Correction to: "On a positivity property of the Riemann ξ -function"

(Acta Arith. 89 (1999), 217-234)

by

JEFFREY C. LAGARIAS (Ann Arbor, MI)

In my paper [1] Lemma 3.1 is incorrectly stated. It should read as follows:

LEMMA 3.1 (Unconditional). For $\sigma_0 \neq 0$, the condition

(3.3)
$$\frac{1}{\sigma_0^2 + (\gamma + t)^2} + \frac{1}{\sigma_0^2 + (\gamma - t)^2} \ge \frac{2}{\sigma_0^2 + \gamma^2}$$

holds if and only if either t = 0 or

$$(3.4) 3\gamma^2 \ge \sigma_0^2 + t^2.$$

The cases of equality coincide.

Proof. If t = 0 equality holds so we may assume $t \neq 0$. Since $\sigma_0 \neq 0$ no denominator vanishes, so we can clear denominators, to find that (3.3) is equivalent to

$$(\sigma_0^2 + \gamma^2)(2\sigma_0^2 + 2t^2 + 2\gamma^2) \ge 2(\sigma_0^2 + (\gamma + t)^2)(\sigma_0^2 + (\gamma - t)^2).$$

Dividing by two and simplifying yields

$$3\gamma^2 t^2 \ge \sigma_0^2 t^2 + t^4.$$

Since $t \neq 0$ we can divide by t^2 to obtain (3.4). All steps are reversible.

Lemma 3.1 is applied in Lemma 3.2 of [1], where we note that equation (3.6) follows from the corrected form of Lemma 3.1.

Finally, in the equation (3.8) of [1] the term on the right $-\frac{1}{s-1}$ should have its sign reversed, to $\frac{1}{s-1}$.

Acknowledgments. I thank Kevin Broughan for bringing these errata to my attention.

²⁰⁰⁰ Mathematics Subject Classification: 11M26, 11R42.

J. C. Lagarias

References

[1] J. C. Lagarias, On a positivity property of the Riemann ξ -function, Acta Arith. 89 (1999), 217–234.

Department of Mathematics University of Michigan Ann Arbor, MI 48109-1109, U.S.A. E-mail: jcl@research.att.com

Received on 26.9.2004

(4864)