ACTA ARITHMETICA
116.4 (2005)

Shifted B-numbers as a set of uniqueness for additive
and multiplicative functions

by

KARL-HEINZ INDLEKOFER (Paderborn) and
INIKOLAI M. TIMOFEEV]

1. Introduction and results. A function f : N — C is called additive
if
(1) f(mn) = f(m) + f(n)
for all coprime m, n € N. If (1) holds for all pairs of integers m,n € N, we say

that f is completely additive. A function g : N — C is called multiplicative
(resp. completely multiplicative) if

(2) g(mn) = g(m)g(n)
for all coprime m,n € N (resp. for all m,n € N).
Because of the canonical representation

(3) n = H p*?  with p® || n

p prime

An additive f can be extended uniquely to an “additive” function f* :
Q' — C, where Q1 = {a/b: (a,b) = 1; a,b € N}, by f*(a/b) = f(a) — f(b).
In a similar manner we get an extension ¢g* of a multiplicative function g
by g*(a/b) = g(a)/g(b) in case g(b) # 0 for all b € N. In the following we
denote by A the set of all additive f : QF — C and by M the set of all
multiplicative g : QT — C with g(b) # 0 for all b € N. We write Aj (resp.
M) for the subsets of completely additive (resp. completely multiplicative)
functions in A (resp. M).
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DEFINITIONS. Let A = {a,} C Q". We say that A is a

(a) U-set for Ain case f € A, f(A) = {0} implies f =0,
(b) U-set for M in case g € M, g(A) = {1} implies g = 1,
(c) C-set for Ain case f € A, lim, .~ f(an) = 0 implies f =0,
(d) C-set for M in case g € M, lim,,_, g(a,) = 1 implies g = 1.
In an obvious manner U-sets and C-sets are defined for Ag (resp. My).
Wolke [18], Dress and Volkmann [1] and Indlekofer [8] (see also [4])
showed: In order that the set A = {a,} should be a U-set for Ay, it is both
necessary and sufficient that every positive integer n has a representation

!
n:Ha?" where o; € Q (i =1,...,1).
i=1

On the other hand, to the subset A C QT there corresponds the subgroup
I' = (A) of QT generated by A. From this observation Indlekofer ([8, The-
orem 2]) deduced the following:

Let A = {a,} C Q". Then the following two assertions are equivalent:
(I) A is a U-set for My.

(IT) Every positive integer n has a representation
l
n:Haf" where g; € {—1,1} (i =1,...,1) and I =1(n).
i=1

Obviously this is equivalent to QT /I" = {1}.

Kaétai introduced the notion of U-sets for A in his paper [12] and showed
that the set A containing the prime divisors of k£ and the arithmetic pro-
gression {l + jk:j =0,1,...} is a U-set for Ay. Further examples may be
found in [13], [6] and [8].

In [13] Kétai proved that the set {p + 1} of shifted primes is a set of
“quasiuniqueness”, i.e. the union of {p + 1} and some finite set is a U-set
for Ap. In 1974 Elliott [2] showed that {p 4 1} is in fact a U-set for Aj.

It is still unknown whether {p+1} is a U-set for M. If I' = ({p+1}) then
Elliott [3] proved |Q"/I"| < 3. This means that f € Mg and f(p+1) =1 for
all primes p implies the existence of an integer 0 < k < 3 such that f* = 1.
A famous conjecture of Schinzel implies that every positive integer n can be
written as

p+1

n==—1-

g+1

and, in addition, there are infinitely many such representations of n. The

case n = 2 corresponds to the existence of infinitely many Sophie Germain
primes p and ¢ = 2p + 1 (see also Indlekofer and Jérai [10]).

(p, q prime)
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In this paper we deal with the set B C N of natural numbers which can
be represented as a sum of two squares of integers.

It is well known (see, for example, [9], [14]) that n € B if and only if n
has the form

(4) n = 25n1n3
where s > 0 and all prime divisors of n; and ng are = 1 mod 4 and = 3 mod 4,

respectively.
For such B-numbers Landau [14] showed (¢ > 0)

x
S tme
n<u log x
neB
and it turns out that some conjectured properties for primes are valid for
B-numbers. For example, it is known that there are infinitely many B-twins

and, moreover, the estimates
x
>
log

n<x
neB,n+1€B

hold true (Indlekofer [7]). Further, here we prove that the set B+1 = {b+1:
b € B} of shifted B-numbers is a U-set for M. In addition we give the exact

lower bound of the number of factors which are needed in the representation
!

