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Remarks on the λp-invariants of cyclic fields of degree p

by

Masato Kurihara (Tokyo)

0. Introduction. We fix an odd prime number p throughout this pa-
per. For a totally real field k, let k∞/k denote the cyclotomic Zp-extension
and Xk∞ denote the Galois group of the maximal unramified abelian pro-p
extension of k∞ over k∞. Greenberg’s conjecture predicts that Xk∞ is finite.
In a series of papers [4], [12], [16], [2], [3], T. Fukuda, K. Komatsu, M. Ozaki,
H. Taya, and G. Yamamoto intensively studied the case that p = 3 and k is
a cyclic cubic field with prime conductor.

In this paper, we consider a cyclic field k of degree p with prime con-
ductor `. First of all, we will see that for such a field k, Xk∞ has a simple
form (Theorem 1.3), and we will see what the finiteness of Xk∞ means (Re-
mark 1.5). Next, we will develop the idea of Ozaki and Yamamoto [16],
and obtain more general conditions which imply the finiteness of Xk∞ (see
Propositions 1.7–1.10 in §1, cf. also Corollaries 1.4, 1.6). They are conditions
on fields of degree p over Q, so it is not difficult to check them for numeri-
cal examples. In fact, these conditions are satisfied by many examples. (For
p = 3, these conditions are satisfied for all ` < 10000 except ` = 8677 (cf.
§4.1). For p = 5, these conditions are satisfied for all ` < 100000 except
three `’s (cf. §4.4).) (We do not use p-adic L-functions. For the relation with
Tsuji’s criterion, see Remark 1.11.)

I would like to express my hearty thanks to Manabu Ozaki for valuable
discussion with him on the topic of this paper. I also thank Toru Komatsu
and Ryohei Takeuchi heartily for helping me to compute the numerical ex-
amples.

1. Results. Let p be an odd prime number. Assume that ` is a rational
prime such that ` ≡ 1 (mod p), and k denotes the cyclic field of degree p
with conductor `. For an integer n ≥ 0, we denote by kn (resp. Qn) the nth
layer of the cyclotomic Zp-extension k∞/k (resp. Q∞/Q), namely kn (resp.
Qn) is the intermediate field such that [kn : k] = pn (resp. [Qn : Q] = pn).
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Let Akn be the p-Sylow subgroup of the ideal class group of kn, and

Xk∞ = lim←−Akn
the projective limit of Akn with respect to the norm maps. So Xk∞ is isomor-
phic to the Galois group of the maximal unramified abelian pro-p extension
of k∞ over k∞. Since only one prime ` is ramified in k/Q, by genus theory
we have Ak = 0. But Xk∞ is nonzero, in general. By Ferrero–Washington’s
theorem [1], Xk∞ is a finitely generated Zp-module whose rank is denoted
by λ (the Iwasawa λ-invariant). A famous conjecture by Greenberg asserts
that Xk∞ is finite, namely λ = 0 ([6]).

By genus theory and a theorem of Iwasawa (cf. [8]), we know Xk∞ = 0
if either p (mod `) 6∈ (F×` )p or ` 6≡ 1 (mod p2) holds (Theorem A in [16]).
So in the following, we assume that p (mod `) ∈ (F×` )p and ` ≡ 1 (modp2).
Namely, we assume that p splits in k/Q, and that ` splits in Q1/Q.

Let OQn be the integer ring of Qn and E′Qn = (OQn[1/p])× be the group
of p-units. For a prime v of Qn lying over `, we denote by κ(v) = OQn/v
the residue field of v. Let OQn,(v) be the localization of OQn at v, and ∂v :
OQn,(v) → OQn,(v)/v = κ(v) be the reduction map. Since v is prime to p, ∂v
induces a homomorphism

∂v : E′Qn → κ(v)×

where κ(v)× is the multiplicative group of nonzero elements in κ(v). Since p
divides the order of κ(v)×, κ(v)×/(κ(v)×)p is cyclic of order p. We consider
the map

Φ′n : E′Qn →
⊕

v|`
κ(v)×/(κ(v)×)p

which is induced by x 7→ (∂vx) where v ranges over all primes of Qn lying
over `.

Lemma 1.1. Suppose that Φ′n is not the zero map. Then, for any m ≥ n,
the dimension of the cokernel of Φ′m (as an Fp-vector space) is equal to the
dimension of the cokernel of Φ′n (as an Fp-vector space).

We will give a proof of this lemma in §2.

Definition 1.2. Assume that there is n ≥ 0 such that the image of Φ′n
is not zero. We define

κ = dim Cokernel
(
Φ′n : E′Qn →

⊕

v|`
κ(v)×/(κ(v)×)p

)

where v ranges over all primes of Qn lying over `. If the image of Φ′n is zero
for all n ≥ 0, we define κ =∞.

By Lemma 1.1, this definition does not depend on the choice of n. Let q
be the number of the primes of Q∞ lying over `. Then κ <∞ implies κ < q
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by definition. In general, numerical calculation of κ is easy (cf. the proof of
Lemma 1.1 in §2, and the examples in §4). We will define a similar map Φn
in §2, and give a relation between κ and Φn. We believe this number κ and
the maps Φn, Φ′n play an important role in Iwasawa theory of k.

If κ = 0, the Φ′n’s are surjective for all n ≥ 0, so from the surjectivity of
Φ′0 and the fact that E′Q/(E

′
Q)p is generated by the image of p, we have p

(mod `) 6∈ (F×` )p. So by our assumption, we always have κ ≥ 1.
Let ζp be a primitive pth root of unity, and put

R = Zp[ζp].

We also define G and Γ by

G = Gal(k∞/Q∞) = Gal(k/Q), Γ = Gal(k∞/k) = Gal(Q∞/Q).

We take a generator σ of G and consider NG = 1 + σ + · · · + σp−1. Then,
for x ∈ Xk∞ , the map NG : Xk∞ → Xk∞ (x 7→ NG(x)) factors through
XQ∞ = lim←−AQn = 0 (where AQn is the p-Sylow subgroup of the ideal class
group of Qn), so it is the zero map. Hence, by defining ζpx = σx, Xk∞
becomes an R = Zp[ζp]-module. Since Γ acts on Xk∞ , Xk∞ is also a Λ-
module where we put

Λ = R[[Γ ]] = Zp[ζp][[Γ ]].

