On the arithmetic mean of Dedekind sums

by
Kurt Girstmair (Innsbruck) and Johannes Schoissengeier (Wien)

Introduction and main result. In what follows, \mathbb{N} denotes the set of positive integers. We consider a number $N \in \mathbb{N}$ (which will often tend to infinity) and integers m with $(m, N)=1$. The classical Dedekind sum $s(m, N)$ is defined by

$$
s(m, N)=\sum_{k=1}^{N}((k / N))((m k / N))
$$

where $((\ldots))$ is the usual sawtooth function (see [2]). In the present setting it is more natural to work with

$$
S(m, N)=12 s(m, N)
$$

Since $S(m+N, N)=S(m, N)$, it suffices to study $S(m, N)$ for numbers m in the range $0 \leq m<N,(m, N)=1$.

The values of $S(m, N)$ lie between $-N$ and N; their distribution has attracted considerable interest (see [2] for a survey). For instance, the limiting distribution of these sums shows that, on average, $|S(m, N)| \leq 12 \log N$ for about 90% of all possible $m \in[0, N[$ when N tends to infinity (see [12]). On the other hand, in the neighbourhood of Farey points $N \cdot c / d, 0 \leq c \leq d$, $(c, d)=1, d \leq \sqrt{N}$, there is quite a number of integers m with relatively large values of $|S(m, N)|$. This phenomenon was studied (among other things) in [1], [3], and also in [5], [6]. It is responsible for the fact that the quadratic mean value of the sums $S(m, N)$ is relatively large. Indeed,

$$
\left(\frac{1}{\varphi(N)} \sum_{\substack{0 \leq m<N \\(m, N)=1}}|S(m, N)|^{2}\right)^{1 / 2} \asymp N^{1 / 2}
$$

for $N \rightarrow \infty$ (here $\varphi(N)$ is the Euler function; see [4], [13] for details).

[^0]Whereas higher power mean values and related moments of Dedekind sums have been studied thoroughly (see [8], [7]), it seems that not much is known about the asymptotic behaviour of the arithmetic mean

$$
\frac{1}{\varphi(N)} \sum_{\substack{0 \leq m<N \\(m, N)=1}}|S(m, N)|
$$

The only result we know of is the upper bound

$$
\begin{equation*}
\frac{1}{\varphi(N)} \sum_{\substack{0 \leq m<N \\(m, N)=1}}|S(m, N)| \leq \frac{6}{\pi^{2}} \log ^{2} N+O(\log N) \tag{1}
\end{equation*}
$$

(for $N \rightarrow \infty$), which is an easy corollary to a result about continued fractions, as we shall point out below. In this paper we show

$$
\frac{1}{\varphi(N)} \sum_{\substack{0 \leq m<N \\(m, N)=1}}|S(m, N)| \geq \frac{3}{\pi^{2}} \log ^{2} N+O\left(\log ^{2} N / \log \log N\right)
$$

for $N \rightarrow \infty$. In fact, we present a more precise statement. For $N \geq 2$ put

$$
\begin{equation*}
x=\min \{\sqrt{N} / \log N, \sqrt{N} / \tau(N)\} \tag{2}
\end{equation*}
$$

where $\tau(N)$ denotes the number of divisors of N. Let c, d be integers such that $0 \leq c \leq d \leq x$ and $(c, d)=1$. For these we define

$$
I_{c / d}=[0, N] \cap\{z \in \mathbb{R}:|z-N \cdot c / d| \leq x / d\}
$$

So $I_{c / d}$ is a certain interval around the Farey point $N \cdot c / d$ (but it is in general larger than the Farey neighbourhood of [6] denoted in the same way). Further put

$$
\mathcal{F}=\bigcup_{1 \leq d \leq x} \bigcup_{\substack{0 \leq c \leq d \\(c, d)=1}} I_{c / d}
$$

It is not hard to see that this union is disjoint if N is large (see Section 1 below). The set \mathcal{F} contains only relatively few of all integers $m, 0 \leq m<N$, $(m, N)=1$; indeed, $|\mathcal{F} \cap \mathbb{Z}|=O(\varphi(N) / \log N)$ for large values of N (see Section 2). We show