(5) n=[0:+1% =+l beB@=1...,10),
i=1
and prove that there are infinitely many representations (5) for every n. In
particular, there are infinitely many representations
a+1
n =
b+1’
if n is odd or n = 2m and m is odd.
REMARK 1. Kétai [13] showed that {p : p = 3 mod 4 prime} U {n? +1:
n € N} is a U-set for Ap. Using an idea of his paper Fehér, Indlekofer and

Timofeev [5] proved that the sets B + 1 and {n? +2m? +1: m,n € Z} are
also U-sets for Aj.

a,be B,

The key result of this paper is a lower sieve estimate contained in

THEOREM 1. Let ¢ be a non-zero integer and a,b € N such that (a,b) = 1
and (ab,2c) = 1. Further, let

S()=t{n:n<z, a(n+c)=blm+c), (a,n+c)=1,n,m € B}.
Then there exists a positive constant 9 = 9¥(a, b, c) such that

(6) S(z) > 9 —

log
for x > xy = xo(a,b, c).
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REMARK 2. We have two possibilities to prove the lower estimate (6).
One is to apply the linear sieve in a similar way to what has been done
in [7], but here we shall use the half-dimensional sieve details of which are
given in [11]. The upper bound result S(z) < z/logx follows immediately
from standard (upper) sieve estimates.

Applying Theorem 1 we prove

THEOREM 2. Let ¢ be a non-zero integer. Then B+ c is a C-set for M.
In particular, B + ¢ is a U-set for My.

This implies the following;:

COROLLARY 1. Let ¢ be a non-zero integer. Then QT = (B+-c). Further,
for eachn € N there exists k = k(n) such that n can be expressed as a product
k
n=[]n+e% e=+1,meB(i=1,..k),
i=1
infinitely often where k < k.
Directly from Theorem 1 follows
COROLLARY 2. Let ¢ be a non-zero integer. Then
B+cU{p :p|2r=1,2,...}
is a U-set for A and M.

Let us now consider the special case ¢ = 1. Theorem 1 yields infinitely
many representations
a m+1
—=——, where m,n € B,
b n+1
for natural numbers a and b which are odd and coprime. Now, we shall show

that the equation
2 m+1
b 2n+1
holds true infinitely often in case (2, ab) = (a,b) = 1 with suitable m, 2n € B.

This result is a consequence of
THEOREM 3. Let a,b € N be odd with (a,b) = 1, and define S(z) by
S(z) :=#{n:n <z 2a2n+1)=b(m+1), n,m € B}.
Then there exists a positive constant 9 = ¥(a,b) such that

~ i

S(z) >0

log
for x > xy = xo(a,b).
Since 2 = 12 4+ 0% 4 1, Corollary 2 implies
COROLLARY 3. B+1U{2":r=2,3,...} is a U-set for A and M.
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Every a € N can be represented as a finite product
(7) a=(ny+1)=* - (ns+ 1)

where ¢, = +1, n; € B (i = 1,...,s). Defining s(a) as the smallest s such
that (7) holds we shall prove

THEOREM 4. Let a = 2"b where 0 <1 and (2,b) = 1.
(i) If 0 <r <1 then
{ 1 ifa—1¢€ B,
s(a) =

2 otherwise,

and there are infinitely many representations (7) of a with s = 2.
(ii) If r > 2 then s(a) =1 or s(a) = r+1, and both cases occur. Further,
there are infinitely many representations (7) of a with s =r + 1.

REMARK 3. Let f(z,y) = ax?+bry+cy?, where a,b,c € Z, (a,b,c) = 1,
be a primitive, positive-definite binary quadratic form with discriminant
D = b—4ac. We believe that results similar to Theorems 1, 2 and Corollaries
1, 2 are true for the set B +d, where By := {n:n = f(x,y), z,y € Z} and
d is a non-zero integer.

