed, suppose Ic/d ∩ Ic′/d′ is nonempty for 0 ≤ c′ ≤ d′ ≤ x,
(c′, d′) = 1. Then |N · c/d−N · c′/d′| ≤ x/d+ x/d′. Together with (2) this
gives |d′c− c′d| ≤ 2x2/N ≤ 2/log2N < 1.

A basic tool for our proof of Theorem 1 is the generalized reciprocity law
for Dedekind sums, which we are going to state now. Choose k, j ∈ Z such
that −cj + dk = 1 and define r, q ∈ Z by(

r

q

)
=
(
j −k
d −c

)(
m

N

)
.(4)

So the 2×2-matrix of (4) has determinant 1 andmd−Nc = q. As (m,N) = 1,
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we have (r, q) = 1, and the conditions (c, d) = 1, d < N , imply q 6= 0.
Moreover, r is uniquely determined mod q; indeed, the substitutions j 7→
j + td, k 7→ k + tc, t ∈ Z, entail r 7→ r + tq. Accordingly, the Dedekind sum
S(r, |q|) is uniquely determined by m,N, c, d. The generalized reciprocity law
says

S(m,N) = S(c, d)± S(r, |q|) +
N2 + d2 + q2

Ndq
± 3,

where the ± sign is the sign of q in both cases (see, e.g., [5, Lemma 1]). This
gives

S(m,N) =
N

dq
+ S(c, d)± S(r, |q|) +O(1),(5)

the O-term standing for an error of absolute value ≤ 5.
Let I+

c/d = [ 0, N ] ∩ {z : 0 < z − N · c/d ≤ x/d} be the right half of the

interval Ic/d and F+ the union of all I+
c/d, 1 ≤ d ≤ x, 0 ≤ c ≤ d, (c, d) = 1.

Since I+
1/1 = ∅, it suffices that the union is taken over c < d only. We shall

show that
1

ϕ(N)

∑

m∈F+

(m,N)=1

S(m,N) =
3

2π2 log2N +O(log2N/log logN).(6)

The analogue for the left halves I−
c/d

and their respective union F− reads

1
ϕ(N)

∑

m∈F−
(m,N)=1

S(m,N) = − 3
2π2 log2N +O(log2N/log logN)(7)

(the union may be taken over c > 0).
Theorem 1 is an immediate consequence of (6) and (7). These assertions

are proved as follows: By (5), we have
∑

m∈F+

(m,N)=1

S(m,N) =
∑

1≤d≤x

∑

0≤c<d
(c,d)=1

∑

m∈I+
c/d

(m,N)=1

N

dq
+O(E1 + E2 + E3),(8)

where q = md−Nc > 0 is as above and E1, E2, E3 are the error terms

E1 =
∑

1≤d≤x

∑

0≤c<d
(c,d)=1

∑

m∈I+
c/d

(m,N)=1

|S(c, d)|, E2 =
∑

1≤d≤x

∑

0≤c<d
(c,d)=1

∑

m∈I+
c/d

(m,N)=1

|S(r, q)|,

E3 =
∑

1≤d≤x

∑

0≤c<d
(c,d)=1

∑

m∈I+
c/d

(m,N)=1

1;

here r has the properties implied by (4). In the next section we show that the
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total contribution of E1, E2, E3 is O(ϕ(N) logN log logN). The asymptotic
expansion of the main term of (8), namely,

∑

1≤d≤x

∑

0≤c<d
(c,d)=1

∑

m∈I+
c/d

(m,N)=1

N

dq
=

6
π2 ϕ(N) log2 x+O(ϕ(N) logN log3 logN),(9)

is more laborious. It is contained in Proposition 1 below, whose proof fills
Section 3. Our choice (2) of x implies log x=(1/2) logN+O(logN/log logN)
(see [11, p. 82]). So all these results together yield (6). Item (7) is treated in
the same way: Equation (5) shows that (8) remains valid if F+ is replaced
by F− and I+

c/d by I−c/d in each error term (here q = −|q|).

2. The error terms. We start with the above error terms. In order to
treat E1 and E3 we use |Z∩ I+

c/d
| ≤ x/d+ 1 ≤ 2x/d for 1 ≤ d ≤ x. Thereby,

E3 �
∑

1≤d≤x

∑

0≤c<d
(c,d)=1

x

d
� x2 � N

log2N
� ϕ(N)

logN
.