Theorem 1. Let N tend to infinity. Then

$$
\frac{1}{\varphi(N)} \sum_{\substack{m \in \mathcal{F} \\(m, N)=1}}|S(m, N)|=\frac{3}{\pi^{2}} \log ^{2} N+O\left(\log ^{2} N / \log \log N\right)
$$

We should say some words about the upper bound (1). Fix N for a moment. Let $a_{1}, \ldots, a_{n} \in \mathbb{N}$ be the continued fraction expansion of m / N,
i.e.,

$$
m / N=\frac{1 \mid}{\mid a_{1}}+\cdots+\frac{1 \mid}{\mid a_{n}}
$$

(so n depends on m and $a_{n} \geq 2$). Put $T(m, N)=a_{1}+\cdots+a_{n}$. Then

$$
\begin{equation*}
\frac{1}{\varphi(N)} \sum_{\substack{0 \leq m<N \\(m, N)=1}} T(m, N)=\frac{6}{\pi^{2}} \log ^{2} N+O(\log N) \tag{3}
\end{equation*}
$$

(see [9] and [10]). The Dedekind sum $S(m, N)$ is nearly the same as the alternating sum $a_{1}-a_{2}+\cdots+(-1)^{n-1} a_{n}$. More precisely,

$$
\left|S(m, N)-\left(a_{1}-a_{2}+\cdots+(-1)^{n-1} a_{n}\right)\right| \leq 5
$$

(see [4, Lemma 4]). Together with (3) this clearly implies (1).
So this upper bound is in some sense trivial since it is just based on the estimate $\left|a_{1}-a_{2}+\cdots \pm a_{n}\right| \leq a_{1}+\cdots+a_{n}$. Nevertheless, numerical computations suggest that (1) is basically sharp. We have the following explanation for this somewhat strange observation: Apparently the sign changes in $a_{1}-a_{2}+\cdots \pm a_{n}$ have no influence on the main term of (3) but only on the error term. One can see from the original papers that the error term of (3) is $\geq C \log N$ for some positive constant C. It seems likely that a lower bound of the following kind is nearly optimal: There are constants $C^{\prime}<0$ and $k \geq 1$ such that, for $N \rightarrow \infty$,

$$
\frac{1}{\varphi(N)} \sum_{\substack{0 \leq m<N \\(m, N)=1}}|S(m, N)| \geq \frac{6}{\pi^{2}} \log ^{2} N+C^{\prime} \log N \log ^{k} \log N
$$

In this sense the contribution of the relatively few values $|S(m, N)|, m \in \mathcal{F}$, is just half of the conjectured asymptotic arithmetic mean of all Dedekind sums. It seems that our method does not yield more.

1. Plan of the proof. For the time being, let $N \geq 5$ and x be as in (2). In addition, assume $0 \leq m<N, 0 \leq c \leq d \leq x$, and $(m, N)=(c, d)=1$. Our first observation concerns the disjointness of the intervals $I_{c / d}$ as mentioned above. Indeed, suppose $I_{c / d} \cap I_{c^{\prime} / d^{\prime}}$ is nonempty for $0 \leq c^{\prime} \leq d^{\prime} \leq x$, $\left(c^{\prime}, d^{\prime}\right)=1$. Then $\left|N \cdot c / d-N \cdot c^{\prime} / d^{\prime}\right| \leq x / d+x / d^{\prime}$. Together with (2) this gives $\left|d^{\prime} c-c^{\prime} d\right| \leq 2 x^{2} / N \leq 2 / \log ^{2} N<1$.