The discriminant D = —4 corresponds to the representation as a sum of
two squares. We now describe, as an example, how our method works in the
case D = —8, i.e. f(z,y) = 2% + 2y%. Putting

B2):={n:n=2>4+2% z,yc 2}
we prove

THEOREM 5. Let ¢ be a non-zero integer. Let a,b € N such that (a,b) = 1
and (ab,2c) = 1. Further, let

S(z):=#{n:n<z aln+c)=bm+c), (n+ca) =1, mne B2}

Then there exists a positive constant 9 = 9¥(a, b, c) such that

= x
>
) 29 log

for x> xo = zo(a,b,c).
An immediate application of Theorem 5 yields

THEOREM 6. Let ¢ be a non-zero integer. Then B(2) + ¢ is a C-set
for My. In particular, B(2) + ¢ is a U-set for M.

This, together with Theorem 5, gives

COROLLARY 4. Let ¢ be a non-zero integer. Then QT = (|B(2) + ¢|).
Further, for each n € N there exists k = k(n) such that n can be expressed
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as a product
k
an—i—c ei=+1,n;€B2) (i=1,...,k),

infinitely often where k< k.
Theorem 5 implies
COROLLARY 5. Let ¢ be a non-zero integer. Then
B2)+cU{p" :p|2cr=1,2,...}
is a U-set for A and M.

2. Proofs of Theorem 2 and Corollaries 1, 2. We assume that g is
completely multiplicative with lim; o, g(n; + ¢) = 1 where n; runs through
the set B.

If p is prime, p{2¢, then, by Theorem 1,

m—+c

p= for infinitely many m,n € B,
n-+c

and thus g(p) = 1.

Next we show g(2) = 1. Assume that ¢ = 2"¢; where » > 0 and (c1,2)
= 1. First suppose ¢; = 1 mod 4. We choose a prime p = 1 mod 4 such that
pfe. Since 2"p € B we conclude

2'p+c=2"(p+ec1)=2""a where (a,2¢c) = 1.
Thus g(2"1) = g(2"p + ¢), and choosing p large enough leads to
(8) g2 = 1.
If » > 0 we let p be as before and obtain, since 2"t%p € B,
272y fe=2"(4p+¢1)  with (4p+¢1,2¢) = 1,

which implies

(9) 9(2") = 1.
Now, (8) and (9) prove ¢g(2) =1 if ¢; = 1 mod 4.
If ¢ = —1 mod 4 we choose large primes p; and po by

p1=-—-c1+4mod8, py=—c1+ 8 mod 16
and obtain
2"p +c=2"(p1 +c1) =2""%a;  with (a1,2¢) = 1,
2 po +c¢=2"(py +¢1) =2"3ay  with (ag,2¢) = 1.

This implies
g2 = g(27%) =1,

and thus ¢g(2) = 1.
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Now, let p be a prime divisor of ¢ different from 2, and put ¢ = 2°p"¢;
with (c1,2p) = 1, where s > 0 and r > 1.

If r is odd choose an arbitrary prime p; = 1 mod 4, p1 {c. Then 25+ p+1p,
€ B and

25Ty + ¢ =2°p"(2pp1 + 1) where (2pp1 + ¢1,2¢) = 1,

which shows
g(p")=1 if ris odd.

Let now r be even. Then, if ¢; = [ mod 4p with ([,2p) = 1, choose a
prime p; = 1 mod 4, p; ¢, satisfying

p1 = 1+ 4] mod 4p,
where [ is taken such that

144l +1# 0 mod p.
For example, if pt(14+1) put I =p. If p| (1 +1) and p # 5 put Il =1, and
ifp=>5and p|(1+41)let iy =—1. Then 2°p"p; € B and

2" p1+c=2p" (p1+¢1) =2"p a  with (a,2¢) = 1.

Thus

g(p") =1 if ris even.

In the next step we show g(p" ') = 1if r is odd and g(p"*!) = 1 if r is
even. Let r be odd and r > 3. Then 2°p"~!p; with p; = 1 mod 4, p1{c, is
an element of B, and thus in the same way as above

g(p"™h) =1 ifris odd.
In the other case let the prime p; = 1 mod 4 (p; t¢) satisfy
(10) pr+ci=0modp, p1+ec#0mod p.

