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1. Introduction. This article is devoted to a precise study of the dis-
crepancies D∗, D, T and of the diaphony F of a class of digital (0, 1)-
sequences in prime bases, the so-called NUT digital (0, 1)-sequences, gener-
ated by nonsingular upper triangular matrices. Apart from Number Theory,
the interest for such sequences comes from the intensive use in numerical
integration of their multidimensional versions, the digital (0, s)-sequences,
which are themselves special cases of the more general (t, s)-sequences in-
troduced by Niederreiter [10].

The main results on the irregularities of distribution of (t, s)-sequences
are obtained via the elementary interval property which is characteristic of
(t, s)-sequences, not necessarily digital; but this property is too rough to
allow comparisons and classification inside a given class, for instance the
class of digital (0, 1)-sequences in a fixed base b. The problem of digging
into the structure of such sequences is very challenging and until now only
few results have been obtained: apart from papers on the two-dimensional
Hammersley point sets dating from several years (Halton–Zaremba, White,
DeClerck, Faure), the only contribution we know of is that of Grozdanov [6]
for the diaphony and the L2-discrepancy T of special NUT digital (0, 1)-
sequences in base b (by means of estimations of trigonometric sums).

But recently, a new breakthrough was achieved by Larcher and Pil-
lichshammer via the Walsh series analysis in base 2. Actually they ob-
tain an exact formula for the remainder (the discrepancy function) of arbi-
trary digital (0,m, 2)-nets in base 2 (and also improved bounds for digital
(0,m, 3)-nets in base 2) from which they deduce bounds for arbitrary digital
(0, 1)-sequences in base 2 (and for digital (0, 2)-sequences in base 2); in the
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references we have only quoted the papers which are directly related to our
study: [8], [9] and [12].

Motivated by these advances and by the problem stated at the end of [8],
we tackled the question with the method we introduced for the generalized
van der Corput sequences ([3] and [2]), which, roughly speaking, correspond
to digital (0, 1)-sequences generated by diagonal matrices. Finally, we have
found exact formulas for the discrepancies D∗, D, T and for the diaphony
F of arbitrary NUT digital (0, 1)-sequences in any prime base b, in the same
form as in [3] and [2], thus strengthening the relationship between these two
families of sequences (see Theorems 1–4). An interesting consequence is that
introducing nonzero entries above the diagonal induces important changes
for D∗ and T but has no effect on D and F . Moreover, our formulas show
the radical difference between entries on the diagonal and entries above:
the diagonal entries determine the permutations connecting the NUT digi-
tal (0, 1)-sequences to the generalized van der Corput sequences, modulo a
translation which is tied up to the entries above the diagonal.

With Theorems 2 and 4, the asymptotic studies in [3] and [2] apply
directly and, after computer search, should give very low (extreme) discrep-
ancy and diaphony sequences. As to Theorems 1 and 3, further investigations
are necessary to attempt a classification of good sequences with regard to
D∗ and T . These developments, as well as applications to (0,m, 2)-nets, will
be considered in a forthcoming study, since they would lengthen the present
paper too much and since it is self-contained with exact calculations. An-
other direction for future research is the general case of (0, 1)-sequences and
(0,m, 2)-nets in base b generated by arbitrary matrices for which Larcher
and Pillichshammer have already important results in base 2.

Sections 2 and 3 introduce the necessary material for the statement of
results (Section 4) and the proofs (Sections 5 and 6).

2. Discrepancy and diaphony. In this section we give the main def-
initions we shall use for the various discrepancies and the diaphony.

Let α, β ∈ [0, 1]; the interval [α, β[ is the usual semi-open interval if
α < β, the set [0, β[ ∪ [α, 1] if α > β, and the empty set if α = β.

Let X = (xn)n≥1 be an infinite sequence in [0, 1], N ≥ 1 an integer and
[α, β[ an interval in [0, 1]; the remainder (or error) to ideal distribution is
the difference

E([α, β[;N ;X) = A([α, β[;N ;X)−Nl([α, β[),

where A([α, β[;N ;X) is the number of indices n such that 1 ≤ n ≤ N and
xn ∈ [α, β[, and l([α, β[) is the length of [α, β[. Similarly, for a finite set S
of integers, we define the remainder with indices n ∈ S by

E([α, β[;S;X) = A([α, β[;S;X)− card(S)l([α, β[).
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Moreover, to simplify the writing, we set

A(β,N,X) := A([0, β[;N ;X), E(β,N,X) := E([0, β[;N ;X),

so that we have

E([α, β[;N ;X) = −E([β, α[;N ;X) = E(β,N,X)−E(α,N,X),

and the same with S.
We now define the extreme discrepancies:

D(N,X) = sup
0≤α<β≤1

|E([α, β[;N ;X)|,

D∗(N,X) = sup
0≤α≤1

|E(α,N,X)|,

D+(N,X) = sup
0≤α≤1

E(α,N,X),

D−(N,X) = sup
0≤α≤1

(−E(α,N,X)).

Usually, D is called the extreme discrepancy and D∗ the star discrepancy;
D+ and D− have no name and are linked to the preceding one’s by

D(N,X) = D+(N,X) +D−(N,X),

D∗(N,X) = max(D+(N,X),D−(N,X)).

The L2-discrepancy and the diaphony are defined by:

T (N,X) =
( 1�

0

(E(α,N,X))2 dα
)1/2

,

F (N,X) =
(

2
∞∑

m=1

1
m2

∣∣∣
N∑

n=1

exp(2iπmxn)
∣∣∣
2
)1/2

.

The diaphony and the L2-discrepancy are related by the formula of Koksma

T 2(N,X) =
( N∑

n=1

(
1
2
− xn

))2

+
1

4π2 F
2(N,X).

Note that
N∑

n=1

(
1
2
− xn

)
=

1�

0

E(α,N,X) dα;

therefore, another definition for the diaphony could be

F 2(N,X) = 2π2
1�

0

1�

0

E2([α, β[;N ;X) dαdβ.