Throughout this paper, we identify Λ with the formal power series ring
R[[T ]] by identifying a generator γ of Γ with 1 + T .

Let χ be a faithful character of Gal(k/Q), namely χ is an injective homo-
morphism from Gal(k/Q) to Q×p . We consider the p-adic L-function Lp(s, χ)
of Kubota–Leopoldt, and the associated power series Gχ(T ) ∈ R[[T ]] such
that Gχ(κ(γ)1−s − 1) = Lp(s, χ), where κ : Γ → Z×p is the cyclotomic
character. By Ferrero–Washington’s theorem [1], ζp − 1 does not divide
Gχ(T ). Let fχ(T ) ∈ R[T ] be the distinguished polynomial of Gχ(T ), so
Gχ(T ) = u(T )fχ(T ) for some unit power series u(T ) ∈ R[[T ]]× (cf. [19,
§7.1]). By Kida’s formula ([11], [10]), the degree of fχ(T ) is q−1 (recall that
q is the number of the primes of Q∞ lying over `).

Theorem 1.3. Let p be a prime of k lying over p, and pn be the prime
of kn lying over p. We denote by cp the class of (pn) in Xk∞ . Then there
exist a polynomial k(T ) ∈ R[T ] and an isomorphism

Λ/(fχ(T ), Tk(T )) '−→ Xk∞

of Λ (= R[[Γ ]] = R[[T ]])-modules such that k(T ) modulo (fχ(T ), Tk(T )) cor-
responds to cp. If κ <∞, we can take k(T ) to be a distinguished polynomial
of degree κ− 1. If κ =∞, we can take k(T ) such that ζp − 1 divides k(T ).
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We will prove this theorem in §3. Suppose κ < ∞. Since T is prime to
fχ(T ), the greatest common divisor of fχ(T ) and Tk(T ) divides k(T ), so
its degree is smaller than or equal to κ − 1. This implies that the R-rank
of Xk∞ is ≤ κ− 1. Since λ is the Zp-rank of Xk∞ , we have

Corollary 1.4. λ ≤ (p− 1)(κ− 1).

Ozaki and Yamamoto ([16, Theorem 1]) showed that if κ = 1, then
λ = 0 in the case p = 3. The above corollary is a generalization of their
result. (They also quoted the case κ = 2 of the above corollary as a theorem
of the author in [16, Theorem 4].)

Remark 1.5. Theorem 1.3 tells us that Xk∞ is finite if and only if fχ(T )
is prime to k(T ). (Note that k(T ) is defined modulo fχ(T ).) By our expe-
rience of numerical computation (cf. §4), it seems to us that there is no
relation between k(T ) and fχ(T ). If this is true, the probability that a root
of fχ(T ) = 0 happens to be a root of k(T ) = 0 in an algebraic closure of
Qp which is a set of cardinality of the continuum would be very small, and
almost zero.

Next, we will give some conditions which imply the finiteness of Xk∞ ,
namely λ = 0. Ozaki and Yamamoto ([16, Theorem 2]) proved (in the case
p = 3) that if κ = 2 and fχ(T ) is irreducible, we have λ = 0. When κ <∞,
the degree of k(T ) is κ− 1. Hence, Theorem 1.3 implies

Corollary 1.6. Suppose that κ < ∞. If fχ(T ) does not have a factor
of degree ≤ κ− 1, then λ = 0.

As we mentioned before Theorem 1.3, the degree of fχ(T ) is q− 1 where
q is the number of the primes of Q∞ lying over `. On the other hand, by the
definition of κ, we have κ < q, so κ− 1 is smaller than the degree of fχ(T ).
Hence, if fχ(T ) is irreducible, fχ(T ) satisfies the condition in this corollary.

In this paper, we mainly study the case κ = 2. The following propositions
will be proved in §3.

Proposition 1.7. Assume that κ = 2. If there is a subfield F of k1 such
that F 6= Q1, F 6= k, [F : Q] = p, and such that the prime ideal of F lying
over p is principal , then λ = 0.

A similar result with the additional assumption ` ≡ 1 (mod p3) (in the
case p = 3) was proved in Ozaki and Yamamoto [16].

Let R = Zp[ζp] be as above, and vR be the normalized additive valuation
of R, namely vR(ζp − 1) = 1. Ozaki and Yamamoto gave a condition which
implies λ = 0, using a generalized Bernoulli number ([16, Corollary 3]). For
the generalized Bernoulli number B1,χω−1, if vR(B1,χω−1) = 0, then we have
Xk∞ = 0, and if vR(B1,χω−1) = 1, then fχ(T ) is irreducible, and we also
have λ = 0 ([16, Corollary 3]). We proceed to the case vR(B1,χω−1) = 2.
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Proposition 1.8. Assume that κ = 2 and vR(B1,χω−1) = 2. If moreover
p4 does not divide the class numbers of all subfields of k1 with degree p
over Q, then we have λ = 0.

In order to deal with the case κ > 2, we also need the following propo-
sitions.

Proposition 1.9. Suppose that κ ≤ p and ` ≡ 1 (modp3). We also
assume there are subfields F and F ′ of k1 such that

(i) F 6= Q1, F 6= k, F ′ 6= Q1, F ′ 6= k, and [F : Q] = [F ′ : Q] = p,
(ii) the prime of F over ` is principal , and the prime of F ′ over ` is

not principal , and
(iii) p4 does not divide the class number of F .

Then λ = 0.

Proposition 1.10. Suppose that κ =∞. Furthermore, we assume that
there is a subfield F ⊂ k1 with F 6= k and [F : Q] = p such that p4 does not
divide the class number of F and the prime over p is not principal. Then
λ = 0.

Remark 1.11 (Remark on Tsuji’s criterion). Kraft and Schoof [13] and
independently Ichimura and Sumida [7] gave efficient criteria for Greenberg’s
conjecture when the degree [k : Q] of the ground field k is prime to p.
After the work of Fukuda and Komatsu [3], recently T. Tsuji gave a good
criterion [18] where she removed the assumption on [k : Q] in the criterion
of Ichimura and Sumida. In the above notation, for each irreducible factor
Pi(T ) of fχ(T ), her criterion presents a necessary and sufficient condition
that Pi(T ) does not divide the characteristic power series Fk(T ) of Xk∞ .
Theorem 1.3 says that if κ < ∞ and degPi(T ) > κ − 1, then Pi(T ) does
not divide Fk(T ). So we only have to check the factors Pi(T ) with degree
≤ κ−1. For example, if κ = 2, we only have to check the factors of degree 1.
Further, it happens that some factors need not be checked (cf. Proposition
3.4). Numerical examples will be given in §4.