This choice is possible. For, if ¢; = [ + 4p%k, (I,2p) = 1, let p; = 1+
411 mod 4p? such that 1 +4l; +1 =0 mod p but 1 +4l; +1% 0 mod p?. I
c1 = |+ 4pk, (p,k) = 1, choose p; = 1 + 411 mod 4p?, where 1 + 41y + 1 =
0 mod p?. Thus, by (10),

QSpr]_ i — 23//pr+1a/ with (a/’ 26) =1,

-

which gives

g™ =1 if ris even.

This ends the proof of Theorem 2.
The first part of Corollary 1 holds since B + ¢ is a U-set for M. Next,
each n € N can be written in the form n = n’a, where (a,2¢) = 1 and all

prime divisors of n’ divide 2¢. Applying Theorem 1 to a gives the second
assertion of Corollary 1.
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Corollary 2 follows directly from Theorem 1, since if (a,2¢) = 1, then
f(B+c¢)={0} (f € A) and g(B +¢) = {1} (9 € M) implies f(a) =0 and
g(a) = 1, respectively.

3. The half-dimensional sieve. First we recollect the notations and
some facts on the half-dimensional sieve. For details see [11].

Let A be a finite set of positive integers and let P be a set of primes.
The sieve problem is to sift a certain sequence A by a truncation (at z) of P,
that is, to estimate the sifting function

S(A,P,z):=t{a:a €A, (a,P(z)) =1}

P(z) := H .

p<z
peEP

with

Let o be a multiplicative function such that

(11) 0<o(p)<p and o(p)=0 forp¢gP,

and, for some positive constant K,

o(p) 1
12 g ———logp—=logz| < K
(12) = p—olp) SPTa®
ng

for any real number z > 2. Further, we put

V(iz)=1]] <1 —~ @>

p<z p
and, for squarefree numbers d,
d
Aj:={a € A:a=0mod d}, R(A,d)::ﬁAd—#X

where X > 1 is a good approximation to §.4. Thus we have (cf. [11, Theo-
rem 1])

LEMMA 1. Let A be a finite sequence of integers, o be a multiplicative
function such that (11) and (12) are satisfied. Then for all z > 2, y > 2 we
have

(13)  S(A,P,z) < XV(2){F(s) + Olog™ P y)} + > |R(A,d)],

d<y
d|P(z)

(14)  S(A,P,2) > XV(2){f(s)+ O(log™ P y)} = " |R(A,d),

d<y
d|P(z)
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where s = logy/log z and the functions f(s), F(s) are the continuous solu-
tions of the system of differential-difference equations

(15) f(s)=0, F(s)= 2<
(16) 2s'/2(sY2f(s)) = F(s —1), 2s%(s'2F(s)) = f(s—1) for s>1,

with v denoting Fuler’s constant. For s > 1 we have
0< f(s) <1< F(s), F'(s)<0< f(s),
and, for 1 <s <2,

o\ /2
—) for 0 <s <1,

™8

s

e’ 1 dt e’ 1
?%&/t(t—l)’ e

To estimate the error terms of the sieve we shall apply the results of [15].
There the following notations have been used'

Z(:Evf’kas): Z f(n) Z f

(17) fls) =

n<z n<m
n=smodk (nk)
6(x, f, k) = max max’ Ky S) |, , d(x
(e, f,k) = max max|> (v, f AQ. 1. E k;}
kel
A(Q, f,E) = max max Z f(p)logp — Zf logp‘-
k<0 (s,k)=1 y<z p<y
keE p= smodk ptk

We shall deal with multiplicative functions described in the following
DEFINITION. A multiplicative function f belongs to M (D) if
S < zlog™z, >0,
n<x

and if for all primitive characters x}; mod d, where d € D, d < log™ z, we
have

(18) > Xip)f(p)logp < ylog™ Pz,
z2<py
where loeloal
logz = (logz)®, ©= _ 0808087 <z,
loglog x

c1 and B are arbitrary constants, and D is a subset of the natural numbers.
Then the following holds true.