This point of view shows the parallel shape of D and F with regard to D∗

and T and will enlighten the parallel between the extreme discrepancy and
the diaphony of NUT digital (0, 1)-sequences (Theorems 2 and 4 below).
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3. Van der Corput and digital (0, 1)-sequences and related func-
tions. First, we recall the definition of the generalized van der Corput se-
quences introduced in [3] and further investigated in [2] and [5]. Next, we do
the same for the digital (0, 1)-sequences in base b, the one-dimensional case
of digital (0, s)-sequences introduced in [4] which have been widely studied
and generalized, especially by Niederreiter (among many publications, see
for instance [10] and [11]). Finally, we recall the definition of the family of
the so-called functions ϕ, functions associated with the generalized van der
Corput sequences ([2] and [3]), which take also a leading part in the study
of digital (0, 1)-sequences.

Our notation is in agreement with our preceding papers; in particular
we index sequences with the integers N ≥ 1 and expand N − 1 in the
b-adic numeration system (this choice appears in the book of Kuipers and
Niederreiter [7] and is also kept in [10]).

The generalized van der Corput sequences may be defined in fixed or
variable bases; for simplicity, we restrict ourselves to fixed bases b, with b
an integer ≥ 2, not necessarily prime.

For integers n and N with n ≥ 1 and 1 ≤ N ≤ bn, write N − 1 =∑∞
r=0 ar(N)br in the b-adic system (so that ar(N) = 0 if r ≥ n) and let

Σ = (σr)r≥0 be a sequence of permutations of {0, 1, . . . , b − 1}. Then the
generalized van der Corput sequence SΣb in base b associated with Σ is
defined by

SΣb (N) =
∞∑

r=0

σr(ar(N))
br+1 .

The definition of digital (0, 1)-sequences in base b results from the gen-
eral construction principle of Niederreiter [10], but in this paper we shall
be concerned with a special case which can be simply described as fol-
lows. We consider only prime bases b and the finite field Fb is identified as
a set with {0, 1, . . . , b − 1}. In all computations involving elements of Fb,
addition and multiplication are performed in Fb; we do not choose spe-
cial symbols for them, but sometimes we add “(mod b)” to avoid confu-
sion.

The digital (0, 1)-sequences in base b we study are defined by

XC
b = (xN )N≥1 with xN =

∞∑

r=0

xN,r
br+1 , xN,r =

∞∑

k=r

ckrak(N) (mod b),

the generator matrix C = (ckr)r≥0,k≥0 being an infinite nonsingular upper
triangular (NUT) matrix with entries ckr ∈ Fb (by the definitions of ak(N)
and C, the summations above are finite). In brief, we name these sequences
NUT digital (0, 1)-sequences.
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Note that this class of sequences contains all one-dimensional projections
of digital (0, s)-sequences whose generator matrices are NUT, in particular
those obtained by multiplying on the left the classical powers of Pascal
matrices by diagonal matrices.

For future use in Lemma 6.2, we recall the important elementary interval
property satisfied by the (0, 1)-sequences in base b in general.

An elementary interval in base b is an interval of the form

E = [ab−d, (a+ 1)b−d[

with a, d integers such that d ≥ 0 and 0 ≤ a < bd. Then

for all integers l,m ≥ 0, every elementary interval E with l(E) = b−m

contains exactly one point of the section (xlbm+1, . . . , x(l+1)bm) of the
sequence.

Functions ϕσb,h related to a pair (b, σ), with σ a permutation of Fb. Set

Zσb =
(
σ(0)
b
, . . . ,

σ(b− 1)
b

)
.

For any integer h, 0 ≤ h ≤ b− 1, the function ϕσb,h (from R to R) is defined
as follows. Let k be an integer with 1 ≤ k ≤ b. Then for x ∈ [(k− 1)/b, k/b[
we set

ϕσb,h(x) =
{
A(h/b, k, Zσb )− hx if 0 ≤ h ≤ σ(k − 1),

(b− h)x− A([h/b, 1[; k;Zσb ) if σ(k − 1) < h < b;

then the function ϕσb,h is extended to the reals by periodicity. Note that
ϕσb,0 = 0.

Thus we have associated b functions with the pair (b, σ):

ϕσb,0 = 0, ϕσb,1, . . . , ϕ
σ
b,b−1.

In the very special case b = 2, we only have two permutations which give
either ϕσ2,1 = ‖ · ‖, if σ is the identical permutation, or ϕσ2,1 = −‖ · ‖, if
σ = (0 1), where ‖ · ‖ is the distance to the nearest integer. So, we are
not astonished by the title of the important paper [9], since it deals with
digital (0,m, 2)-nets in base 2, which are nets with close relations to dig-
ital (0, 1)-sequences in base 2, to begin with the original van der Corput
sequence (see [1] for a precise study). Of course, as b grows up, the functions
ϕσb,h become more and more numerous and complicated, but they are the
necessary keys to express the error E(α,N,X) and to obtain exact formulas
for the discrepancies and the diaphony of the sequences SΣb and XC

b . Actu-
ally, the functions ϕσb,h give rise to other functions, depending only on (b, σ),
according to the applied notion of discrepancy, as we shall see in the next
section. For the present, we recall the main properties we shall use.
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Property 3.0. The functions ϕσb,h are continuous and piecewise affine;
the absolute values of the coefficients involved in the affine functions are less
than b− 1; moreover

|ϕσb,h| ≤ b/4, (ϕσb,h)′(k/b) = (ϕIb,h)′(σ(k)/b),

where k is an integer with 0 ≤ k ≤ b − 1 and where f ′ denotes the right
derivative of f and I the identical permutation.

The proof is scattered in [2, Properties 3.3 and 3.4], and in [3, Pro-
perties 3.2.1 and 3.2.2] (the proofs of the last two properties apply to the
(ϕσb,h)’s even though they are given in [3] for the (ψσb )’s introduced be-
low).

