
ACTA ARITHMETICA

117.1 (2005)

On a theorem of V. Bernik in the
metric theory of Diophantine approximation

by

V. Beresnevich (Minsk)

1. Introduction. We begin by introducing some notation: #S will de-
note the number of elements in a finite set S; the Lebesgue measure of a
measurable set S ⊂ R will be denoted by |S|; Pn will be the set of inte-
gral polynomials of degree ≤ n. Given a polynomial P , H(P ) will denote
the height of P , i.e. the maximum of the absolute values of its coefficients;
Pn(H) = {P ∈ Pn : H(P ) = H}. The symbol of Vinogradov � in the
expression A � B means A ≤ CB, where C is a constant. The symbol
� means both � and �. Given a point x ∈ R and a set S ⊂ R, let
dist(x, S) = inf{|x− s| : x ∈ S}. Throughout, Ψ will be a positive function.

K. Mahler’s problem. In 1932 K. Mahler [9] introduced a classification of
real numbers x into the so-called classes of A, S, T and U numbers according
to the behavior of wn(x) defined as the supremum of w > 0 for which

|P (x)| < H(P )−w

holds for infinitely many P ∈ Pn. By Minkowski’s theorem on linear forms,
one readily shows that wn(x) ≥ n for all x ∈ R. Mahler [8] has proved that
for almost all x ∈ R (in the sense of Lebesgue measure), wn(x) ≤ 4n, thus al-
most all x ∈ R are in the S-class. Mahler has also conjectured that for almost
all x ∈ R one has the equality wn(x) = n. For about 30 years the progress in
Mahler’s problem was limited to n = 2 and 3 and to partial results for n > 3.
It was V. Sprindžuk who has proved Mahler’s conjecture in full (see [11]).

A. Baker’s conjecture. Let Wn(Ψ) be the set of x ∈ R such that there
are infinitely many P ∈ Pn satisfying

(1) |P (x)| < Ψ(H(P )).
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A. Baker [1] has improved Sprindžuk’s theorem by showing that

|Wn(Ψ)| = 0 if
∞∑

h=1

Ψ1/n(h) <∞ and Ψ is monotonic.

He has also conjectured a stronger statement, proved over 20 years later by
V. Bernik [5], that |Wn(Ψ)| = 0 if the sum

(2)
∞∑

h=1

hn−1Ψ(h)

converges and Ψ is monotonic. Afterwards V. Beresnevich [2] has shown that
|R \Wn(Ψ)| = 0 if (2) diverges and Ψ is monotonic. Here we prove

Theorem 1. Let Ψ : R → R+ be an arbitrary function (not necessarily
monotonic) such that the sum (2) converges. Then |Wn(Ψ)| = 0.

Theorem 1 is no longer improvable as, by [2], the convergence of (2) is
crucial. Notice that for n = 1 the theorem is simple and known (see, for
example, [7, p. 121]). Therefore, from now on we assume that n ≥ 2.

2. Subcases of Theorem 1. Let δ > 0. We define the following three
sets Wbig(Ψ), Wmed(Ψ) and Wsmall(Ψ) consisting of x ∈ R such that there
are infinitely many P ∈ Pn simultaneously satisfying (1) and one of the
following inequalities:

1 ≤ |P ′(x)|,(3)

H(P )−δ ≤ |P ′(x)| < 1,(4)

|P ′(x)| < H(P )−δ,(5)

respectively. Obviously Wn(Ψ) = Wbig(Ψ)∪Wmed(Ψ)∪Wsmall(Ψ). Hence to
prove Theorem 1 it suffices to show that each of these sets has zero measure.

Since the sum (2) converges,Hn−1Ψ(H) tends to 0 asH →∞. Therefore,

(6) Ψ(H) = o(H−n+1) as H →∞.

3. The case of a big derivative. The aim of this section is to prove
that |Wbig(Ψ)| = 0. Let Bn(H) be the set of x ∈ R such that there exists a
polynomial P ∈ Pn(H) satisfying (3). Then

(7) Wbig(Ψ) =
∞⋂
N=1

∞⋃
H=N

Bn(H).

Now |Wbig(Ψ)| = 0 if |Wbig(Ψ)∩I| = 0 for any open interval I ⊂ R satisfying

(8) 0 < c0(I) = inf{|x| : x ∈ I} < sup{|x| : x ∈ I} = c1(I) <∞.
Therefore we can fix an interval I satisfying (8).
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By (7) and the Borel–Cantelli Lemma, |Wbig(Ψ) ∩ I| = 0 whenever

(9)
∞∑

H=1

|Bn(H) ∩ I| <∞.