LEMMA 2 (see [15, Theorem 4)). If f € My(D) and A(Q, f, FE) <
zlog 3B x, where E is a set of natural number whose divisors belong to D,
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then
AlQ1, f,E) < x(logx)_B+5/6+4o‘/3(log logac)2+o‘,

with Q1 = min(Q(x), V7 (log ) 38 ~3/-2log log z) ~7/*).
Using the theorem of Vinogradov—Bombieri we prove

LEMMA 3. Let f be a completely multiplicative function such that f(p)=1
for p = 1mod 4 and f(p) = 0 otherwise. Then for any A > 0 there exists
B = B(A) such that

1
E max max E n) — —ix n)| < zlog™ " z.
d<\/zlog™ "z n<y n<y
(d,2)=1 n=smod d (n,d)=1

Proof. 1t is easy to see that f € Mg(E), where E is the set of odd
numbers. To verify condition (18) we use the theorem of Siegel-Walfisz (see,
for example, [16, Chapter IV, Theorem 8.3]) for characters of the form x4xJ,
where d € E. Then

1
A(Q, f, F) = max max logp — — lo
Q1D = 3 e S lowr- g S sy
<Q P<y Py
(k,2)=1 p=1mod4 p=1mod4
p=smod k ptk
Y
< 4k, s) — ———
< > (Jax max | (y, 4k, s) ¢(4k)‘
k<Q
(k,2)=1
1 Y log k
+ Y~ max w<y,4,1>——‘+2 :
=5 ek) vse 2| =g elk)

By Vinogradov-Bombieri’s theorem we conclude that

m(ig /i E) <

log z’

X

logA z
Applying Lemma 2 finishes the proof.
The next result is due to E. Landau ([14, §183]).

LEMMA 4. Let \(x) be the number of odd integers n with 1 < n < x
which do not have any prime factors of the form 4n + 3. Then

cx x
Mz)=——=+0
(@) Vlog x * (logm>

with some ¢ > 0.

For the proof see, for example, [17, pp. 183-185].
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4. Proof of Theorem 1. Let us assume that ¢ = 2"¢y, (¢1,2) = 1. Put
n =2"ny, m = 2"m1, where n,m,ni;,m; € B. Then
S)=t{n:n<z,a(n+c)=bm+c), (a,n+c)=1,n,m e B}
>t{n1 :n1 <x/2", a(lny 4+ c1) = b(m1 + ¢1),
(a,n1 +c1) =1, n1,my € BY,
and obviously it is enough to prove (6) in the case when ¢ is an odd number.
Let P := {2} U{p: p =3 mod 4}. For a real number x > 1 let P(x) :=

Hp@ pep P- We know that n € B if and only if n = 29p7" - -~ p;*, where o
is an even number in case p; = 3 mod 4. Hence

(19) S(z) > Si(z):=t{n:n<z,n=—-cmodb, (a,n+c) =1,
(n,P(z)) =1,(%(n+c)—c,P(Y)) =1},

where Y = ¢(x + ¢) — ¢. Let a be a real number, 1/3 < a < 1/2. Then we
can show that

(20) Si(x) > Sa(x) — S3(x) + O(z' ™),

where

Sy(z):=f{n:n<z,n=-cmodb, (a,n+c)=1, (n,P(z)) =1,
(4(n+c) — ¢, P(Y*)) =1},

n=—cmodb, (a,n+c)=1, (n,P(z)) =1,

c)—c=pipam, Y* < p <py < Y172 p; =3 mod 4,

Ss(x) :=t{n:

=N

xZ,
n 4+

e 3

p2 =3 mod 4, (m, P(Y)) =1}.
Indeed, it is easy to see that
T
Sy (x) = Sy(x) — Ss(x) — Sa(z) + 0( 5 _2>,

p>Y«
where

Sy(z):=f{n:n<z,n=-cmodb, (a,n+c)=1, (n,P(x)) =1,
n+c)—c=pm, Y*<p,p=3mod4, (m,PY)) =1}
Since (abe,2) = 1 and (n, P(z)) =1, (m,P(Y)) = 1 we get n = 1 mod 4,
m =1mod 4, f(n+c)—c=(1+c)—c=1mod4dor f(n+c)—c=
3(1+4 ¢) — ¢ =1 mod 4. Therefore S4(z) = 0 and (20) holds.
Using Lemma 1 we shall prove lower bounds for Sa(x). We choose

X=X;=t{n:n<z,n=-cmodb, (a,n+c)=1, (n, P(x)) =1},
Z:§/a‘7 y: \/E

log? z

and
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p®) .

@ B { oo TdIPG), (daca—) =1,
0 otherwise.