A basic tool for our proof of Theorem 1 is the generalized reciprocity law for Dedekind sums, which we are going to state now. Choose $k, j \in \mathbb{Z}$ such that $-c j+d k=1$ and define $r, q \in \mathbb{Z}$ by

$$
\binom{r}{q}=\left(\begin{array}{ll}
j & -k \tag{4}\\
d & -c
\end{array}\right)\binom{m}{N}
$$

So the 2×2-matrix of (4) has determinant 1 and $m d-N c=q$. As $(m, N)=1$,
we have $(r, q)=1$, and the conditions $(c, d)=1, d<N$, imply $q \neq 0$. Moreover, r is uniquely determined $\bmod q$; indeed, the substitutions $j \mapsto$ $j+t d, k \mapsto k+t c, t \in \mathbb{Z}$, entail $r \mapsto r+t q$. Accordingly, the Dedekind sum $S(r,|q|)$ is uniquely determined by m, N, c, d. The generalized reciprocity law says

$$
S(m, N)=S(c, d) \pm S(r,|q|)+\frac{N^{2}+d^{2}+q^{2}}{N d q} \pm 3
$$

where the \pm sign is the sign of q in both cases (see, e.g., [5, Lemma 1]). This gives

$$
\begin{equation*}
S(m, N)=\frac{N}{d q}+S(c, d) \pm S(r,|q|)+O(1) \tag{5}
\end{equation*}
$$

the O-term standing for an error of absolute value ≤ 5.
Let $I_{c / d}^{+}=[0, N] \cap\{z: 0<z-N \cdot c / d \leq x / d\}$ be the right half of the interval $I_{c / d}$ and \mathcal{F}^{+}the union of all $I_{c / d}^{+}, 1 \leq d \leq x, 0 \leq c \leq d,(c, d)=1$. Since $I_{1 / 1}^{+}=\emptyset$, it suffices that the union is taken over $c<d$ only. We shall show that

$$
\begin{equation*}
\frac{1}{\varphi(N)} \sum_{\substack{m \in \mathcal{F}+\\(m, N)=1}} S(m, N)=\frac{3}{2 \pi^{2}} \log ^{2} N+O\left(\log ^{2} N / \log \log N\right) \tag{6}
\end{equation*}
$$

The analogue for the left halves $I_{c / d}^{-}$and their respective union \mathcal{F}^{-}reads

$$
\begin{equation*}
\frac{1}{\varphi(N)} \sum_{\substack{m \in \mathcal{F}^{-} \\(m, N)=1}} S(m, N)=-\frac{3}{2 \pi^{2}} \log ^{2} N+O\left(\log ^{2} N / \log \log N\right) \tag{7}
\end{equation*}
$$

(the union may be taken over $c>0$).
Theorem 1 is an immediate consequence of (6) and (7). These assertions are proved as follows: By (5), we have

$$
\begin{equation*}
\sum_{\substack{m \in \mathcal{F}^{+} \\(m, N)=1}} S(m, N)=\sum_{1 \leq d \leq x} \sum_{\substack{0 \leq c<d \\(c, d)=1}} \sum_{\substack{m \in I_{c / d}^{+} \\(m, N)=1}} \frac{N}{d q}+O\left(E_{1}+E_{2}+E_{3}\right) \tag{8}
\end{equation*}
$$

where $q=m d-N c>0$ is as above and E_{1}, E_{2}, E_{3} are the error terms

$$
\begin{gathered}
E_{1}=\sum_{1 \leq d \leq x} \sum_{\substack{0 \leq c<d \\
(c, d)=1}} \sum_{\substack{m \in I_{c / d}^{+} \\
(m, N)=1}}|S(c, d)|, \quad E_{2}=\sum_{1 \leq d \leq x} \sum_{\substack{0 \leq c<d \\
(c, d)=1}} \sum_{\substack{m \in I_{c / d}^{+} \\
(m, N)=1}}|S(r, q)| \\
E_{3}=\sum_{1 \leq d \leq x} \sum_{\substack{0 \leq c<d \\
(c, d)=1}} \sum_{\substack{m \in I_{c / d}^{+} \\
(m, N)=1}} 1 ;
\end{gathered}
$$