This estimate also shows |F+ ∩ Z| � ϕ(N)/logN and, thus, the aforemen-
tioned bound |F ∩ Z| = O(ϕ(N)/logN).

Further,

E1 ≤
∑

1≤d≤x

2x
d

∑

0≤c<d
(c,d)=1

|S(c, d)|.

From (1) we have
∑

0≤c<d
(c,d)=1

|S(c, d)| � d log2 d.(10)

Accordingly,

E1 �
∑

1≤d≤x
x log2 d� x2 log2N � N � ϕ(N) log logN

(for the last estimate see [11, p. 84]).
The most critical item is E2; in particular, E2 requires choosing x rela-

tively small when N has many prime divisors (see (2)). By (4), q = md−Nc
for each m ∈ I+

c/d, (m,N) = (c, d) = 1. Therefore,

E2 =
∑

1≤q≤x

∑

0≤r<q
(r,q)=1

|S(r, q)| · br,q,(11)

where br,q is the number of pairs (d,m), 1 ≤ d ≤ x, 1 ≤ m ≤ N , (m,N) = 1
such that (4) holds for some c, 0 ≤ c < d, (c, d) = 1, and suitable integers
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j, k. The said equation shows, first, that md ≡ q mod N , whence because
of (m,N) = 1 the condition (d,N) = (q,N) = (d, q) follows; second, it
gives an expression for N in terms of r and q, namely N = −dr + jq, so
dr ≡ −N mod q. Accordingly,

br,q ≤
∑

1≤d≤x
(d,N)=(q,N)=(d,q)
dr≡−N mod q

|{1 ≤ m < N : (m,N) = 1,md ≡ q mod N}|.

If δ = (d,N) = (q,N) = (d, q), then the congruence md ≡ q mod N has
exactly δ solutions m, 0 ≤ m < N . Therefore,

br,q ≤
∑

δ|(q,N)

δ · |{1 ≤ d ≤ x : dr ≡ −N mod q}|.

Because (r, q) = 1, the congruence dr ≡ −N mod q has exactly one solution
d in each of the intervals [1, q], [q + 1, 2q], [2q + 1, 3q], . . . , and so it has at
most x/q + 1 ≤ 2x/q solutions in the interval [1, x] (in view of (11), only
numbers q ≤ x are of interest). Thus,

br,q ≤
∑

δ|(q,N)

2δx
q
,

and, because of (11) and (10),

E2 �
∑

1≤q≤x

∑

0≤r<q
(r,q)=1

|S(r, q)|
∑

δ|(q,N)

δx

q
�

∑

1≤q≤x
q log2 q

∑

δ|(q,N)

δx

q

� x log2 x
∑

δ|N
δ

∑

1≤q≤x, δ|q
1� x2 log2 x · τ(N).

Our choice (2) of x shows E2 = O(N logN) = O(ϕ(N) logN log logN),
which is also the contribution of all three error terms together.

3. The main term. In the following, d, q, and k are positive integers.
The left side of (9) has the form

H(x) =
∑

d≤x

∑

0≤c<d
(c,d)=1

∑

0≤m<N, (m,N)=1
1≤md−Nc≤x

N

d(md−Nc) .(12)

The following proposition clearly contains (9).

Proposition 1. Let α > 0, N tend to infinity , and Nα ≤ x ≤ N . Then

H(x) =
6
π2 ϕ(N) log2 x+O(ϕ(N) logN log3 logN).(13)
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Proof. We use the standard sieving technique based on the Möbius func-
tion in order to remove the condition (c, d) = 1 from (12). This gives

H(x) =
∑

k≤x

µ(k)
k2

∑

d≤x/k

∑

0≤c<d

∑

0≤m<N, (m,N)=1
1≤md−Nc≤x/k

N

d(md−Nc) .

With q = md−Nc ∈ N this reads

H(x) = N
∑

k≤x

µ(k)
k2

∑

d≤x/k

∑

q≤x/k

ad,q
dq

,

where ad,q is the number of solutions m, 0 ≤ m < N , (m,N) = 1, of the
congruence md ≡ q mod N . Suppose ad,q 6= 0. Because (m,N) = 1, this can
only happen if (d,N) = (q,N).