4. Statement of the results. We begin by recalling some results on
generalized van der Corput sequences, through which we introduce new func-
tions and which illustrate the links and differences between the two families
of sequences.

4.1. Results for generalized van der Corput sequences. These results
come from [2] and [3]. We are only concerned here with exact formulas;
we refer to the papers above for various asymptotic relations resulting from
these formulas.

Formulas for the extreme discrepancies. Set

ψσ,+b = max
0≤h≤b−1

(ϕσb,h), ψσ,−b = max
0≤h≤b−1

(−ϕσb,h), ψσb = ψσ,+b + ψσ,−b .

Then, for all N ≥ 1, we have

D+(N,SΣb ) =
∞∑

j=1

ψ
σj−1,+
b

(
N

bj

)
,

D−(N,SΣb ) =
∞∑

j=1

ψ
σj−1,−
b

(
N

bj

)
,

D(N,SΣb ) =
∞∑

j=1

ψ
σj−1

b

(
N

bj

)
,

D∗(N,SΣb ) = max(D+(N,SΣb ),D−(N,SΣb )).

Formulas for L2-discrepancy and diaphony. Set

ϕσb =
b−1∑

h=0

ϕσb,h, φσb =
b−1∑

h=0

(ϕσb,h)2, χσb = bφσb − (ϕσb )2.
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Then, for all N ≥ 1, we have

T 2(N,SΣb ) =
1
b

∞∑

j=1

φ
σj−1

b

(
N

bj

)
+

1
b2

∑

i6=j
ϕ
σi−1

b

(
N

bi

)
ϕ
σj−1

b

(
N

bj

)
,

1
4π2 F

2(N,SΣb ) =
1
b2

∞∑

j=1

χ
σj−1

b

(
N

bj

)
.

Note that

ψσb = max
0≤h<h′≤b−1

|ϕσb,h − ϕσb,h′ |, χσb =
∑

0≤h<h′≤b−1

(ϕσb,h − ϕσb,h′)2;

these properties will be useful for the proofs of Theorems 2 and 4.

4.2. Results for NUT digital (0, 1)-sequences in prime base. We recall
that we deal only with sequences XC

b generated by NUT matrices C. Before
stating our theorems, we need more notations to take into account the com-
plexity introduced by the entries above the diagonal. Indeed, if the generator
matrix C is diagonal, we have XC

b = S∆b with ∆ = (δr)r≥0 the sequence of
permutations of Fb defined by δr(i) = crri, i.e. δr is the multiplication in Fb
by the diagonal entry crr. Now, if C is not diagonal, as we shall see in Prop-
erty 5.3 and Lemma 6.2 in the next sections, the diagonal entries will still
determine the same permutations δr, but the permutations σr that will give
the exact formulas for D+, D−, D∗ and T will be translated permutations
(depending on N ≥ 1) of the δr’s, according to the following rule: for all
r ≥ 0 and i ∈ Fb,

σr(i) = δr(i) +
∞∑

k=r+1

ckrak(N) (mod b)

where N − 1 =
∑∞
r=0 ar(N)br in the b-adic system.

For convenience of notation, we shall use the symbol ] for such trans-
lations: for δ a permutation of Fb and t ∈ Fb, we write δ ] t to mean the
permutation defined by (δ ] t)(i) := δ(i) + t for all i ∈ Fb, so that the
permutation above is

σr = δr ] θr(N) with θr(N) =
∞∑

k=r+1

ckrak(N).

Note that ak(N) = 0 for all k ≥ n if 1 ≤ N ≤ bn, thus θr(N) = 0 and
σr = δr for all r ≥ n− 1 in this case.

With the definitions of the functions ψσ,+b , ψσ,−b , ψσb , ϕσb , φσb and χσb
(see 4.1) and with the definitions of δr, θr(N) and δr ] θr(N) given above,
we are in a position to state our theorems.



132 H. Faure

Theorem 1. For all NUT matrices C and all integers N ≥ 1,

D+(N,XC
b ) =

∞∑

j=1

ψ
δj−1]θj−1(N),+
b

(
N

bj

)
,

D−(N,XC
b ) =

∞∑

j=1

ψ
δj−1]θj−1(N),−
b

(
N

bj

)
,

D∗(N,XC
b ) = max(D+(N,XC

b ),D−(N,XC
b )).

Theorem 2. For all NUT matrices C and all integers N ≥ 1,

D(N,XC
b ) =

∞∑

j=1

ψ
δj−1

b

(
N

bj

)
.

Theorem 3. For all NUT matrices C and all integers N ≥ 1,

T 2(N,XC
b ) =

1
b

∞∑

j=1

φ
δj−1]θj−1(N)
b

(
N

bj

)

+
1
b2

∑

i6=j
ϕ
δi−1]θi−1(N)
b

(
N

bi

)
ϕ
δj−1]θj−1(N)
b

(
N

bj

)
.

Theorem 4. For all NUT matrices C and all integers N ≥ 1,

1
4π2 F

2(N,XC
b ) =

1
b2

∞∑

j=1

χ
δj−1

b

(
N

bj

)
.

Remarks. 1. The formulas of Theorems 1 and 3 for D+, D−, D∗ and
T involve the quantity θj−1(N) which depends on N via the b-adic expan-
sion of N − 1 and on the generator NUT matrix C via its entries above
the diagonal; this dependence is a big handicap for the precise study of the
asymptotic behaviour which should be quite different according to these
entries. In relation with this awkward problem, we refer to the paper of Pil-
lichshammer [12] who, in base 2, obtains the foremost result in this direction
for D∗.

2. On the contrary, the formulas of Theorems 2 and 4 for D and F
depend only on the permutations δr, that is, on the diagonal entries of C.
This remarkable feature shows that digital (0, 1)-sequences generated by
NUT matrices having the same diagonal have the same extreme discrepancy
and the same diaphony. In this case, the study of the asymptotic behaviour
for the generalized van der Corput sequences ([2] and [3]) applies with the
specific permutations δ obtained by multiplication in the finite field Fb.