here r has the properties implied by (4). In the next section we show that the
total contribution of E_{1}, E_{2}, E_{3} is $O(\varphi(N) \log N \log \log N)$. The asymptotic expansion of the main term of (8), namely,
(9) $\sum_{1 \leq d \leq x} \sum_{\substack{0 \leq c<d \\(c, d)=1}} \sum_{\substack{m \in I_{c / d}^{+} \\(m, N)=1}} \frac{N}{d q}=\frac{6}{\pi^{2}} \varphi(N) \log ^{2} x+O\left(\varphi(N) \log N \log ^{3} \log N\right)$,
is more laborious. It is contained in Proposition 1 below, whose proof fills Section 3. Our choice (2) of x implies $\log x=(1 / 2) \log N+O(\log N / \log \log N)$ (see [11, p. 82]). So all these results together yield (6). Item (7) is treated in the same way: Equation (5) shows that (8) remains valid if \mathcal{F}^{+}is replaced by \mathcal{F}^{-}and $I_{c / d}^{+}$by $I_{c / d}^{-}$in each error term (here $q=-|q|$).
2. The error terms. We start with the above error terms. In order to treat E_{1} and E_{3} we use $\left|\mathbb{Z} \cap I_{c / d}^{+}\right| \leq x / d+1 \leq 2 x / d$ for $1 \leq d \leq x$. Thereby,

$$
E_{3} \ll \sum_{1 \leq d \leq x} \sum_{\substack{0 \leq c<d \\(c, d)=1}} \frac{x}{d} \ll x^{2} \ll \frac{N}{\log ^{2} N} \ll \frac{\varphi(N)}{\log N}
$$

This estimate also shows $\left|\mathcal{F}^{+} \cap \mathbb{Z}\right| \ll \varphi(N) / \log N$ and, thus, the aforementioned bound $|\mathcal{F} \cap \mathbb{Z}|=O(\varphi(N) / \log N)$.

Further,

$$
E_{1} \leq \sum_{1 \leq d \leq x} \frac{2 x}{d} \sum_{\substack{0 \leq c<d \\(c, d)=1}}|S(c, d)|
$$

From (1) we have

$$
\begin{equation*}
\sum_{\substack{0 \leq c<d \\(c, d)=1}}|S(c, d)| \ll d \log ^{2} d \tag{10}
\end{equation*}
$$

Accordingly,

$$
E_{1} \ll \sum_{1 \leq d \leq x} x \log ^{2} d \ll x^{2} \log ^{2} N \ll N \ll \varphi(N) \log \log N
$$

(for the last estimate see [11, p. 84]).
The most critical item is E_{2}; in particular, E_{2} requires choosing x relatively small when N has many prime divisors (see (2)). By (4), $q=m d-N c$ for each $m \in I_{c / d}^{+},(m, N)=(c, d)=1$. Therefore,

$$
\begin{equation*}
E_{2}=\sum_{1 \leq q \leq x} \sum_{\substack{0 \leq r<q \\(r, q)=1}}|S(r, q)| \cdot b_{r, q} \tag{11}
\end{equation*}
$$

where $b_{r, q}$ is the number of pairs $(d, m), 1 \leq d \leq x, 1 \leq m \leq N,(m, N)=1$ such that (4) holds for some $c, 0 \leq c<d,(c, d)=1$, and suitable integers
j, k. The said equation shows, first, that $m d \equiv q \bmod N$, whence because of $(m, N)=1$ the condition $(d, N)=(q, N)=(d, q)$ follows; second, it gives an expression for N in terms of r and q, namely $N=-d r+j q$, so $d r \equiv-N \bmod q$. Accordingly,

$$
b_{r, q} \leq \sum_{\substack{1 \leq d \leq x \\(d, N)=(q, N)=(d, q) \\ d r \equiv-N \bmod q}}|\{1 \leq m<N:(m, N)=1, m d \equiv q \bmod N\}|
$$

If $\delta=(d, N)=(q, N)=(d, q)$, then the congruence $m d \equiv q \bmod N$ has exactly δ solutions $m, 0 \leq m<N$. Therefore,

$$
b_{r, q} \leq \sum_{\delta \mid(q, N)} \delta \cdot|\{1 \leq d \leq x: d r \equiv-N \bmod q\}|
$$