Hence o(p)/p = 0 if plac(a —b) or p = 1 mod 4, o(p)/p = 1/(p—1) if

p=3mod 4, ptband o(p)/p=1/pif p=3 mod 4, p|b. So conditions (11),

(12) are fulfilled. We have

logy 1 +O<loglogac>'

logYe 2a log

So, by Lemma 1,

p<Y<
p=3 mod 4

ptac(a—Db)

_ Z ‘ﬁ{n:ngx, (a,n+c) =1, (n,P(x)) =1,

d</z/logB z (b)
d|P(Y®) _ * P
_ =-— bmod db} — —- X
(d,ac(a—b))=1 n ¢+ ca b mo } gp(bd) 1

)

where a*a = 1 mod db. Since (a,b) = 1 we see that

w@=g 1 (1 w(bp)>uza:s@(7/) Hr:n <o (nobPle)) =1}

p=3 mod 4
ptac(a—Db)

X (f(%) + O(log_1/5$)>

+O< Z ‘ﬁ{n:ngaj, (n,P(z)) =1,
vd<a+/z/log?
vla, d|P(Y®) n = —c+ ca*v*bv mod dbv}
1

(d,ac(a—b))=1
~ p(dvb) )

where v*v = a mod db. Because of (n,P(z)) = 1 and d| P(Y*) we have
(n,d) = 1. By Lemma 3,

H{n:n <z (n,vbP(x)) =1}

(21) So(x) > f(l/Z)a) Z ZEV) H{n:n <z, (n,vbP(x)) =1}
v|a

(b V)
_ p(b) 21log—6/5 ¢
X pl;[a (1 —go(bp)> + O(xlog ).
p=3 mod 4

ptac(a—Db)
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Concerning the sum S3(z) we have

S3(x) < S(x) := ﬁ{mplpg smpip2 <Y, (m,P(Y)) =1, p1 =3 mod 4,
pr=3mod 4, Y <p <ps <Y mpips = cmod a,
(2(mpip2+¢) —c, P (yo/s )) =1}
b
< JI <1 olb) ) tH{mpip2 : mp1p2 <Y, (m, P(Y)) = 1,
J<va p(bp) ) »(a)

=3 mod 4 _
chzgo—b) YO <py <pe <Y'"¥ p; =po =3 mod 4}

X (F(1) + O(log~ /% 2))

+ Y t{mpip2 : mp1p2 <Y, (m, P(Y)) =1,

dgya/S
(ddz‘fi(yiif) 1 Y <pr <pa <Y p1 =ps =3 mod 4,
,ocla— =

mp1p2 = —c + cb*a mod da}

1
- TN ﬁ{mp1p2 smpi1p2 g Y7 (’I’)’L,(IP(Y)) = 17
¢(da)
Y <p <p2a Y'Y p1 =py =3 mod 4},

where *b = 1 mod da. Since p; > Y and d < Y*/3 we can apply the
Vinogradov—Bombieri theorem to the sum on the right hand side. Thus for
any A > 0 we obtain

o2 )
sy o 1 )

ptbe(a—b)
X f{mpipz : mp1p2 <Y, (m, P(Y)) =1,
Y <pr <pp <Y p1 = po =3 mod 4}

+ O(zlog™ " ).
Hence (21), (20) and (19) yield

— \/, 1/2a dt
5(x>z\Ep<1;£/3 (1 p){ ()x/_ \ o
ptbc(a—b)
p=3 mod 4
e 1 G (B
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1 1
~ o(a) g (1 N E)ﬁ{mplm cmpip2 <Y, (m,P(Y)) =1,

p=3 mod 4
Y*<p1<p2 < Yl_a}} +O(xlog™ %7 z).

By Lemma 4 we have

Z%ﬁ{n :n <z, (n,vbP(x)) =1}

T )
2 I () v o)
p=1mod 4

Since pa > Y the inequalities mp; < Y1~ and m < Y'172¢ hold. Hence
t{mpips : mpips <Y, (m, P(Y)) =1, Y* <py <pp <Y'"°}

2Y x 1 1
< 2 ) log —
- Z Z mp1 log Y« < log z P ( Z p> %9

m<Y!' 729 ya<p <Y m<yl—2a
(m,P(Y))=1 p=1 mod 4
x 1 -2«
K ——Vv1—-2al 1+ .
Viogzx @8 ( 2a )
From this we conclude that
S(z) > a1 lozx (V1 —=2a —covV1 —2a (1 — 20a)),

where c¢1,co are positive constants depending only on a,b,c. Choosing a
suitable real number 1/3 < a < 1/2 gives

V1—2a—covV1—-2a(l—2a)>c3>0.