3. Until now, only results in base 2 have been available from the studies
of digital (0,m, 2)-nets in base 2 by Larcher and Pillichshammer ([8], [9]
and [12]), except for the diaphony and the L2-discrepancy for which Groz-
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danov [6] obtained upper bounds in base b in the special case of NUT ma-
trices C with crr = 1.

Corollary. For all integers n and N with 1 ≤ N ≤ bn,

D+(N,XC
b ) =

n∑

j=1

ψ
δj−1]θj−1(N),+
b

(
N

bj

)
+
N

bn
,

D−(N,XC
b ) =

n∑

j=1

ψ
δj−1]θj−1(N),−
b

(
N

bj

)
,

D(N,XC
b ) =

n∑

j=1

ψ
δj−1

b

(
N

bj

)
+
N

bn
,

1
4π2 F

2(N,XC
b ) =

1
b2

n∑

j=1

χ
δj−1

b

(
N

bj

)
+

N2

12b2n
,

T 2(N,XC
b ) =

(
1
b

n∑

j=1

ϕ
δj−1]θj−1(N)
b

(
N

bj

)
+

N

2bn

)2

+
1
b2

n∑

j=1

χ
δj−1

b

(
N

bj

)
+

N2

12b2n
.

This Corollary is a useful tool for computations; it is also the starting
point for the research of bounds and for the study of the asymptotic be-
haviour of the discrepancies and the diaphony. See Remark 2 above for D
and F ; as to D+, D− and T , apart from trivial bounds, further investiga-
tions are necessary to obtain sharp results depending on the entries above
the diagonals of the generator matrices.

5. First properties of NUT digital (0, 1)-sequences. This section
is devoted to three properties, resulting from the matrix construction of the
sequences, which are necessary to prove the fundamental Lemma 6.2.

We introduce more notations we shall use in Sections 5 and 6 to sim-
plify the writing: let X := XC

b , Y := SIb (I is the identical permutation),
Xn := (x1, . . . , xbn), Yn := (y1, . . . , ybn) and denote by Xn (resp. Y n) the
support of Xn (resp. Yn). Actually, Xn = Y n since x1 = y1, but we keep
the two notations to avoid confusion in the proofs. Moreover, we define the
sections X l

m := (xlbm+1, . . . , x(l+1)bm) of X for all nonnegative integers l,m
(so Xn = X0

n).

5.1. Property. Let n ≥ 1; the terms of Xn are the vertices (includ-
ing 0) of the regular polygon of bn edges inscribed in [0, 1[ identified to the
unit torus.
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Moreover , let i, j be integers, with 1 ≤ i ≤ bn−1 and 0 ≤ j < b, and
suppose xi = xi,n−2b

−n+1 + · · ·+xi,0b
−1 is the b-adic expansion of xi. Then

xi+jbn−1 = cn−1
n−1jb

−n + (xi,n−2 + cn−1
n−2j)b

−n+1 + · · ·+ (xi,0 + cn−1
0 j)b−1

is the b-adic expansion of xi+jbn−1 (in which of course the digits cn−1
n−1j and

xi,n−k + cn−1
n−kj are computed mod b).

Proof. The NUT matrix C induces a bijection from the set of integers
between 1 and bn onto Xn which identifies the terms of Xn with the vertices
of the polygon; hence the first part.

The second part is also straightforward since




c00 · · · cn−2
0 cn−1

0
...

. . .
...

...
0 · · · cn−2

n−2 cn−1
n−2

0 · · · 0 cn−1
n−1







a0(i)
...

an−2(i)
j


 =




∑n−2
k=0 c

k
0ak(i) + cn−1

0 j

...
cn−2
n−2an−2(i) + cn−1

n−2j

cn−1
n−1j




and
∑n−2
k=0 c

k
0ak(i) = xi,0, . . . , c

n−2
n−2an−2(i) = xi,n−2 by definition of XC

b .

5.2. Property. Let n ≥ 1, u ∈ Y n−1 with b-adic expansion u =∑n−2
r=0 urb

−r−1 and v = u + b−n+1. Then the interval [u, v[ contains ex-
actly b terms of Xn which are given in increasing order by

u = xi0+j0bn−1 < xi1+j1bn−1 < · · · < xib−1+jb−1bn−1 < v,

where, for 0 ≤ µ ≤ b−1, jµ = µ/cn−1
n−1 = δ−1

n−1(µ) and iµ, with 1 ≤ iµ ≤ bn−1,
is a well defined integer depending on u (its determination will result from
the proof ). Therefore, the order of the terms of Xn in [u, v[ is independent
of u ∈ Y n−1 and is the same as the order of the terms of Z

δn−1

b in [0, 1[
given by

0 = δn−1(j0) < δn−1(j1) < · · · < δn−1(jb−1) = b− 1.

Proof. By Property 5.1, we already know that there are b terms of Xn

in [u, v[ since Xn and Xn−1 are regular polygons having the vertex 0. But
in contrast to the study of the generalized van der Corput sequences SΣb
([3, Prop. 3.1.3], [2, Prop. 3.2]), the terms of Xn in [u, v[ are not determined
by the indices i + jbn−1 of Property 5.1 for fixed i and 0 ≤ j < b; the
situation is now more complicated and the index i is not fixed; moreover,
the entries of C above the diagonal introduce perturbations which require
a specific treatment for the sections of Xn; that will be the purpose of the
next Property 5.3.
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To prove the present one, we consider the system (∗) below in the un-
knowns zr with a given 0 ≤ µ ≤ b−1; clearly the solution will give the digits
of the b-adic expansion of l − 1, with l the index of xl = u+ µb−n, the µth
term (in increasing order) of Xn in [u, v[:

(∗)




c00 · · · cn−2
0 cn−1

0
...

. . .
...

...
0 · · · cn−2

n−2 cn−1
n−2

0 · · · 0 cn−1
n−1







z0
...

zn−2

zn−1


 =




u0
...

un−2

µ


 .