Because $(r, q)=1$, the congruence $d r \equiv-N \bmod q$ has exactly one solution d in each of the intervals $[1, q],[q+1,2 q],[2 q+1,3 q], \ldots$, and so it has at most $x / q+1 \leq 2 x / q$ solutions in the interval $[1, x]$ (in view of (11), only numbers $q \leq x$ are of interest). Thus,

$$
b_{r, q} \leq \sum_{\delta \mid(q, N)} \frac{2 \delta x}{q}
$$

and, because of (11) and (10),

$$
\begin{aligned}
E_{2} & \ll \sum_{1 \leq q \leq x} \sum_{\substack{0 \leq r<q \\
(r, q)=1}}|S(r, q)| \sum_{\delta \mid(q, N)} \frac{\delta x}{q} \ll \sum_{1 \leq q \leq x} q \log ^{2} q \sum_{\delta \mid(q, N)} \frac{\delta x}{q} \\
& \ll x \log ^{2} x \sum_{\delta \mid N} \delta \sum_{1 \leq q \leq x, \delta \mid q} 1 \ll x^{2} \log ^{2} x \cdot \tau(N) .
\end{aligned}
$$

Our choice (2) of x shows $E_{2}=O(N \log N)=O(\varphi(N) \log N \log \log N)$, which is also the contribution of all three error terms together.
3. The main term. In the following, d, q, and k are positive integers. The left side of (9) has the form

$$
\begin{equation*}
H(x)=\sum_{d \leq x} \sum_{\substack{0 \leq c<d \\(c, d)=1}} \sum_{\substack{0 \leq m<N,(m, N)=1 \\ 1 \leq m d-N c \leq x}} \frac{N}{d(m d-N c)} \tag{12}
\end{equation*}
$$

The following proposition clearly contains (9).
Proposition 1. Let $\alpha>0, N$ tend to infinity, and $N^{\alpha} \leq x \leq N$. Then

$$
\begin{equation*}
H(x)=\frac{6}{\pi^{2}} \varphi(N) \log ^{2} x+O\left(\varphi(N) \log N \log ^{3} \log N\right) \tag{13}
\end{equation*}
$$

Proof. We use the standard sieving technique based on the Möbius function in order to remove the condition $(c, d)=1$ from (12). This gives

$$
H(x)=\sum_{k \leq x} \frac{\mu(k)}{k^{2}} \sum_{d \leq x / k} \sum_{0 \leq c<d} \sum_{\substack{0 \leq m<N,(m, N)=1 \\ 1 \leq m d-N c \leq x / k}} \frac{N}{d(m d-N c)}
$$

With $q=m d-N c \in \mathbb{N}$ this reads

$$
H(x)=N \sum_{k \leq x} \frac{\mu(k)}{k^{2}} \sum_{d \leq x / k} \sum_{q \leq x / k} \frac{a_{d, q}}{d q}
$$

where $a_{d, q}$ is the number of solutions $m, 0 \leq m<N,(m, N)=1$, of the congruence $m d \equiv q \bmod N$. Suppose $a_{d, q} \neq 0$. Because $(m, N)=1$, this can only happen if $(d, N)=(q, N)$.

Therefore, put $\delta=(d, N)=(q, N)$. Determining the exact value of $a_{d, q}$ is now an exercise in the Chinese remainder theorem; one obtains

$$
a_{d, q}=\delta \prod_{\substack{p \mid \delta \\ p \nmid N / \delta}}(1-1 / p)=\varphi(N) / \varphi(N / \delta)
$$

(p runs through the respective primes). Accordingly,

$$
H(x)=N \sum_{k \leq x} \frac{\mu(k)}{k^{2}} \sum_{\delta \mid N} \frac{\varphi(N)}{\varphi(N / \delta)} \sum_{\substack{d, q \leq x / k \\(d, N)=(q, N)=\delta}} \frac{1}{d q}
$$