2. A homomorphism Φn and the invariant κ

Proof of Lemma 1.1. We define Mn by Mn =
⊕

v|`, v∈PQn κ(v)×/(κ(v)×)p

where v ranges over all primes of Qn over `, and define Mm similarly.
Put Γ = Gal(Q∞/Q). Then both Mn and Mm are Fp[[Γ ]]-modules. We
take a generator γ of Γ and identify Fp[[Γ ]] with the formal power series
ring Fp[[T ]] by the correspondence γ ↔ 1 + T . Since Mm is isomorphic to
Fp[Gal(Qm/Q)/D] where D is the decomposition group of `, it is generated
by one element as an Fp[[T ]]-module. Taking a generator xm, we write

Mm = Fp[[T ]]xm ' Fp[[T ]]/(T qm)
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where qm is the number of the primes of Qm lying over `. Note that for
any i ≥ 0, we have a canonical isomorphism OQi/`OQi '

⊕
v|`, v∈PQi κ(v).

Hence, the norm map from Qm to Qn induces a map N : Mm → Mn. Put
xn = N(xm). Since N : Mm →Mn is surjective, Mn is generated by xn and
we can write Mn = Fp[[T ]]xn ' Fp[[T ]]/(T qn) where qn is the number of the
primes of Qn lying over `.

On the other hand, as an Fp[[T ]]-module, E′Qn/(E
′
Qn)p is generated by

the class of NQ(ζpn+1 )/Qn(1 − ζpn+1) where ζpn+1 is a primitive pn+1st root
of unity, and NQ(ζpn+1 )/Qn is the norm map from Q(ζpn+1) to Qn. So the
map E′Qm/(E

′
Qm)p → E′Qn/(E

′
Qn)p which is induced by the norm map is

surjective. Hence, if the image of Φ′m is T iFp[[T ]]xm, then the image of Φ′n
is T iFp[[T ]]xn. Note that i < qn by our assumption. We have

dim Cokernel(Φ′n : E′Qn →Mn) = dim Cokernel(Φ′m : E′Qm →Mm) = i.

This completes the proof of the lemma.

Next, we will define a homomorphism Φn. Let EQn be the unit group
of OQn . Then Φ′n induces a homomorphism

EQn →
⊕

v|`
κ(v)×/(κ(v)×)p.

The norm map from Qn to Q induces a map OQn/`OQn =
⊕

v|` κ(v)→ F`.
So we have a natural homomorphism

⊕

v|`
κ(v)×/(κ(v)×)p → F×` /(F

×
` )p

whose kernel is denoted by (
⊕

v|` κ(v)×/(κ(v)×)p)0. Since the diagram

EQn

��

Φ′n|EQn //
⊕

v|` κ(v)×/(κ(v)×)p

��
EQ/(EQ)p // F×` /(F

×
` )p

is commutative (where EQ is the unit group of Z and the vertical arrows are
induced by the norm maps) and EQ/E

p
Q = 0, the image of the upper hori-

zontal map is contained in (
⊕

v|` κ(v)×/(κ(v)×)p)0. We denote this map by

Φn : EQn →
(⊕

v|`
κ(v)×/(κ(v)×)p

)0
.

Lemma 2.1. Suppose that Φ′n is not the zero map. Then the dimension
of the cokernel of Φn as an Fp-vector space is equal to κ.
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Proof. We use the same notation as in the proof of Lemma 1.1. The
above map

⊕
v|` κ(v)×/(κ(v)×)p → F×` /(F

×
` )p is induced by the norm map

Mn → M0. Using Mn = Fp[[T ]]xn (' (Fp[[T ]]/(T qn))) and M0 = Fpx0,
where x0 is the image of xn under the norm map, we see the above map is
induced by T 7→ 0. Hence, (

⊕
v|` κ(v)×/(κ(v)×)p)0 = TFp[[T ]]xn. Suppose

Φ′n(E′Qn) = T iFp[[T ]]xn. Since EQn/E
p
Qn is generated by cyclotomic units,

T (E′Qn/(E
′
Qn)p) = EQn/E

p
Qn , and we have Φn(EQn) = T i+1Fp[[T ]]xn. Note

that i+ 1 ≤ qn by our assumption. Hence,

dim Cokernel(Φn) = (i+ 1)− 1 = i = dim Cokernel(Φ′n) = κ.

This completes the proof of the lemma.

3. Proof of Theorem 1.3 and propositions in Section 1. We use
the following lemma (cf. Lemma 2.1 in [14]).

Lemma 3.1. Let L/K be a cyclic extension of degree p of totally real
number fields which is not unramified. Then we have an exact sequence

→ Ĥ0(L/K,AL)→ Ĥ0(L/K,EL)→
( ⊕

v∈Pram(K)

Ĥ0(Lw/Kv, ELw)
)0

→ H1(L/K,AL)→ H1(L/K,EL)→
⊕

v∈Pram(K)

H1(Lw/Kv, ELw)

→ . . .

Here, the notation is as follows. Pram(K) is the set of all ramified (finite)
primes of K in L/K. For v ∈ Pram(K), we denote by w the unique prime
of L lying over K. For a prime w of L (resp. v of K), Lw (resp. Kv) is the
completion of L at w (resp. K at v). We denote by EL (resp. ELw) the unit
group of the integer ring of L (resp. Lw). AL is the p-Sylow subgroup of the
ideal class group of L, and Ĥ0(∗, ∗) is the Tate cohomology. We define an
isomorphism Ĥ0(Lw/Kv, ELw) ' Z/pZ by

Ĥ0(Lw/Kv, ELw) ' Ĥ0(Lw/Kv, L
×
w) ' H2(Lw/Kv, L

×
w) ' Z/pZ

where the last map is the invariant map of local class field theory. (The first
two groups are isomorphic because Lw/Kv is totally ramified.) The group
(
⊕

v∈Pram(K) Ĥ
0(Lw/Kv, ELw))0 denotes the kernel of
⊕

v∈Pram(K)

Ĥ0(Lw/Kv, ELw) '
⊕

v∈Pram(K)

Z/p Σ−→ Z/p

where Σ is the map defined by the sum.