By the convergence of (2), condition (9) will follow on showing that

(10) |Bn(H) ∩ I| � Hn−1Ψ(H)

with the implicit constant in (10) independent of H.
Given a P ∈ Pn(H), let σ(P ) be the set of x ∈ I satisfying (3). Then

(11) Bn(H) ∩ I =
⋃

P∈Pn(H)

σ(P ).

Lemma 1. Let I be an interval with endpoints a and b. Define I ′′ =
[a, a + 4Ψ(H)] ∪ [b − 4Ψ(H), b] and I ′ = I \ I ′′. Then for all sufficiently
large H, for any P ∈ Pn(H) such that σ(P )∩ I ′ 6= ∅, for any x0 ∈ σ(P )∩ I ′
there exists α ∈ I such that P (α) = 0, |P ′(α)| > |P ′(x0)|/2 and |x0 − α| <
2Ψ(H) |P ′(α)|−1.

The proof of this lemma nearly coincides with the one of Lemma 1 in [2]
and is left to the reader. There will be some changes to constants and nota-
tion and one will also have to use (6).

Given a polynomial P ∈ Pn(H) and a real number α such that P ′(α) 6= 0,
define σ(P ;α) = {x ∈ I : |x−α| < 2Ψ(H)|P ′(α)|−1}. Let I ′ and I ′′ be as in
Lemma 1. For every polynomial P ∈ Pn(H), we define the set

ZI(P ) = {α ∈ I : P (α) = 0 and |P ′(α)| ≥ 1/2}.
By Lemma 1, for any P ∈ Pn(H) we have the inclusion

(12) σ(P ) ∩ I ′ ⊂
⋃

α∈ZI(P )

σ(P ;α).

Given k ∈ Z with 0 ≤ k ≤ n, define

Pn(H, k) = {P = anx
n + · · ·+ a0 ∈ Pn(H) : ak = 0}

and for R ∈ Pn(H, k) let

Pn(H, k,R) = {P ∈ Pn(H) : P −R = akx
k}.

It is easily observed that

(13) Pn(H) =

n⋃

k=0

⋃

R∈Pn(H,k)

Pn(H, k,R)

and

(14) #Pn(H, k)� Hn−1 for every k.

Taking into account (11), (13), (14) and the fact that |I ′′| � Ψ(H), it now
becomes clear that to prove (10) it is sufficient to show that for every fixed
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k and fixed R ∈ Pn(H, k),

(15)
∣∣∣

⋃

P∈Pn(H,k,R)

σ(P ) ∩ I ′
∣∣∣� Ψ(H).

Let k and R be fixed. Define the rational function R̃(x) = x−kR(x). By
(8), there exists a collection of intervals [wi−1, wi) ⊂ I (i = 1, . . . , s), which

do not intersect pairwise and cover I, such that R̃′(x) is monotonic and
does not change sign on every interval [wi−1, wi). It is clear that s depends
on n only. Let ZI,R =

⋃
P∈Pn(H,k,R) ZI(P ), ki = #(ZI,R ∩ [wi−1, wi)) and

ZI,R ∩ [wi−1, wi) = {α(1)
i , . . . , α

(ki)
i }, where α

(j)
i < α

(j+1)
i . Given a P ∈

Pn(H, k,R), we obviously have the identity

xkP ′(x)− kxk−1P (x)

x2k
=

(
P (x)

xk

)′
= R̃′(x).

Taking x to be α ∈ ZI(P ) leads to P ′(α)/αk = R̃′(α). By (8), |P ′(α)| �
|R̃′(α)|. Now, by Lemma 1, |σ(P ;α)| � Ψ(H) |P ′(α)|−1 � Ψ(H) |R̃′(α)|−1.

Using (12), we get

∣∣∣
⋃

P∈Pn(H,k,R)

σ(P ) ∩ I ′
∣∣∣� Ψ(H)

s∑

i=1

ki∑

j=1

1

|R̃(α
(j)
i )|

.

Now to show (15) it suffices to prove that for every i (1 ≤ i ≤ s),

(16)

ki∑

j=1

|R̃′(α(j)
i )|−1 � 1.