Thus, we find zn−1 = µ/cn−1
n−1 = δ−1

n−1(µ) = jµ and the index iµ in xl =
xiµ+jµbn−1 = u + µb−n is defined by iµ − 1 = z0 + · · · + zn−2b

n−2, where
(z0, . . . , zn−2) is the solution of (∗) with zn−1 = jµ. Therefore (note that
j0 = 0),

u = xi0 < xi1+j1bn−1 < · · · < xib−1+jb−1bn−1 < v.

On the other hand, since δn−1(jµ) = µ, we also have

0 =
δn−1(j0)

b
<
δn−1(j1)

b
< · · · < δn−1(jb−1)

b
=
b− 1
b

,

which is the order of the terms of Zδn−1

b in [0, 1[ in increasing order, thus
the last part of Property 5.2.

5.3. Property. Let n and s be integers with 2 ≤ s ≤ n; let u ∈
Y n−s, with b-adic expansion u =

∑n−s−1
r=0 urb

−r−1 (u = 0 if s = n), and
v = u + b−n+s; let An−s+1 :=

∑n−1
r=n−s+1 zrb

r with arbitrary given digits

zn−1, . . . , zn−s+1 and let Sn−s+1 := X
An−s+1b

−n+s−1

n−s+1 be the corresponding
section of Xn. Then the interval [u, v[ contains exactly b terms of Sn−s+1

which are given in increasing order by

u = xi0+j0bn−s+An−s+1 < xi1+j1bn−s+An−s+1

< · · · < xib−1+jb−1bn−s+An−s+1 < v,

where, for 0 ≤ µ ≤ b − 1, jµ = σ−1
n−s(µ) and iµ (1 ≤ iµ ≤ bn−s) is an

integer depending on u. Therefore, the order of the terms of Sn−s+1 in
[u, v[ is independent of u ∈ Y n−s and is the same as the order of the terms
of Zσn−sb in [0, 1[ given by

0 = σn−s(j0) < σn−s(j1) < · · · < σn−s(jb−1) = b− 1.

Proof. We consider the following system in the unknowns z0, . . . , zn−s
with parameters zn−s+1, . . . , zn−1 and µ (0 ≤ µ ≤ b− 1):
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(∗∗)




c00 · · · cn−s−1
0 cn−s0 · · · cn−1

0
...

. . .
...

...
...

...
0 · · · cn−s−1

n−s−1 cn−sn−s−1 · · · cn−1
n−s−1

0 · · · 0 cn−sn−s · · · cn−1
n−s







z0
...

zn−s
zn−s+1

...
zn−1




=




u0
...

un−s−1

µ


 .

As in Property 5.2, the solution will give the digits of the b-adic expansion
of l − 1 with l the index of xl = u+ µb−n+s−1, the µth term of the section
Sn−s+1 of Xn in [u, v[.

First, we obtain µ = cn−sn−szn−s + · · ·+ cn−1
n−szn−1, that is,

zn−s =
µ− cn−s+1

n−s zn−s+1 + · · ·+ cn−1
n−szn−1

cn−sn−s
= jµ = σ−1

n−s(µ),

where σn−s = δn−s ] θn−s with θn−s =
∑s−1
i=1 c

n−i
n−szn−i (here appears the

rule we introduced in principle in 4.2).
Next, the integer iµ in xl = xiµ+jµbn−s = u + µb−n+s−1 is defined by

iµ−1 = z0 +· · ·+zn−s−1b
n−s−1 where z0, . . . , zn−s−1 are the other solutions

of (∗∗). Note that iµ = 1 if s = n since (∗∗) reduces to one equation in the
unknown z0 in this case.

The end of the proof is similar to the preceding one.

6. Proofs of the theorems and the Corollary

6.1. Lemma (discretization). Let n and N be two integers with 1 ≤
N ≤ bn and let α ∈ [0, 1]. Then

E(α,N,XC
b ) = E(y(α), N,XC

b ) + (y(α)− α)N

with y(α) = u if α = u and y(α) = v if α > u, where u and v are the
unique elements of [0, 1] such that u ∈ Y n, v = u+ b−n and u ≤ α < v.

Proof. By definition of y(α), we have A(α,N,XC
b ) = A(y(α), N,XC

b ),
from which the result follows, since u is the unique term of Xn in [u, v[.

6.2. Lemma (descent). Let n,N and λ be integers with 1 ≤ N ≤ bn and
1 ≤ λ < bn and let λ = λ1b

n−1 + · · ·+ λn−1b + λn be the b-adic expansion
of λ. Then

E

(
λ

bn
, N,XC

b

)
=

n∑

j=1

ϕ
δj−1]θj−1(N)
b,εj

(
N

bj

)
,

the εj’s being defined step by step as follows: εn = ηn = λn and ,
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for 1 ≤ j < n,

ηj = λj +
ηj+1

b
+

1
b

(ϕδj]θj(N)
b,εj+1

)′
(

N

bj+1

)
,

εj = ηj if 0 ≤ ηj < b, εj = 0 if ηj = b.

Remarks. Of course, the εj ’s depend on λ, n and N . See 4.2 for the
definition of δj−1]θj−1(N). Note also that for λ = bn the formula is trivially
true with εj = 0 for all 1 ≤ j ≤ n.

Foreword. This lemma is the key lemma for the proofs of our theorems;
step by step, we obtain the remainder E by means of remainders with more
and more rough intervals and with fewer and fewer points; at each step,
the difference between the remainders is under control with the help of the
functions ϕσb,h while the relation between the intervals depends on the right
derivatives of these functions.

Notations. To simplify the writing, we shall use the b-adic expansion of
N < bn. Let r0 be the greatest nonnegative integer such that br0 divides N ;
then we write N = Nn−1b

n−1 + · · · + Nr0b
r0 with Nr0 6= 0; the digits Nr

are related to those of the b-adic expansion of N − 1 by Nr = ar(N) if
r0 < r ≤ n− 1 and Nr0 = ar0(N) + 1.