Here the innermost sum equals

$$
\frac{1}{\delta^{2}} \sum_{\substack{d, q \leq x /(k \delta) \\(d, N / \delta)=(q, N / \delta)=1}} \frac{1}{d q}
$$

If we replace this sum by the same sum over $d, q \leq x$, we obtain $H(x)=$ $H_{1}(x)+R_{1}(x)$ with

$$
\begin{aligned}
& H_{1}(x)=N \sum_{k \leq x} \frac{\mu(k)}{k^{2}} \sum_{\delta \mid N} \frac{\varphi(N)}{\varphi(N / \delta) \delta^{2}} \sum_{\substack{d, q \leq x \\
(d, N / \delta)=(q, N / \delta)=1}} \frac{1}{d q} \\
& R_{1}(x) \ll N \sum_{k \leq x} \frac{1}{k^{2}} \sum_{\delta \mid N} \frac{1}{\delta} \sum_{\substack{x /(k \delta) \leq d \leq x \\
1 \leq q \leq x}} \frac{1}{d q}
\end{aligned}
$$

(where we have used $\varphi(N) \leq \varphi(N / \delta) \delta$). Since

$$
\begin{equation*}
\sum_{x /(k \delta) \leq d \leq x} \frac{1}{d} \ll 1+\log k \delta, \sum_{\delta \mid N} \frac{1}{\delta} \ll \log \log N, \sum_{\delta \mid N} \frac{\log \delta}{\delta} \ll \log ^{2} \log N \tag{14}
\end{equation*}
$$

(see [11, p. 86], for the second item; the proof of the third one will be given in Lemma 1) we have

$$
R_{1}(x) \ll N \log x \sum_{k \leq x} \frac{1}{k^{2}} \sum_{\delta \mid N} \frac{1+\log k+\log \delta}{\delta} \ll N \log N \log ^{2} \log N
$$

Because $N \ll \varphi(N) \log \log N$, the size of $R_{1}(x)$ is compatible with (13), so it suffices to consider $H_{1}(x)$.

Using $\sum_{k \leq x} \mu(k) / k^{2}=6 / \pi^{2}+O(1 / x)$ we obtain $H_{1}(x)=H_{2}(x)+R_{2}(x)$ with

$$
\begin{aligned}
H_{2}(x) & =\frac{6 N \varphi(N)}{\pi^{2}} \sum_{\delta \mid N} \frac{1}{\varphi(N / \delta) \delta^{2}} \sum_{\substack{d, q \leq x \\
(d, N / \delta)=(q, N / \delta)=1}} \frac{1}{d q} \\
R_{2}(x) & \ll \frac{N}{x} \sum_{\delta \mid N} \frac{1}{\delta} \sum_{d, q \leq x} \frac{1}{d q} \ll \frac{N}{x} \log ^{3} N \ll \varphi(N)
\end{aligned}
$$

Accordingly, we study $H_{2}(x)$ now. To this end we use

$$
\begin{equation*}
\sum_{d \leq x,(d, N / \delta)=1} \frac{1}{d}=\frac{\delta \varphi(N / \delta)}{N} \log x+O\left(\log ^{2} \log N\right) \tag{15}
\end{equation*}
$$

(see Lemma 1 below), which yields

$$
H_{2}(x)=\frac{6 N \varphi(N)}{\pi^{2}} \sum_{\delta \mid N} \frac{1}{\varphi(N / \delta) \delta^{2}}\left(\frac{\delta \varphi(N / \delta)}{N} \log x+O\left(\log ^{2} \log N\right)\right)^{2}
$$

Hence,

$$
H_{2}(x)=\frac{6 \varphi(N)}{\pi^{2}} \log ^{2} x+R_{3}(x)
$$

with

$$
R_{3}(x) \ll \varphi(N) \log x \log ^{2} \log N \sum_{\delta \mid N} \frac{1}{\delta} \ll \varphi(N) \log N \log ^{3} \log N
$$

This completes the proof.
The justification of the last entry of (14) and of (15) is afforded by
Lemma 1. Let N tend to infinity. Then

$$
\sum_{d \mid N} \frac{\log d}{d} \ll \log ^{2} \log N
$$

Let $\alpha>0, x \geq N^{\alpha}$, and $n \leq N$. If N tends to infinity, then

$$
\sum_{d \leq x,(d, n)=1} \frac{1}{d}=\frac{\varphi(n)}{n} \log x+O\left(\log ^{2} \log N\right)
$$

with an O-constant independent of n and x.