Proof of Theorem 1.3. Let M∞/k∞ be the maximal abelian pro-p ex-
tension of k∞ unramified outside p, and Xk∞ = Gal(M∞/k∞) be its Galois
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group. We denote by Uk∞ the group of semi-local units, namely

Uk∞ = lim←−
⊕

p|p
U1
kn,pn

where p ranges over all primes of k over p, and pn is the prime of kn over p,
and U1

kn,pn
is the principal units of kn,pn . By class field theory, we have an

exact sequence
Uk∞ → Xk∞ → Xk∞ → 0.

Put G = Gal(k∞/Q∞) = 〈σ〉 and NG = 1 + σ + · · · + σp−1. If we denote
by XQ∞ the Galois group of the maximal abelian pro-p extension of Q∞
unramified outside p over Q∞, we have XQ∞ = 0. So multiplication by NG

is zero on Xk∞ , and we can regard Xk∞ as a Λ = Zp[ζp][[Γ ]]-module. Hence,
we have an exact sequence

Uk∞/NGUk∞ → Xk∞ → Xk∞ → 0

of Λ-modules.
We will show that Xk∞ is generated by one element as a Λ-module. To

see this, it is enough to see that the Γ -coinvariant (Xk∞)Γ is generated by
one element as an R = Zp[ζp]-module. Let Gk,p (resp. Gk∞,p) be the Galois
group of the maximal extension of k (resp. k∞) unramified outside p over
k (resp. k∞), and Xk be the Galois group of the maximal abelian pro-p
extension of k unramified outside p over k. From the inflation-restriction
exact sequence

0→ H1(Γ,Qp/Zp)→ H1(Gk,p,Qp/Zp)→ H1(Gk∞,p,Qp/Zp)
Γ → 0,

taking the Pontryagin dual, we have (Xk∞)Γ = Ker(Xk → Γ ). By class
field theory (and Ak = 0 as we mentioned in §1), Xk is isomorphic to
(
⊕

p|p U
1
kp

)/(the image of Ek ⊗ Zp) and XQ is isomorphic to Γ = U1
Qp ' Zp.

Hence, Ker(Xk → Γ ) is isomorphic to Ker(Norm :
⊕

p|p U
1
kp
→ U1

Qp)/(the
image of Ek ⊗ Zp). Recall that p splits in k/Q and U 1

kp
= U1

Qp ' Zp. Since
Ker(Norm :

⊕
p|p U

1
kp
→ U1

Qp) is a free R-module of rank 1, (Xk∞)Γ =
Ker(Xk → Γ ) is generated by one element as an R-module. By Nakayama’s
lemma, Xk∞ is generated by one element as a Λ-module.

We write Xk∞ ' Λ/I. Since Xk∞ does not have a nontrivial finite Λ-
submodule ([9, Theorem 18]), I is principal. By the Iwasawa Main Con-
jecture proved by Mazur and Wiles [15], the characteristic ideal of Xk∞ is
generated by fχ(T ). Hence, we have an isomorphism

Xk∞ ' Λ/(fχ(T )).

Let Qp,∞/Qp be the cyclotomic Zp-extension of the p-adic field Qp and
Qp,n be the nth layer. For any n ≥ 1, we denote by ζpn a primitive pnth root
of unity such that ζp

pn+1 = ζpn for all n. Put πn = NQp(ζpn+1 )/Qp,n(1− ζpn+1)
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where NQp(ζpn+1)/Qp,n is the norm map from Qp(ζpn+1) to Qp,n. Let π = (πn)
be the projective system with respect to the norm maps. It is well known
that the group of the local units UQp,∞ = lim←−U

1
Qp,n is a free Zp[[T ]]-module

of rank 1, and is generated by Tπ (where T = γ − 1 and γ is the fixed
generator of Γ ).

We take a prime p of k lying over p, and fix it. Since p splits in k/Q, we
have kp = Qp, hence by the above remark, Uk∞/NGUk∞ is a free Λ-module
of rank 1, and is generated by the class of (Tπ, 1, . . . , 1) (where we suppose
the first component corresponds to p). On the other hand, if we identify
Xk∞ with a quotient of the projective limit of the idele groups of kn, by
class field theory, the class of the idele (π, 1, 1, . . .) (where we again suppose
the first component corresponds to p) clearly maps to cp by the natural map
Xk∞ → Xk∞ . Hence, Xk∞ can be written as

Xk∞
'−→ Λ/(fχ(T ), Tk(T ))

where k(T ) ∈ Λ corresponds to cp.
Next, we will see that

κ <∞⇐⇒ the class of pn in (Akn)G is nonzero(1)

for sufficiently large n.

Let M/Qn be the maximal abelian extension which is unramified outside
` and whose Galois group has exponent p. Then, by class field theory,
Gal(M/Qn) is isomorphic to (

⊕
v|` κ(v)×/(κ(v)×)p)/Φ′n(EQn), and the prime

pn of Qn above p splits in M if and only if Φ′n(πn) = 0 in the above group,
namely Φ′n(πn) ∈ Φ′n(EQn). As we showed in the proof of Lemma 2.1, we have
Φ′n(EQn) = TΦ′n(E′Qn) = 〈TΦ′n(πn)〉, hence Φ′n(πn) ∈ Φ′n(EQn) is equivalent
to Φ′n(πn) = 0. So, pn splits in M if and only if Φ′n(πn) = 0.

On the other hand, M is the maximal subfield of the p-Hilbert class field
of kn such that M/Qn is abelian. (Note that the inertia group of a prime
above ` in Gal(M/kn) is cyclic, so M/kn is unramified everywhere.) We have
an isomorphism (Akn)G ' Gal(M/kn). Hence, pn splits in M if and only if
the class of pn in (Akn)G is zero. We saw in the last paragraph that this is
equivalent to Φ′n(πn) = 0, hence we obtain the equivalence (1) (recall that
the image of πn in E′Qn/(E

′
Qn)p is a generator).

For a general number field K, let AK denote the p-Sylow subgroup of
the ideal class group of K, and A′K denote the quotient of AK by the
subgroup generated by the classes of the primes lying over p. Namely,
A′K = Pic(OK [1/p]).