Moreover, with the same concern, we introduce one more piece of nota-
tion: for r0 ≤ j ≤ n− 1 we define the slice of integers

Tj := ]Nn−1b
n−1 + · · ·+Njb

j , N ] (note that Tr0 is empty)

and we recall that we have already set Sj := X
Ajb
−j

j (see Property 5.3 with
here j = n− s+ 1 and Nr = zr).

Proof of Lemma 6.2. The case N = bn is trivial since both terms of
the equality to be proved are zero because A(λ/bn, bn,Xn) = λ and the
functions ϕ are zero on the integers. From now on we suppose N < bn.

First step. Set y = λ/bn ∈ Y n; there exist unique u, v such that
u ∈ Y n−1, v = u+ 1/bn−1 and u ≤ y < v. According to Property 5.2, there
exists a unique index i such that 1 ≤ i ≤ bn−1 and xi+Nn−1bn−1 ∈ Xn∩[u, v[;
to get it we should solve the system (∗) with µ = δn−1(Nn−1); but we
do not need that because to express the remainder E(y,N,Xn), as shown
below, we are only interested in the position of xi+Nn−1bn−1 in [u, v[ which
is independent of u. We distinguish two cases:

Case 1. If y ≤ xi+Nn−1bn−1 then with y1 = u we have

E(y,N,Xn) = E(y1, N,Xn) +A([y1, y[;N ;Xn)−N(y − y1).

Now, A([y1, y[;N ;Xn) = A(λn/b,Nn−1 + 1, Zδn−1

b ) because the order of the
terms of Xn in [u, v[ is the same as the order of the terms of Zδn−1

b in [0, 1[
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and, on the other hand, y − y1 = λn/b
n. Moreover, N(y − y1) = εnN/b

n

(since εn = λn) and 0 ≤ λn ≤ δn−1(Nn−1) (since u ≤ y ≤ xi+Nn−1bn−1 < v
with v − u = 1/bn−1 and xi+Nn−1bn−1,n−1 = δn−1(Nn−1)); in other words,
y and xi+Nn−1bn−1 have the same digits except the last ones which are λn
and cn−1

n−1Nn−1 = δn−1(Nn−1) from Property 5.1.
Therefore, according to the definition of the functions ϕ, we have

A([y1, y[;N ;Xn)−N(y − y1) = ϕ
δn−1

b,εn
(N/bn)

and so
E(y,N,Xn) = E(y1, N,Xn) + ϕ

δn−1

b,εn
(N/bn).

Note that if Nn−1 = 0 then y = y1 = u (because u = y1 ≤ y ≤ xi = u since
xi ∈ Xn−1) and εn = λn = 0.

Finally,
λ1 := y1bn−1 = (λ+ (ϕδn−1

b,εn
)′(N/bn))/b

since here we have (ϕδn−1

b,εn
)′(N/bn) = −εn.

Case 2. If y > xi+Nn−1bn−1 then with y1 = v and εn = λn, in the same
way, we get

E(y,N,Xn) = E(y1, N,Xn)− A([y, y1[;N ;Xn) +N(y1 − y)

= E(y1, N,Xn) + ϕ
δn−1

b,εn
(N/bn)

because A([y, y1[;N ;Xn) = A([λn/b, 1[;Nn−1 + 1;Zδn−1

b ), y1 − y = v − y =
(b − λn)/bn and δn−1(Nn−1) < λn < b (since Cases 1 and 2 are exclu-
sive), which agrees with the definition of ϕ. And again, since b − εn =
(ϕδn−1

b,εn
)′(N/bn), we have λ1 := y1bn−1 = (λ + (ϕδn−1

b,εn
)′(N/bn))/b, which

ends Case 2.

For both cases, the first step ends with

E(y,N,Xn) = E(y1, Tn−1,Xn) + ϕ
δn−1]θn−1(N)
b,εn

(N/bn),

because E(y1, Nn−1b
n−1,Xn) = A(y1, Nn−1b

n−1,Xn)−y1Nn−1b
n−1 = 0 by

the elementary interval property (indeed, A(y1, Nn−1b
n−1,Xn) = λ1Nn−1

since [0, y1[ is the union of λ1 elementary intervals of length b−n+1) and
θn−1(N) = 0 from the definition of θ (see 4.2).

If N = Nn−1b
n−1, we are done since Tn−1 = Tr0 is empty and the

functions ϕ vanish on the integers, which implies that the sum in the formula
of Lemma 6.2 reduces to its last term.

Second step. This step is necessary only if Nn−1b
n−1 < N <

(Nn−1 + 1)bn−1 (in which case Nn−1 = an−1(N)), that is, if xN ∈ Sn−1;
in this situation, using the process of the first step, we write the remainder
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E(y1, Tn−1,Xn) by means of the section Sn−1 of Xn instead of ]0, bn] in the
first step, the slice Tn−1 taking the place of ]0, N ].

First, we match up the formula for ηn−1:

λ1 = (λ+ (ϕδn−1

b,εn
)′(N/bn))/b

= λ1b
n−2 + · · ·+ λn−2b+ λn−1 +

λn
b

+
(ϕδn−1

b,εn
)′(N/bn)

b
,

that is,

λ1 =
n−2∑

i=1

λib
n−i−1 + ηn−1 with ηn−1 = λn−1 or λn−1 + 1,

since εn = ηn = λn and the derivative is −εn or b− εn.

• If ηn−1 = b, we have nothing to do to descend the second step because
λ1 is already a multiple of b, i.e. [0, y1[ is already rough enough (see the fore-
word above); on the other hand, in this case εn−1 = 0, and so ϕδn−2]θn−2(N)

b,εn−1

and its derivative are the null functions; therefore the formula

E(y1, Tn−1,Xn) = E(y2, Tn−1,Xn) + ϕ
δn−2]θn−2(N)
b,εn−1

(N/bn−1)

is trivially satisfied with

y2 := y1, λ2 := y2bn−2 =
λ1 + (ϕδn−2]θn−2(N)

b,εn−1
)′(N/bn−1)

b
.