This ends the proof of Theorem 1.

5. Proof of Theorem 3. As in the proof of Theorem 1 we start with
the obvious lower estimate

S):=#{n:n<z 2a@2n+1)=blm+1), m,nec B}
> S (z) := g{n:n<w, (n,P(x))=1,2n+1=0mod b,
(3(2n+1) -1, P(Y)) =1}
with Y = 2¢(2z + 1). Since (ab,2) = 1 and (n, P(z)) = 1 we obtain n =

1 mod 4 and 27“(2714— 1) —1 = 1 mod 4. Therefore, in the same way as before
we have

S(z) > Sy(x) — S3(x) + O(x'~%)
where 1/3 < a < 1/2 and
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So(x) = t{n:n <, 2n+1=0modb, (n, P(z)) =1,
(Z(2n+1)-1,P(Y)) =1},
53(515) = ﬁ{n :n<z 2n+1=0modb, (n,P(x)) =1,
2+ 1) —1=mpips, Y* <p1 <pp <Y,
p1=p2=3mod 4, (m,P(Y)) = 1},

Using Lemmas 1 and 3 we get the lower estimate

QWPﬁljf(LﬁhwnSwme@Dzﬁ

o(b 2
X H <1 - ﬂ) + O(z1og™%" 1)
pete ¢ (bp)
p=3 mod 4
pt2a(2a—0)

and the upper estimates
S3(z) < t{mpips : mp1p2 <Y, (m, P(Y)) =1, p1 = p2 = 3 mod 4,
Y <pr <po <Y1 mpips +1=0mod 2a,
(3(& (mpip2 +1) — 1), P(Y/3)) = 1}

< 11 (1— ol2a) >#ﬁ{mp1p2:mp1p2 <Y, (m, P(Y)) =1,

pyasa ©(2ap) ) ¢(2a)
peEP 1
pfb(2a—b) Y<p1<pa<Y' ™% p; =py =3 mod 4}

x (F(1) + O(log ™"/ )

D
d<ye/3
d|P(Ya/3) YO<p <pp <Y'9
(d,b(2a—b))=1

H{mpip2 : mp1p2 <y, (m, P(Y)) =1,

p1 = p2 = 3 mod 4, bmpips = 2a — b mod 4ad}

1
~ Sldad) t{mpip2 : mpip2 <Y, (m,P(Y)) =1,

Y <pr <p2 <Y p1 =p2 =3 mod 4}|.

Collecting the estimates yields, as in the proof of Theorem 1,
§2(.%') 2 C1V 1 -2« L7 §3($) S 62<1 - 20&)3/2 L:
log log x
where ¢; > 0 and 1/3 < o < 1/2. This leads to
~ x
S(z) > 19—,
(z) = log x
which ends the proof of Theorem 3.



310 K.-H. Indlekofer and N. M. Timofeev

6. Proof of Theorem 4. Let a = 2"b where b is odd, and let s(a) be
the smallest s such that the representation (7) holds.

If 0 < r <1 then, by Theorems 2 and 3, s(a) = 1 or 2, and s(a) = 1
holds if and only if a — 1 € B.

Suppose now r > 2. By the representation (4) every n € B is either an
even number or n = 1 mod 4, and therefore n+1is odd or n+1 = 2(2k+1).
Hence s(27b) > r.

Assume that s(2"b) = r, i.e.

2b=(m1+1)---(n,+1) (meB,i=1,...,7).

Obviously this is equivalent to the existence of odd numbers b1, ...,b,
such that
(i)b="by---by,

(i) 2b; —1€B,i=1,...,r
If these conditions do not hold then s(2"b) > r + 1. On the other hand, by
Theorem 3,

r 2 g2, 1. mt1 -
2b=(1"4+0"4+1)". —— with m,n € B,
n+1

and thus s(2"b) =r + 1.

As an example consider ¢ = 27-29, r > 2. We have 2:29—-1=3-19 ¢ B.
Therefore s(2" - 29) > r and
152 + 82 + 1
P
i.e. s(2"-29) =r+ 1. This proves Theorem 4.