We assume κ < ∞. Then (A′kn)G ' (Fp)κ−1. In fact, by the above
equivalence (1), for sufficiently large n, the class of pn in (Akn)G is nonzero.
Since Gal(kn/k) acts trivially on pn, the Λ-submodule 〈c(pn)〉 of (Akn)G
generated by c(pn) has order p (note again that p((Akn)G) = 0). Therefore,
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it follows from Gal(M/Qn) ' (Fp)κ+1 that (Akn)G ' Gal(M/kn) ' (Fp)κ,
and (A′kn)G ' (Fp)κ−1.

We define
X ′k∞ = lim←−A

′
kn

where the projective limit is taken with respect to the norm maps. Since cp

corresponds to k(T ), we have

X ′k∞
'−→ Λ/(fχ(T ), k(T )).

On the other hand, (A′kn)G ' (Fp)κ−1 for all sufficiently large n implies
(X ′k∞)G = X ′k∞/(ζp − 1)X ′k∞ ' (Fp)κ−1. Since κ− 1 < q − 1 = deg(fχ(T )),
k(T ) can be written as k(T ) ≡ uT κ−1 (mod (ζp − 1, T κ)) for some unit
u ∈ F×p . So, by the Weierstrass preparation theorem, we can write k(T ) =
u(T )h(T ) where u(T ) is a unit power series and h(T ) is a distinguished poly-
nomial of degree κ − 1. By changing the isomorphism Λ/(fχ(T ), Tk(T )) '
Xk∞ suitably, we may assume k(T ) is a distinguished polynomial of degree
κ− 1.

Next, suppose that κ = ∞. By the equivalence (1), the classes of pn
in (Akn)G are zero for all n. Hence, the image of cp is zero in (Xk∞)G =
Xk∞/(ζp − 1)Xk∞ . So, k(T ) can be taken such that ζp−1 divides k(T ). This
completes the proof of Theorem 1.3.

Before proceeding to the proofs of propositions, we will prepare some
fundamental facts.

For a general number field K, we denote by GK,p the Galois group of the
maximal extension of K which is unramified outside p over K, and consider
the Galois cohomology group

H2
K = H2(GK,p,Zp(1))

where Zp(1) = lim←−µpn (µpn is the group of pnth roots of unity). Since
H2
K is the same as the etale cohomology H2(SpecOK [1/p]et,Zp(1)), by the

Kummer sequence we obtain

Lemma 3.2. We have an exact sequence

0→ A′K → H2
K → B(OK [1/p])→ 0

where B(OK [1/p]) = lim←−Br(OK [1/p])[pn] = (
⊕

v|p Zp)0 is the Tate module
of the Brauer group of OK [1/p].

Since p is decomposed in k/Q, and every prime of k over p is totally
ramified in kn/k, B(Okn [1/p]) = (

⊕
p|p Zp)0 is a free R-module of rank 1 for

all n ≥ 0. So by Lemma 3.2 we have an exact sequence

0→ A′kn → H2
kn → R→ 0
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for all n ≥ 0 where (
⊕

p|p Zp)0 was denoted by R. We define H2
k∞ to be

the projective limit of H2
kn

with respect to the corestriction maps. Put
Γn = Gal(k∞/kn). Since the p-cohomological dimension of Gkn,p is 2, the
corestriction map induces an isomorphism (H2

k∞)Γn ' H2
kn

([17, Chap. I,
Prop. 18]). Taking the projective limit of the above exact sequence, we have
an exact sequence

0→ X ′k∞ → H2
k∞ → R→ 0

(note that the norm map is surjective on each term). From (H2
k∞)Γ ' H2

k

' R (note that A′k = 0), we know that H2
k∞ is generated by one element as a

Λ-module. We write H2
k∞ ' Λ/I. If we use this isomorphism, H2

k∞ → R is in-
duced by T 7→ 0. Further, by Theorem 1.3 we have X ′k∞ ' Λ/(fχ(T ), k(T )),
hence the above exact sequence implies that I = (Tfχ(T ), Tk(T )). Namely,

H2
k∞ ' Λ/(Tfχ(T ), Tk(T )).

We consider the subfield k1 which is the first layer of k∞/k. From the
exact sequence

0→ A′k1
→ H2

k1
→ R→ 0,

A′k1
is isomorphic to the kernel of

(H2
k∞)Γ1 = Λ/(Tfχ(T ), Tk(T ), (1 + T )p − 1)→ R.

Hence, if we put ϕ(T ) = ((1 + T )p − 1)/T , we have an isomorphism

A′k1
' Λ/(fχ(T ), k(T ), ϕ(T )).(2)

Suppose that F is a subfield of k1 such that F 6= Q1, F 6= k, and
[F : Q] = p. Then both p and ` ramify in F/Q. Put G = Gal(k∞/F ). Taking
G-coinvariants, we have an exact sequence

0→ (X ′k∞)G → (H2
k∞)G → RG → 0.

(Recall that in the above exact sequence R = (
⊕

p|p Zp)0, on which G acts
naturally. Since p is ramified in F , the G-invariant part RG is trivial.) Since
GF,p is also of p-cohomological dimension 2, the G-coinvariant of H2

k∞ is
isomorphic to H2

F . Since B(OF [1/p]) = 0, we have

(H2
k∞)G ' H2

F ' A′F .
It is easy to see that RG ' R/(ζp − 1) ' Z/pZ. Hence, the above exact
sequence and the isomorphism (H2

k∞)G ' A′F imply the exact sequence

0→ (X ′k∞)G → A′F → Z/pZ→ 0.(3)

For F , we also need the following. Let pF (resp. LF ) be the prime of F lying
over p (resp. `), and [pF ] (resp. [LF ]) the class of pF (resp. LF ) in AF .

Lemma 3.3. At least either [pF ] 6= 0 or [LF ] 6= 0.
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Proof. We apply Lemma 3.1 to F/Q. The primes ramified in F/Q are p
and `. By Lemma 3.1 we have an exact sequence

H1(FpF /Qp, EFpF
)⊕H1(FLF /Q`, EFLF )→ Ĥ0(F/Q, AF )→ Ĥ0(F/Q, EF ).