• If ηn−1 < b, so that εn−1 = ηn−1, we apply the process of the first step
to y1 ∈ Y n−1 and to the section Sn−1 of Xn: there exist unique u, v such
that u ∈ Y n−2, v = u+ 1/bn−2 and u ≤ y1 < v; according to Property 5.3
with s = 2, there exists a unique index i such that 1 ≤ i ≤ bn−2 and
xi+Nn−2bn−2+Nn−1bn−1 ∈ [u, v[; to get it we should solve the system (∗∗)
with µ = δn−2(Nn−2) + cn−1

n−2Nn−1 (mod b), but once again, we do not need
to know that i, as shown below in the two cases corresponding to those of
the first step.

Case 1. If y1 ≤ xi+Nn−2bn−2+Nn−1bn−1 then with y2 := u we have

E(y1, Tn−1,Xn) = E(y2, Tn−1,Xn) + A([y2, y1[;Tn−1;Xn)

− (N −Nn−1b
n−1)(y1 − y2).

From Property 5.3, the order of the terms of Sn−1 in [u, v[ is the same as
the order of the terms of Zσn−2

b in [0, 1[ with σn−2 = δn−2 ] cn−1
n−2Nn−1, so

that
A([y2, y1[;Tn−1;Xn) = A(ηn−1/b,Nn−2 + 1, Zσn−2

b );

on the other hand, since y1 = y2 + ηn−1b
−n+1, we have

(N −Nn−1b
n−1)(y1 − y2) =

N −Nn−1b
n−1

bn−1 ηn−1
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and
0 ≤ ηn−1 ≤ δn−2(Nn−2) + cn−1

n−2Nn−1 = σn−2(Nn−2)

because

y1 ≤ xi+Nn−2bn−2+Nn−1bn−1

= y2 +
δn−2(Nn−2) + cn−1

n−2Nn−1

bn−1 +
δn−1(Nn−1)

bn
.

Then, according to the definition of the ϕ’s, which are 1-periodic, we get
(remember that here εn−1 = ηn−1 and Nn−1 = an−1(N))

A([y2, y1[;Tn−1;Xn)− (N −Nn−1b
n−1)(y1− y2) = ϕ

δn−2]θn−2(N)
b,εn−1

(N/bn−1),

hence

E(y1, Tn−1,Xn) = E(y2, Tn−1,Xn) + ϕ
δn−2]θn−2(N)
b,εn−1

(N/bn−1).

Moreover

λ2 := y2bn−2 = y1bn−2 − εn−1/b = (λ1 + (ϕδn−2]θn−2(N)
b,εn−1

)′(N/bn−1))/b

since the derivative is equal to −εn−1.

Case 2. If y1 > xi+Nn−2bn−2+Nn−1bn−1 then with y2 := v we have

E(y1, Tn−1,Xn) = E(y2, Tn−1,Xn)

− A([y1, y2[;Tn−1;Xn) + (N −Nn−1b
n−1)(y2 − y1)

and, for the same reason as in Case 1, we obtain

A([y1, y2[;Tn−1;Xn) = A([ηn−1/b, 1[;Nn−2 + 1;Zσn−2

b )

and

(N −Nn−1b
n−1)(y2 − y1) =

N −Nn−1b
n−1

bn−1 (b− ηn−1)

because y2 − y1 = b−n+2 − ηn−1b
−n+1; so that, still with εn−1 = ηn−1 and

Nn−1 = an−1(N), we have

−A([y1, y2[;Tn−1;Xn)+(N−Nn−1b
n−1)(y2−y1) = ϕ

δn−2]θn−2(N)
b,εn−1

(N/bn−1)

(again here δn−2(Nn−2) + cn−1
n−2Nn−1 < ηn−1 < b since Cases 1 and 2 are

exclusive). Thus

E(y1, Tn−1,Xn) = E(y2, Tn−1,Xn) + ϕ
δn−2]θn−2(N)
b,εn−1

(N/bn−1)

and

λ2 := y2bn−2 = y1bn−2 + 1− εn−1/b = (λ1 + (ϕδn−2]θn−2(N)
b,εn−1

)′(N/bn−1))/b

since the derivative is equal to b− εn−1; this ends the Case 2 of the second
step.
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Now, to end the second step, we note that

E(y2; ]Nn−1b
n−1, Nn−1b

n−1 +Nn−2b
n−2];Xn) = 0

by the elementary interval property (as for the first step), so that

E(y2, Tn−1,Xn) = E(y2, Tn−2,Xn)

and

E(y,N,Xn) = E(y2, Tn−2,Xn)

+ ϕ
δn−2]θn−2(N)
b,εn−1

(N/bn−1) + ϕ
δn−1]θn−1(N)
b,εn

(N/bn).

If N = Nn−1b
n−1 + Nn−2b

n−2, we have the desired formula (in which
the sum has two terms only) since r0 = n− 2, which implies Tn−2 is empty,
and since the functions ϕ vanish on the integers.

Iteration. If xN ∈ Sn−2, we begin the third step by first bringing out
ηn−2 from the b-adic expansion of λ2:

λ2 = (λ1 + (ϕδn−2]θn−2(N)
b,εn−1

)′(N/bn−1))/b

=
n−3∑

i=1

λib
n−i−2 + λn−2 +

ηn−1

b
+

(ϕδn−2]θn−2(N)
b,εn−1

)′(N/bn)

b
,

which shows that ηn−2 = λn−2 or λn−2 + 1 (since the derivative is −εn−1 =
−ηn−1 or b− εn−1 = b− ηn−1 or 0 if ηn−1 = b). Then if ηn−2 = b, the third
step is void, and else we apply the descent process to y2 ∈ Y n−2 and to
Sn−2 which involves the antepenultimate row of the matrix of (∗) and leads
to

E(y,N,Xn) = E(y3, Tn−3,Xn) +
n∑

j=n−2

ϕ
δj−1]θj−1(N)
b,εj

(N/bj).

