Correction to:
 "On a positivity property of the Riemann ξ-function"

(Acta Arith. 89 (1999), 217-234)

by
Jeffrey C. Lagarias (Ann Arbor, MI)

In my paper [1] Lemma 3.1 is incorrectly stated. It should read as follows:
Lemma 3.1 (Unconditional). For $\sigma_{0} \neq 0$, the condition

$$
\begin{equation*}
\frac{1}{\sigma_{0}^{2}+(\gamma+t)^{2}}+\frac{1}{\sigma_{0}^{2}+(\gamma-t)^{2}} \geq \frac{2}{\sigma_{0}^{2}+\gamma^{2}} \tag{3.3}
\end{equation*}
$$

holds if and only if either $t=0$ or

$$
\begin{equation*}
3 \gamma^{2} \geq \sigma_{0}^{2}+t^{2} \tag{3.4}
\end{equation*}
$$

The cases of equality coincide.
Proof. If $t=0$ equality holds so we may assume $t \neq 0$. Since $\sigma_{0} \neq 0$ no denominator vanishes, so we can clear denominators, to find that (3.3) is equivalent to

$$
\left(\sigma_{0}^{2}+\gamma^{2}\right)\left(2 \sigma_{0}^{2}+2 t^{2}+2 \gamma^{2}\right) \geq 2\left(\sigma_{0}^{2}+(\gamma+t)^{2}\right)\left(\sigma_{0}^{2}+(\gamma-t)^{2}\right) .
$$

Dividing by two and simplifying yields

$$
3 \gamma^{2} t^{2} \geq \sigma_{0}^{2} t^{2}+t^{4}
$$

Since $t \neq 0$ we can divide by t^{2} to obtain (3.4). All steps are reversible.
Lemma 3.1 is applied in Lemma 3.2 of [1], where we note that equation (3.6) follows from the corrected form of Lemma 3.1.

Finally, in the equation (3.8) of [1] the term on the right $-\frac{1}{s-1}$ should have its sign reversed, to $\frac{1}{s-1}$.

Acknowledgments. I thank Kevin Broughan for bringing these errata to my attention.

[^0]J. C. Lagarias

References

[1] J. C. Lagarias, On a positivity property of the Riemann ξ-function, Acta Arith. 89 (1999), 217-234.

Department of Mathematics
University of Michigan
Ann Arbor, MI 48109-1109, U.S.A.
E-mail: jcl@research.att.com

[^0]: 2000 Mathematics Subject Classification: 11M26, 11R42.