The exact sequence 0 → EFpF
→ F×pF → Z → 0 yields a natural isomor-

phism H1(FpF /Qp, EFpF
) ' Z/pZ by Hilbert Theorem 90. By the definition

of the homomorphisms in Lemma 3.1, H1(FpF /Qp, EFpF
) → Ĥ0(F/Q, AF )

is induced by the reciprocity map F×pF → DpF ⊂ AF (DpF is the de-
composition group where we identified AF with the Galois group of the
p-Hilbert class field of F ), so the image of 1 ∈ Z/pZ ' H1(FpF /Qp, EFpF

) in

Ĥ0(F/Q, AF ) = A
Gal(F/Q)
F is [pF ]. Similarly we deduce that the image of 1 in

H1(FLF /Q`, EFF ) ' Z/pZ is [LF ]. Since Ĥ0(F/Q, EF ) = EQ/NF/QEF = 0,

the above exact sequence tells us that AGal(F/Q)
F is generated by [pF ] and

[LF ]. As in the proof of Theorem 1.3, we have (AF )Gal(F/Q) = Z/pZ, so
(AF )Gal(F/Q) is also of order p. Hence, at least one of [pF ] and [LF ] is nonzero
in AF .

Proof of Proposition 1.7. Suppose that κ = 2. So we may assume k(T ) =
T − α, and vR(α) > 0. Assume further that Xk∞ is infinite. Then we must
have fχ(α) = 0, and by the isomorphism (2) we have

A′k1
' R/ϕ(α).

Recall that Gal(k1/k) is generated by γ and Gal(k1/Q1) is generated
by σ. We suppose that F corresponds to the subgroup 〈γσi〉 of Gal(k1/Q) =
Gal(k1/k)×Gal(k1/Q1) for some i such that 0 < i < p. We have

(X ′k∞)G = Λ/(T − α, (1 + T )− ζ−ip ) = R/(ζ−ip − 1− α).

Hence, the exact sequence (3) yields an exact sequence

0→ R/(ζ−ip − 1− α)→ A′F → Z/pZ→ 0.

Put cF = vR(ζ−ip −1−α). Since the norm map X ′k∞ → A′k1
is surjective, the

image of the norm map A′k1
→ A′F coincides with the image of (X ′k∞)G =

R/(ζ−ip − 1− α)→ A′F , hence it is of order pcF .
We take a prime L of k1 lying over `. Since L is totally ramified in

k1/Q1, σ acts on L trivially. Writing [L]A′k1
for the class of L in A′k1

, we

have (ζp − 1)[L]A′k1
= 0. Hence, if we fix an isomorphism

A′k1
' R/(ϕ(α)) = R/((ζp − 1)c)

where c = vR(ϕ(α)), then [L]A′k1
corresponds to a(ζp−1)c−1 for some a ∈ R.

Since c = vR(ϕ(α)) = vR(
∏p−1
j=1(1 + α − ζjp)), we have c > cF . This shows
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that the norm of [L]A′k1
in A′F is trivial. Since LF is decomposed in k1/F ,

Nk1/F (L) = LF and the class of LF in A′F is zero.
Note that by our assumption [pF ] = 0 in AF , we have AF = A′F . So we

get [LF ] = [pF ] = 0 in AF , which contradicts Lemma 3.3. Hence, X ′k∞ is
finite, and we have λ = 0. This completes the proof of Proposition 1.7.

For the proof of Proposition 1.8, we need the following.

Proposition 3.4. We assume κ = 2. Suppose that α ∈ R is an element
with vR(α) = 1. If p4 does not divide the class numbers of all subfields of
k1 with degree p over Q, then T − α does not divide a generator of the
characteristic ideal charΛ(Xk∞).

Proof. Assume that T −α divides a generator of the characteristic ideal
of Xk∞ . Then Xk∞ is infinite, and T − α divides both fχ(T ) and k(T ). So
k(T ), which we take to be distinguished, should be k(T ) = T − α because
κ = 2.

Since vR(α) = 1, there is an integer i such that 0 < i < p and α/(ζp−1) ≡
−i (mod ζp−1). Hence, we have vR(α−(ζ−ip −1)) > 1. Let F be the subfield
of k1 corresponding to the subgroup 〈γσi〉 as in the proof of Proposition 1.7.
Then, the exact sequence (3) yields an exact sequence

0→ R/(ζ−ip − 1− α)→ A′F → Z/pZ→ 0.

By our assumption on i, we have #R/(α−(ζ−ip −1)) ≥ p2, hence #A′F ≥ p3.
On the other hand, since p4 does not divide #AF , we must have #AF =

#A′F = p3. This shows that the prime pF of F lying over p is principal, and
contradicts Proposition 1.7. The proof of Proposition 3.4 is complete.

Proof of Proposition 1.8. We may assume k(T ) = T − α. First, suppose
vR(α) ≥ 2, namely vR(k(0)) ≥ 2. Since vR(fχ(p)) = vR(B1,χω−1) = 2, it
follows from deg fχ(T ) = q− 1 ≥ 2 and vR(p) = p− 1 ≥ 2 that vR(fχ(0)) =
vR(fχ(p)) = 2. Hence, vR(k(0)) ≥ vR(fχ(0)) = 2. Since both k(T ) and
fχ(T ) are distinguished polynomials and deg fχ(T ) > deg k(T ), k(T ) does
not divide fχ(T ). Thus, we obtain λ = 0.

If vR(α) < 2, we have vR(α) = 1. Then, by Proposition 3.4, k(T ) does
not divide a characteristic power series of Xk∞ . Hence, we have λ = 0. This
completes the proof.

Proof of Proposition 1.9. Suppose that F corresponds to the subgroup
〈γσi〉 as in the proof of Proposition 1.7. Let LF (resp. pF ) be the prime
of F lying over ` (resp. p). By our assumption (ii) and Lemma 3.3, pF is
not principal. So by our assumption (iii), we have #A′F ≤ p2. By the exact
sequence (3), this implies that min(vR(fχ(ζ−ip −1)), vR(k(ζ−ip −1))) ≤ 1. We
may assume this value is 1.
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First, suppose vR(fχ(ζ−ip −1)) = 1. Then fχ(T−(ζ−ip −1)) is an Eisenstein
polynomial, so fχ(T ) is irreducible. Since deg k(T ) = κ − 1 < deg fχ(T ) =
q − 1, we get the finiteness of Xk∞ ' Λ/(fχ(T ), Tk(T )).