Proof. We start with the first assertion. Let $N=\prod_{p} p^{e_{p}}$ be the decomposition of N into prime factors. It is not hard to check that

$$
\sum_{d \mid N} \frac{\log d}{d} \leq \sum_{p \mid N} \sum_{k=1}^{e_{p}} \frac{k \log p}{p^{k}} \sum_{d \mid N} \frac{1}{d} \ll \sum_{p \mid N} \frac{\log p}{p} \log \log N
$$

Combining this with

$$
\sum_{p \mid N} \frac{\log p}{p} \ll \log \log N
$$

we obtain the assertion. The proof of the last-mentioned estimate follows a pattern that can be found in [11, p. 14]. As to the second statement,

$$
\sum_{d \leq x,(d, n)=1} \frac{1}{d}=\sum_{k \mid n} \frac{\mu(k)}{k} \sum_{d \leq x / k} \frac{1}{d}=\sum_{k \mid n, k \leq x} \frac{\mu(k)}{k}\left(\log \frac{x}{k}+O(1)\right)
$$

By a straightforward computation we see that this equals

$$
\frac{\varphi(n)}{n} \log x+O\left(\frac{\tau(n) \log x}{x}+\sum_{k \mid n} \frac{\log k}{k}+\log \log N\right)
$$

Since $x \geq N^{\alpha}$, the first assertion of the lemma yields the desired result.

References

[1] R. W. Bruggeman, On the distribution of Dedekind sums, in: Automorphic Functions and Their Applications (Khabarovsk, 1988), Acad. Sci. USSR, Inst. Appl. Math., Khabarovsk, 1990, 82-89.
[2] -, On the distribution of Dedekind sums, in: Contemp. Math. 166, Amer. Math. Soc., Providence, RI, 1994, 197-210.
[3] -, Dedekind sums for Hecke groups, Acta Arith. 71 (1995), 11-46.
[4] J. B. Conrey, E. Fransen, R. Klein, and C. Scott, Mean values of Dedekind sums, J. Number Theory 56 (1996), 214-226.
[5] K. Girstmair, Dedekind sums with predictable signs, Acta Arith. 83 (1998), 283-294.
[6] -, Zones of large and small values for Dedekind sums, ibid. 109 (2003), 299-308.
[7] X. He and W. Zhang, On the mean value formula of Dedekind sums, Acta Math. Sin. (Engl. Ser.) 15 (1999), 245-254.
[8] C. Jia, On the mean value of Dedekind sums, J. Number Theory 87 (2001), 173-188.
[9] B. Liehl, Über die Teilnenner endlicher Kettenbrüche, Arch. Math. (Basel) 40 (1983), 139-147.
[10] A. A. Panov, The mean for a sum of elements in a class of finite continued fractions, Mat. Zametki 32 (1982), 593-600, 747 (in Russian).
[11] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Univ. Press, Cambridge, 1995.
[12] I. Vardi, Dedekind sums have a limiting distribution, Internat. Math. Res. Notices 1993, 1-12.
[13] W. Zhang, A note on the mean square value of the Dedekind sums, Acta Math. Hungar. 86 (2000), 275-289.

Institut für Mathematik
Fakultät für Mathematik
Universität Innsbruck
Universität Wien
Technikerstr. 25/7
A-6020 Innsbruck, Austria
Nordbergstr. 15
A-1090 Wien, Austria
E-mail: Kurt.Girstmair@uibk.ac.at

[^0]: 2000 Mathematics Subject Classification: Primary 11F20.