Therefore, put δ = (d,N) = (q,N). Determining the exact value of ad,q
is now an exercise in the Chinese remainder theorem; one obtains

ad,q = δ
∏

p|δ
p-N/δ

(1− 1/p) = ϕ(N)/ϕ(N/δ)

(p runs through the respective primes). Accordingly,

H(x) = N
∑

k≤x

µ(k)
k2

∑

δ|N

ϕ(N)
ϕ(N/δ)

∑

d,q≤x/k
(d,N)=(q,N)=δ

1
dq
.

Here the innermost sum equals

1
δ2

∑

d,q≤x/(kδ)
(d,N/δ)=(q,N/δ)=1

1
dq
.

If we replace this sum by the same sum over d, q ≤ x, we obtain H(x) =
H1(x) +R1(x) with

H1(x) = N
∑

k≤x

µ(k)
k2

∑

δ|N

ϕ(N)
ϕ(N/δ)δ2

∑

d,q≤x
(d,N/δ)=(q,N/δ)=1

1
dq
,

R1(x)� N
∑

k≤x

1
k2

∑

δ|N

1
δ

∑

x/(kδ)≤d≤x
1≤q≤x

1
dq

(where we have used ϕ(N) ≤ ϕ(N/δ)δ). Since
∑

x/(kδ)≤d≤x

1
d
� 1+log kδ,

∑

δ|N

1
δ
� log logN,

∑

δ|N

log δ
δ
� log2 logN,(14)



196 K. Girstmair and J. Schoißengeier

(see [11, p. 86], for the second item; the proof of the third one will be given
in Lemma 1) we have

R1(x)� N log x
∑

k≤x

1
k2

∑

δ|N

1 + log k + log δ
δ

� N logN log2 logN.

Because N � ϕ(N) log logN , the size of R1(x) is compatible with (13), so
it suffices to consider H1(x).

Using
∑

k≤x µ(k)/k2 = 6/π2 +O(1/x) we obtain H1(x) = H2(x)+R2(x)
with

H2(x) =
6Nϕ(N)

π2

∑

δ|N

1
ϕ(N/δ)δ2

∑

d,q≤x
(d,N/δ)=(q,N/δ)=1

1
dq
,

R2(x)� N

x

∑

δ|N

1
δ

∑

d,q≤x

1
dq
� N

x
log3N � ϕ(N).

Accordingly, we study H2(x) now. To this end we use
∑

d≤x, (d,N/δ)=1

1
d

=
δϕ(N/δ)

N
log x+O(log2 logN)(15)

(see Lemma 1 below), which yields

H2(x) =
6Nϕ(N)

π2

∑

δ|N

1
ϕ(N/δ)δ2

(
δϕ(N/δ)

N
log x+O(log2 logN)

)2

.

Hence,

H2(x) =
6ϕ(N)
π2 log2 x+R3(x)

with

R3(x)� ϕ(N) log x log2 logN
∑

δ|N

1
δ
� ϕ(N) logN log3 logN.

This completes the proof.

The justification of the last entry of (14) and of (15) is afforded by

Lemma 1. Let N tend to infinity. Then
∑

d|N

log d
d
� log2 logN.

Let α > 0, x ≥ Nα, and n ≤ N . If N tends to infinity , then
∑

d≤x, (d,n)=1

1
d

=
ϕ(n)
n

log x+O(log2 logN)

with an O-constant independent of n and x.
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Proof. We start with the first assertion. Let N =
∏
p p

ep be the decom-
position of N into prime factors. It is not hard to check that

∑

d|N

log d
d
≤
∑

p|N

ep∑

k=1

k log p
pk

∑

d|N

1
d
�
∑

p|N

log p
p

log logN.

Combining this with
∑

p|N

log p
p
� log logN

we obtain the assertion. The proof of the last-mentioned estimate follows a
pattern that can be found in [11, p. 14]. As to the second statement,

∑

d≤x, (d,n)=1

1
d

=
∑

k|n

µ(k)
k

∑

d≤x/k

1
d

=
∑

k|n, k≤x

µ(k)
k

(
log

x

k
+O(1)

)
.

By a straightforward computation we see that this equals

ϕ(n)
n

log x+O

(
τ(n) log x

x
+
∑

k|n

log k
k

+ log logN
)
.

Since x ≥ Nα, the first assertion of the lemma yields the desired result.
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