Next, suppose vR(k(ζ−ip − 1)) = 1. Then, by the same method, k(T )
is irreducible. Assume that Xk∞ is infinite. Then k(T ) must divide fχ(T ),
and we have X ′k∞ ' Λ/(k(T )). Put ϕ(T ) = ((1 + T )p − 1)/T and ϕ2(T ) =

((1 + T )p
2 − 1)/T . By the isomorphism (2), we have A′k1

= Λ/(k(T ), ϕ(T )),
and by the same method, we have A′k2

= Λ/(k(T ), ϕ2(T )). The natural
map A′k1

→ A′k2
corresponds to the multiplication by ϕ2(T )/ϕ(T ). So it is

injective because k(T ) is irreducible and prime to ϕ2(T ).

Let Lk1 (resp. pk1) be a prime of k1 lying over ` (resp. p). We denote by
[Lk1 ]Ak1

(resp. [pk1 ]Ak1
) the class of Lk1 (resp. pk1) in Ak1 , and by [Lk1 ]A′k1

the class of Lk1 in A′k1
. We will show that [Lk1 ]A′k1

6= 0.

We denote by pF ′ (resp. LF ′) the prime of F ′ over p (resp. `). Suppose
first that [pF ′ ]AF ′ = 0. Then, by Lemma 3.3, [LF ′ ]AF ′ 6= 0 and [LF ′ ]A′

F ′
6= 0

because AF ′ = A′F ′ . Since LF ′ splits in k1, Nk1/F ′([Lk1 ]A′k1
) = [LF ′ ]A′

F ′
6= 0

implies [Lk1 ]A′k1
6= 0. Next, suppose [pF ′ ]AF ′ 6= 0. As we saw before, AF ′ is

cyclic as an R-module. It follows from [pF ′ ]AF ′ 6= 0, [LF ′ ]AF ′ 6= 0, and
(ζp−1)[pF ′ ]AF ′ = (ζp−1)[LF ′ ]AF ′ = 0 that we can write [LF ′ ]AF ′ = u[pF ′ ]AF ′
for some unit u ∈ R×. Assume that we can write [Lk1 ]Ak1

= a[pk1 ]Ak1
for some a ∈ Λ. Then the above implies that a is a unit (note that both
pF ′ and LF ′ split in k1/F

′). Hence, the Λ-submodule 〈[pk1 ]Ak1
〉 generated

by [pk1 ]Ak1
is equal to the Λ-submodule 〈[Lk1 ]Ak1

〉 generated by [Lk1 ]Ak1
.

This implies 〈[pF ]AF 〉 = 〈[LF ]AF 〉 in AF . By our assumption (ii), this is
zero, which contradicts Lemma 3.3. Hence, [Lk1 ]Ak1

cannot be written as
[Lk1 ]Ak1

= a[pk1 ]Ak1
, namely [Lk1 ]Ak1

is not in 〈[pk1 ]Ak1
〉 in Ak1 . This implies

[Lk1 ]A′k1
6= 0 in A′k1

.

By Lemma 7 in Ozaki and Yamamoto [16] and κ ≤ p, we know that the
image of [Lk1 ]A′k1

in A′k2
is zero. This contradicts the injectivity of A′k1

→
A′k2

, and completes the proof of Proposition 1.9.

Proof of Proposition 1.10. Let F correspond to the subgroup 〈γσi〉 as
in the above proof. Since p4 does not divide #AF and the prime of F lying
over p is not principal, we have #A′F ≤ p2, and we may assume
min(vR(fχ(ζ−ip − 1)), vR(k(ζ−ip − 1))) = 1 as in the proof of Proposition 1.9.

First, suppose vR(fχ(ζ−ip −1)) = 1. Then fχ(T ) is irreducible. By our as-
sumption [pF ]AF 6= 0, we have [pk1 ]Ak1

6= 0. This together with Theorem 1.3
implies that k(T ) is nonzero in Λ/(fχ(T ), Tk(T )). In particular, fχ(T ) does
not divide k(T ). This shows that Xk∞ ' Λ/(fχ(T ), Tk(T )) is finite.
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Next, suppose that vR(k(ζ−ip −1)) = 1. Since ζp−1 divides k(T ) by Theo-
rem 1.3, k(T ) can be written as k(T ) = (ζp−1)u(T ) for some u(T ) ∈ Λ×. By
Ferrero–Washington’s theorem [1], ζp−1 does not divide fχ(T ), so again we
obtain the finiteness of Xk∞ ' Λ/(fχ(T ), Tk(T )) = Λ/(fχ(T ), (ζp − 1)T ).

4. Numerical examples

4.1. We first consider the case p = 3 for ` < 10000. By a result of
Fukuda and Komatsu [3] together with a result of Ozaki and Yamamoto
[16], we already know λ = 0 in this case (Example 4.4 in [3]). In the method
of Fukuda and Komatsu [3], the computation of the zeros of fχ(T ) which is
associated to the p-adic L-function Lp(s, χ) plays an essential role. We will
see that our conditions can be applied for ` < 10000 except for ` = 8677,
namely we will see that we can verify λ = 0 without computing fχ(T ) for
these `’s.

There are 611 `’s which satisfy ` ≡ 1 (mod 3) and ` < 10000. Among
them 589 primes satisfy either ` 6≡ 1 (mod 9), or 3 6∈ (F×` )3, or κ = 1. For
these `’s, we know λ = 0 by Theorem A and Theorem 1 in Ozaki and Ya-
mamoto [16]. For the remaining 22 primes, 10 primes satisfy vR(B1,χω−1) = 1
(note: B2,χ is more easily computed because the conductor of χ is smaller
than that of χω−1; it is easy to see that vR(B1,χω−1) = 1 is equivalent to
vR(fχ(0)) = 1, which in turn is equivalent to vR(B2,χ) = 1), and for them
Corollary 3 in [16] can be applied. The remaining primes are

2269, 3907, 4933, 5527, 6247, 6481, 7219, 7687, 8011, 8677, 9001, 9901.