2"-29=(12+0*+1)"t.

7. Proofs of Theorems 5 and 6. It is well known that n € B(2) if
and only if
n = 2°nyn3,
where s > 0 and all prime divisors of nq and ny are =1 or 3 mod 8 and =5
or 7 mod 8, respectively.

The proof of Theorem 5 follows the same lines as that of Theorem 1.
Therefore we indicate only the necessary modifications.

Let
P1:={2} U{p:pprime, p=5or 7 mod 8}, Pi(z):= H p.
<z
;’57)1

As before we may assume that ¢ is an odd integer. We have
§(:L’) > Sy(z):==#{n:n <z, n=—-cmodb, n=25(c) mod 8, (n+c,a)=1,
(n,Pi(z)) =1, ($(n+c)—c, PA(Y)) =1}
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where §(¢) = 1 or 3 and 6(¢c) = —cmod 4, Y = (a/b)(x +¢) —c. If n =
0(c) mod 8 then
%(n—f—c)—cz%(5(6)—}—0)—055(0) mod 8.
Hence, if 1/3 < a < 1/2,
S(x) > Ss(x) — Se(w) + O(x'~*)
where
Ss(x) :=4{n:n <z, n=—-cmodb, n=d(c) mod 8,
(n—|— c, a,) =1, (n, Pl(l’)) =1, (%(n—i— C) —c, Pl(Ya)) = 1},
Se(x) :=4{n:n <z, n=—-cmodb, (n, P(x)) =1,
fn+c)—c=mpipy, Y <p1 <pp <YV,
p1=5or 7and po =5 or 7mod 8, (m, P(Y)) =1}.

Using Lemmata 1, 3 and 4 and the Vinogradov—Bombieri theorem we
prove as before

55(:17) Z 63(1 — 20()1/2 —

< _ 3/2 %
S < el - 20)

log
with some positive constant c3. Choosing « close to 1/2 and such that ¢z —
c4(1 — 2a) > 0 gives the assertion of Theorem 5.

For the proof of Theorem 6 we proceed in the same manner as in §2. We
assume that g is completely multiplicative with lim; .~ g(n; +c¢) = 1, where
n; runs through the set B(2).

If p is prime, pt2c, then, by Theorem 5,

m—+c

p= for infinitely many m,n € B(2),
n+4c

which implies g(p) = 1.

Thus we only have to show that g(2) = 1 and g(p) = 1 for all primes
ple.

We leave the case p = 2 to the reader and outline the proof for odd prime
divisors p of c.

Assume ¢(2) = 1 and suppose ¢ = 2°p"c1, s > 0, 7 > 1 and (c1,2p) = 1.
If r is even define [ by ¢; = [ + 4pk, (I,2p) = 1. Choose m,n € Z such that
m? + 2n% = 2%p"p; where p; is prime, p1{2c and p; = 1 + 8l; + 8pt with
pt (14 811 +1). This choice is possible: if pf(1+1) put Iy = p; if p| (1 +1)
andp#3letly =1 andif p=3|(1+1) let ) = -1

Thus we obtain m?+2n2 + ¢ = 2°p" (p1 + 1) = 2% p'cp with (ep,2¢) = 1.
Then choosing p; large enough leads to

g(p") =1
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Next we show g(p"*!) = 1, which implies g(p) = 1. For this let m,n € Z

satisfy m? + 2n? = 2%p"py where the prime po is chosen such that p, =
1 mod 8, pa12¢, po +c1 = 0 mod p and p?{(p2 + c1). Again, this choice is
possible: if ¢; = | + 4p?k, (I,2p) = 1, we put py = 1 + 8l; + 8p*t, where
1+8l;+1=0mod p and 1 +8l; +1 # 0 mod p?; if c; =1 + 4kp, (k,p) = 1
we let po = 1 + 811 + 8p°t, where 1+ 81 + 1 = 0 mod p?.

Now m? +n? + ¢ = 2%1p"Tlcy with (co,2¢) = 1. Hence ¢(2%¢2) = 1 and

again, since ps can be chosen arbitrarily large,

g’ =1.
The case of r odd can be handled in a similar way, and this proves

Theorem 6.
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