Fix an index i (1 ≤ i ≤ s). If ki ≥ 2 then we can consider two sequen-

tial roots α
(j)
i and α

(j+1)
i of two rational functions R̃ + ai,jk and R̃ + ai,j+1

k

respectively. For convenience let us assume that R̃′ is increasing and posi-

tive on [wi−1, wi). Then R̃ is strictly monotonic on [wi−1, wi), and we have

ai,jk 6= ai,j+1
k . It follows that |ai,jk − a

i,j+1
k | ≥ 1. Using the Mean Value Theo-

rem and the monotonicity of R̃′, we get

1 ≤ |ai,j0 − a
i,j+1
0 | = |R̃′(α(j)

i )− R̃′(α(j+1)
i )| = |R̃′(α̃(j)

i )| · |α(j)
i − α

(j+1)
i |

≤ |R̃′(α(j+1)
i )| · |α(j)

i − α
(j+1)
i |,

where α̃
(j)
i is a point between α

(j)
i and α

(j+1)
i . This implies |R̃′(α(j+1)

i )|−1 ≤
α

(j+1)
i − α(j)

i , whence we readily get

ki−1∑

j=1

|R̃′(α(j+1)
i )|−1 ≤

ki−1∑

j=1

(α
(j+1)
i − α(j)

i ) = α
(ki)
i − α(1)

i ≤ wi − wi−1.
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The last inequality and |R̃′(α(1)
i )| � |P ′(α(1)

i )| � 1 yield (16). It is easily
verified that (16) holds for every i with ki ≥ 2 and is certainly true when
ki = 1 or ki = 0. This completes the proof of the case of a big derivative.

4. The case of a medium derivative. As above we fix an interval I
satisfying (8). Then |Wmed(Ψ)| = 0 will follow from |Wmed(Ψ) ∩ I| = 0. We
will use the following

Lemma 2 (see Lemma 2 in [3]). Let α0, . . . , αk−1, β1, . . . , βk ∈ R ∪ {∞}
be such that α0 > 0, αj > βj ≥ 0 for j = 1, . . . , k − 1 and 0 < βk <∞. Let

f : (a, b) → R be a C(k) function such that infx∈(a,b) |f (k)(x)| ≥ βk. Then
the set of x ∈ (a, b) satisfying

|f(x)| ≤ α0, βj ≤ |f (j)(x)| ≤ αj (j = 1, . . . , k − 1)

is a union of at most k(k + 1)/2 + 1 intervals, each with length at most
min0≤i<j≤k 3(j−i+1)/2(αi/βj)

1/(j−i). Here we assume c
0 =∞ for c > 0.

Given a polynomial P ∈ Pn(H), we redefine σ(P ) to be the set of solu-

tions of (4). Since P (n)(x) = n!an, we can apply Lemma 2 to P with k = n
and

α0 = Ψ(H), α1 = 1, β1 = inf
x∈σ(P )

|P ′(x)| ≥ H−δ, βn = 1,

α2 = · · · = αn−1 =∞, β2 = · · · = βn−1 = 0.

Then we conclude that σ(P ) is a union of at most n(n+1)/2+1 intervals of
length� α0/β1. There is no loss of generality in assuming that the sets σ(P )
are intervals, as otherwise, we would treat the intervals of σ(P ) separately.
We can also ignore those P for which σ(P ) is empty. For every P we define
a point γP ∈ σ(P ) such that infx∈σ(P ) |P ′(x)| ≥ 1

2 |P ′(γP )|. The existence is
easily seen. Now we have

(17) |σ(P )| � Ψ(H)|P ′(γP )|−1
.

It also follows from the choice of γP that

(18) H(P )−δ ≤ |P ′(γP )| < 1.

Now define expansions of σ(P ) as follows:

σ1(P ) := {x ∈ I : dist(x, σ(P )) < (H|P ′(γP )|)−1},
σ2(P ) := {x ∈ I : dist(x, σ(P )) < H−1+2δ}.

By (4), σ1(P ) ⊂ σ2(P ). Moreover, it is easy to see that

(19) σ1(P ) ⊂ σ2(Q) for any Q ∈ Pn(H) with σ1(Q) ∩ σ1(P ) 6= ∅.
It is also readily verified that |σ1(P )| � (H|P ′(γP )|)−1, and therefore,
by (17),

|σ(P )| � |σ1(P )|HΨ(H).
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Take any x ∈ σ2(P ). Using the Mean Value Theorem, (18) and the fact
that |x− γP | � H−1+2δ, we get

|P ′(x)| ≤ |P ′(γP )|+ |P ′′(x̃)(x− γP )| � 1 +H ·H−1+2δ � H2δ,

where x̃ is between x and γP . Similarly we estimate |P (x)|:
(20) |P (x)| � H−1+4δ, |P ′(x)| � H2δ for any x ∈ σ2(P ).