Ozaki and Yamamoto calculated fχ(T ) for these 12 primes, and found
that fχ(T ) is irreducible at least for 8 primes, more precisely unless ` =
2269, 6481, 7219, 8677. They obtained λ = 0 for these 8 primes by [16,
Theorem 2] and some extra argument. For ` = 2269, 6481, Ozaki and Ya-
mamoto proved λ = 0 by using an argument which is similar to Proposi-
tion 1.7, but with the additional condition ` ≡ 1 (mod 27). In conclusion,
Ozaki and Yamamoto proved λ = 0 for all ` < 10000 except ` = 7219, 8677.
For many `’s, Fukuda and Komatsu checked λ = 0 by using the generalized
Ichimura–Sumida criterion [3], and their theorem can be applied for the
above remaining 2 primes.

We will study the above 12 primes without computing fχ(T ). First of all,
we remark that κ = 1 is equivalent to the condition

(
(z2 − 1)(z−2 − 1)
(z − 1)(z−1 − 1)

)(`−1)/3

6≡ 1 (mod `)

in Theorem 1 of Ozaki and Yamamoto [16] when we take a primitive root g
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of `, and put z = g(`−1)/9. Similarly, κ = 2 is equivalent to the condition
(

(z2−1)(z−2−1)
(z−1)(z−1−1)

)(`−1)/3

≡ 1 (mod `), ((z−1)(z−1−1))(`−1)/3 6≡ 1 (mod `)

in Theorem 2 of Ozaki and Yamamoto [16]. Since p = 3, k1 has two cubic
subfields which are different from Q1 and k. Their equations are obtained
by the following method. Let (a, b) be a solution of a2 + 27b2 = 36` such
that a, b ∈ Z>0 and b 6≡ 0 (mod 3). There are exactly 2 such solutions. For
these 2 solutions (a, b), the equations

X3 − 27`X − 9a` = 0

give two cubic subfields of k1 which are different from Q1 and k (cf. [5]).
We checked the class numbers and the primes lying over 3, using PARI-

GP. The conditions of Proposition 1.8 are satisfied for 6 primes,

` = 2269, 4933, 6247, 7687, 9001, 9901,

among the above 12 primes. (We note again that B2,χ is more easily com-
puted. From vR(B1,χω−1) = vR(Lp(0, χ)), vR(B2,χ) = vR(Lp(−1, χ)),
deg fχ(T ) = q − 1 ≥ 2 and vR(p) = 2, we know that vR(B1,χω−1) = 2 is
equivalent to vR(fχ(0)) = 2, which in turn is equivalent to vR(B2,χ) = 2.)
So we conclude λ = 0 for them.

The conditions of Proposition 1.7 hold for the following 6 primes among
the above 12 primes with the subfields F which correspond to the following
values of a:

` 2269 4933 5527 6481 7219 9001

a 246 375 435 246 24 462

For each ` above, we checked that the other subfield of degree p does not
satisfy the conditions of Proposition 1.7. For example, for ` = 7219, the
subfield corresponding to a = 24 satisfies these conditions of Proposition 1.7,
but the subfield corresponding to a = 429 does not.

For ` = 3907, 8011, we have κ = ∞. Since 27 does not divide ` − 1 for
these `, we have q = 3, and κ =∞ can be checked by the congruences
(

(z2−1)(z−2−1)
(z−1)(z−1−1)

)(`−1)/3

≡ 1 (mod `), ((z−1)(z−1−1))(`−1)/3 ≡ 1 (mod `),

where z is the element in F` as above. We obtain λ = 0 by applying Propo-
sition 1.10. For each `, two cubic subfields which are different from Q1 and
k both satisfy the conditions of Proposition 1.10. For example, for ` = 3907,
these are the two subfields corresponding to a = 192 and a = 375.

Consequently, our criteria could be applied for all primes ` < 10000 ex-
cept ` = 8677. Namely, we could verify λ = 0 without using the computation
of fχ(T ) for all these ` 6= 8677.
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4.2. Suppose that ` ≡ 1 (modpc) and c is very large. Then the degree
of fχ(T ) is ≥ pc−1 − 1 by Kida’s formula ([11], [10]), and it is very difficult
to calculate the irreducible factors of fχ(T ).

Suppose p = 3 and take ` which satisfies ` < 100000 and ` ≡ 1 (modp7).
Then either 3 6∈ (F×` )3 or κ = 1 is satisfied except for ` = 17497 and
52489. We study these 2 remaining primes by using our propositions. The
conditions of Proposition 1.8 are satisfied for ` = 52489. Proposition 1.7 can
be applied both for ` = 17497 and 52489. The conditions are satisfied for
the subfield F which corresponds to a = 645 (resp. a = 1374) for ` = 17497
(resp. ` = 52489). (For the value a, see 4.1.)

4.3. As we explained in 4.1, in the case p = 3 and ` < 10000, if ` satisfies
both ` ≡ 1 (mod 9) and 3 ∈ (F×` )3, then we have κ = 1, or κ = 2, or κ =∞.
But theoretically, by Chebotarev’s density theorem, κ can be any positive
integer.

The smallest ` such that κ = 3 is ` = 11719. (To see this, we have to
calculate the map Φ′2 : E′Q2

→ ⊕
v|` κ(v)×/(κ(v)×)p. Since E′Q2

/(E′Q2
)p is

generated by the cyclotomic p-unit as we explained in the proof of Lemma
1.1, the computation of dim Cokernel(Φ′2) is easy.)

For ` = 11719, if we take F to be the subfield corresponding to a = 3 and
F ′ to be the subfield corresponding to a = 564, the conditions of Proposition
1.9 are satisfied. Thus, we get λ = 0 for ` = 11719.

4.4. Next, we consider the case p = 5. The computation in this subsec-
tion was done by Masahiro Kato whom we thank very much. For p = 5, in
the range ` < 100000, there are 99 `’s which satisfy both ` ≡ 1 (mod 25) and
5 ∈ (F×` )5. Among them, 76 primes satisfy κ = 1, 21 primes satisfy κ = 2,
` = 84551 satisfies κ = 3, and ` = 59951 satisfies κ = 4. For the primes
with κ = 1, we have λ = 0 by Corollary 1.4. Among the 23 primes with
κ ≥ 2, 16 primes satisfy vR(B1,χω−1) = 1. We have λ = 0 for these primes
by Corollary 1.6. The remaining primes are

7151, 7901, 21001, 38851, 41201, 67651, 84551.

We checked that the conditions of Proposition 1.8 are satisfied for ` =
7151, 7901, 21001, 67651. Consequently, for p = 5 we verified λ = 0 for
all ` < 100000 except ` = 38851, 41201, 84551.
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