Now for every pair (k,m) of integers with 0 ≤ k < m ≤ n we define

Pn(H, k,m) = {R = anx
n + · · ·+ a0 ∈ Pn(H) : ak = am = 0}

and for a given polynomial R ∈ Pn(H, k,m) we define

Pn(H, k,m,R) = {P = R+ amx
m + akx

k ∈ Pn(H)}.
The intervals σ(P ) will be divided into 2 classes of essential and non-

essential intervals. The interval σ(P ) will be essential if for any choice of
(k,m,R) such that P ∈ Pn(H, k,m,R) for any Q ∈ Pn(H, k,m,R) other
than P we have σ1(P ) ∩ σ1(Q) = ∅. For fixed k, m and R summing the
measures of essential intervals gives

∑
|σ(P )| ≤ HΨ(H)

∑
|σ1(P )| ≤ HΨ(H)|I| � HΨ(H).

As #Pn(H, k,m)� Hn−2 and there are only n(n+ 1)/2 different pairs
(k,m) we obtain the following estimate:

∑

essential intervalsσ(P ) withP∈Pn(H)

|σ(P )| � Hn−1Ψ(H).

Thus, by the Borel–Cantelli Lemma and the convergence of (2), the set of
points x of Wmed(Ψ) ∩ I which belong to infinitely many essential intervals
is of measure zero.

Now let σ(P ) be non-essential. Then, by definition and (19), there is
a choice of k,m,R such that P ∈ Pn(H, k,m,R) and there is a Q ∈
Pn(H, k,m,R) different from P such that

σ(P ) ⊂ σ1(P ) ⊂ σ2(P ) ∩ σ2(Q).

On the set σ2(P )∩σ2(Q) both P and Q satisfy (20) and so does the difference
P (x) − Q(x) = bmx

m + bkx
k. It is not difficult to see that bm 6= 0 if H is

large enough. Therefore using (20) we get

(21)

∣∣∣∣xm−k +
bk
bm

∣∣∣∣�
H−1+4δ

|bm|
≤ H−1+4δ, max{|bm|, |bk|} � H2δ.

Now let x belong to infinitely many non-essential intervals. Without loss
of generality we assume that x is transcendental as otherwise it belongs
to a countable set, which is of measure zero. Therefore (21) is satisfied for
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infinitely many bm, bk ∈ Z. Hence, the inequality
∣∣∣∣xm−k −

p

q

∣∣∣∣ < q−(1−5δ)/2δ

holds for infinitely many p, q ∈ Z. Taking δ = 1/10 so that (1− 5δ)/2δ
becomes 2 + δ, and applying standard Borel–Cantelli arguments (see [7,
p. 121]) we complete the proof of the case of a medium derivative for non-
essential intervals.

5. The case of a small derivative. In this section we prove that
|Wsmall(Ψ)| = 0. We will make use of Theorem 1.4 in [6]. By taking d = 1,
f = (x, x2, . . . , xn), U = R, T1 = · · · = Tn = H, θ = H−n+1, K = H−δ in
that theorem, we arrive at

Theorem 2. Let x0 ∈ R and

δ′ =
min(δ, n− 1)

(n+ 1)(2n− 1)
.

Then there exists a finite interval I0 ⊂ R containing x0 and a constant
E > 0 such that∣∣∣

⋃

P∈Pn, 0<H(P )≤H
{x ∈ I0 : |P (x)| < H−n+1, |P ′(x)| < H−δ}

∣∣∣ ≤ EH−δ′ .

In particular Theorem 2 implies that, for any δ > 0, the set of x ∈ R for
which there are infinitely many polynomials P ∈ Pn satisfying the system

(22) |P (x)| < H(P )−n+1, |P ′(x)| < H(P )−δ,

has zero measure. Indeed, this set consists of points x ∈ I0 which belong to
infinitely many sets

τm = {x ∈ I0 : (22) holds for some P ∈ Pn with 2m−1 < H(P ) ≤ 2m}.
By Theorem 2, |τm| � 2−mδ

′
with δ′ > 0. Therefore,

∑∞
m=1 |τm| < ∞ and

the Borel–Cantelli Lemma completes the proof of the claim.
In view of (6), this completes the proof of the case of a small derivative

and the proof of Theorem 1.

6. Concluding remarks. An analogue of Theorem 1 when P is as-
sumed to be irreducible over Q and primitive (i.e. with coprime coefficients)
can also be sought. To make it more precise, let P ∗n(H) be the subset of
Pn(H) consisting of primitive irreducible polynomials P of degree degP = n
and height H(P ) = H. Now the set of primitive irreducible polynomials of
degree n is P ∗n =

⋃∞
H=1 P

∗
n(H). Let W ∗n(Ψ) be the set of x ∈ R such that

there are infinitely many P ∈ P ∗ satisfying (1).
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Theorem 3. Let Ψ : R → R+ be an arbitrary function such that the
sum

(23)
∞∑

H=1

#P ∗n(H)

H
Ψ(H)

converges. Then |W ∗n(Ψ)| = 0.

For n = 1 the proof of Theorem 3 is a straightforward application of
the Borel–Cantelli Lemma and we again refer to [7, p. 121]. For n > 1 the
proof is deduced from the following two observations: 1) W ∗n(Ψ) ⊂ Wn(Ψ)
and 2) #P ∗n(H) � Hn. The second one guarantees the convergence of (2),
which now implies 0 ≤ |W ∗n(Ψ)| ≤ |Wn(Ψ)| = 0. The proof of the relation
#P ∗n(H) � Hn is elementary and is left to the reader. In fact, one can easily
estimate the number of primitive reducible polynomials in Pn and take them
off the set of all primitive polynomials in Pn which is well known to contain
at least a constant times #Pn(H) elements.

The Duffin–Schaeffer conjecture. The conjecture states that for n = 1 if
(23) diverges then |R \W ∗n(Ψ)| = 0. The multiple #P ∗1 (H) in (23) becomes
� ϕ(H), where ϕ is the Euler function.

The following problem can be regarded as the generalisation of the
Duffin–Schaeffer conjecture to integral polynomials of higher degree:

Prove that |R \W ∗n(Ψ)| = 0 whenever (23) diverges.

Alternatively, for n > 1 one might investigate the measure of R\Wn(Ψ).
So far it is unclear if for n > 1, |R \W ∗n(Ψ)| = 0 is equivalent to |R \Wn(Ψ)|
= 0, which is another intricate question.

A remark on manifolds. In the metric theory of Diophantine approxima-
tion on manifolds one usually studies sets of Ψ -approximable points lying on
a manifold with respect to the measure induced on that manifold. Mahler’s
problem and its generalisations can be regarded as Diophantine approxima-
tion on the Veronese curve (x, x2, . . . , xn).

A point f ∈ Rn is called Ψ -approximable if

‖a · f‖ < Ψ(|a|∞)

for infinitely many a ∈ Zn, where |a|∞ = max1≤i≤n |ai| for a = (a1, . . . , an),
‖x‖ = min{|x− z| : z ∈ Z} and Ψ : R→ R+.

Let f : U → Rn be a map defined on an open set U ⊂ Rd. We say
that f is non-degenerate at x0 ∈ U if for some l ∈ N the map f is l times
continuously differentiable on a sufficiently small ball centered at x0 and
there are n linearly independent over R partial derivatives of f at x0 of
orders up to l. We say that f is non-degenerate if it is non-degenerate almost
everywhere on U . The non-degeneracy of a manifold is naturally defined via
the non-degeneracy of its local parameterisation.
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In 1998 D. Kleinbock and G. Margulis proved the Baker–Sprindžuk con-
jecture by showing that any non-degenerate manifold is strongly extremal. In
particular, this implies an analogue of Mahler’s problem for non-degenerate
manifolds. A few years later an analogue of A. Baker’s conjecture with
monotonic Ψ (normally called a Groshev type theorem for convergence)
has independently been proven by V. Beresnevich [3] and by V. Bernik,
D. Kleinbock and G. Margulis [6] for non-degenerate manifolds. It is also
remarkable that the proofs were given with different methods. The diver-
gence counterpart (also for monotonic Ψ) has been established in [4]. In [6]
a multiplicative version of the Groshev type theorem for convergence has
also been given.

Theorem 1 of this paper can be readily generalised to non-degenerate
curves: Given a non-degenerate map f : I → Rn defined on an interval I,
for any function Ψ : R→ R+ such that the sum (2) converges for almost all
x ∈ I the point f(x) is not Ψ -approximable. Even further, using the slicing
technique of Pyartli [10] one can extend this to a class of n-differentiable
non-degenerate manifolds which can be foliated by non-degenerate curves. In
particular, this class includes arbitrary non-degenerate analytic manifolds.
However with the technique at our disposal we are currently unable to prove
the following

Conjecture. Let f : U → Rn be a non-degenerate map, where U is an
open subset of Rd. Then for any function Ψ : R → R+ such that the sum
(2) converges for almost all x ∈ U the point f(x) is not Ψ -approximable.
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