Continuing in that way, we get the desired formula since, along the descent,
the process still ends as in the first and second steps, except if r0 = 0, in
which case we have to perform the last step, step s = n, in order to express
E(yn−1, T1,Xn) when xN ∈ S1.

From step n− 1, by recursion hypothesis we have

λn−1 := yn−1b = (λn−2 + (ϕδ1]θ1(N)
b,ε2

)′(N/b2))/b with λn−2 = λ1b+ η2,

so that

λn−1 = λ1 +
η2

b
+

(ϕδ1]θ1(N)
b,ε2

)′(N/b2)

b
= η1.

• If η1 = b, the step n is void: E(yn−1, T1,Xn) = E(η1/b, T1,Xn) = 0.
• If η1 < b, we apply once more the descent process, now to yn−1 ∈ Y 1

and S1: there exist unique u, v such that u ∈ Y 0 = {0}, v = u+ b−n+s = 1
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and u ≤ yn−1 < v; according to Property 5.3 with s = n, there exists a
unique i such that 1 ≤ i ≤ b0 (thus here we get i = 1) and

xi+
∑n−1
k=0 Nkb

k = xN+1 ∈ [0, 1[.

The unique equation of (∗∗), δ0(a0)+
∑n−1
k=1 c

k
0Nk = µ, shows that the order

of the terms of S1 in [0, 1[ is the same as the order of the terms of Zσ0
b in

[0, 1[, with σ0 = δ0 ]
∑n−1
k=1 c

k
0Nk = δ0 + θ0(N) (here Nk = ak(N) for all

k ≥ 1 since r0 = 0).
Then the two cases corresponding to yn−1 less or greater than xN+1

lead, still in the same way, to

E(yn−1, T1,Xn) = E(yn, T1,Xn) + ϕ
δ0]θ0(N)
b,ε1

(N/b)

with yn = 0 or 1, so that E(yn, T1,Xn) = 0, and the proof of Lemma 6.2 is
complete.

6.3. Lemma (values of the εj ’s). With the notations of Lemma 6.2 and
with σr = δr ] θr(N), for 0 ≤ j ≤ n− 1 set

Λj =
n∑

r=j+1

λrb
n−r, νj =

n−1∑

r=j

σr(Nr)bn−r−1 (with Nr = 0 if r < r0).

Then, for 1 ≤ j ≤ n− 1, we have

ηj =
{
λj if 0 ≤ Λj ≤ νj ,
λj + 1 if νj < Λj < bn−j ,

and

εj =





0 if 0 ≤ Λj−1 ≤ νj ,
p if νj + (p− 1)bn−j < Λj−1 ≤ νj + pbn−j (for 1 ≤ p < b),

0 if νj + (b− 1)bn−j < Λj−1 < bn−j+1.

Proof. It is identical with the proof of Lemma 5.3 of [2], but with a fixed
base instead of variable bases; for the sake of completeness, we point out
the guidelines:

First, the results are still valid for j = n with the convention Λn = νn
= 0, since then Λn−1 = λn.

Next, the formulas for ηj are proven by recursion in the special case of the
identical permutation I, first for the rank j = n− 1 by using the definition
of ηn−1 (Lemma 6.2) and of the function ϕIb,εn , and then for the rank j
assuming they are true for the rank j + 1: in the case where 0 ≤ Λj ≤ νj ,
there are two subcases corresponding to Λj+1 ≤ νj+1 and Λj+1 > νj+1, but
each of them gives ηj = λj because ηj+1 + (ϕIb,εj+1

)′(N/bj+1) = 0 for both;
the other case, where νj < Λj < bn−j , is handled in the same way.
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Now, in the general situation with arbitrary permutations σr, the results
for the ηj ’s are obtained with the help of Property 3.0 which asserts that

(ϕσrb,εr+1
)′(N/br+1) = (ϕσrb,εr+1

)′(Nr/b) = (ϕIb,εr+1
)′(σr(Nr)/b),

so that we are brought back to the special case of I with

N ′ =
n−1∑

r=j

σr(Nr)br, ν′j =
n−1∑

r=j

I(σr(Nr))bn−r−1 = νj .

Finally, the formulas for the εj ’s are deduced from those for the ηj ’s by
enumeration of the different cases.

6.4. Proof of Theorem 1. It works on the same principle as that of The-
orem 1 in [3] but the development is different and simpler because in [3] we
did not have an exact formula for the remainder like that of Lemma 6.2,
with the good control of the εj ’s by Lemma 6.3.

In the following, N ≥ 1 is a fixed integer and n is any integer satisfying
N ≤ bn. We only prove the formula for D+, the one for D− being obtained
in the same way.

First, with the discretization Lemma 6.1, we get

lim
n→∞

( sup
y∈Y n

E(y,N,XC
b )) = D+(N,XC

b )

(for a detailed proof, see [3, Lemma 3.3.1] with Xn = Y n).
Next, the descent Lemma 6.2 implies that, for all y = λ/bn ∈ Y n,

E(y,N,XC
b ) ≤

n∑

j=1

ψ
σj−1,+
b (N/bj)

with σj−1 = δj−1 ] θj−1(N).
Finally, in the following, we show this upper bound is reached by some

y ∈ Y n. For 1 ≤ j ≤ n, let pj (0 ≤ pj < b) be an integer such that
ψ
σj−1,+
b (N/bj) = ϕ

σj−1

b,pj
(N/bj), so that we have a fixed sequence εj = pj

from which we can deduce an integer λ = λ1b
n−1 + · · ·+ λn satisfying

E(λb−n, N,XC
b ) =

n∑

j=1

ϕ
σj−1

b,pj
(Nb−j) =

n∑

j=1

ψ
σj−1,+
b (Nb−j);

indeed, using the formulas of Lemma 6.2 for ηj and εj , we build λ step by
step, first by setting λn := ηn := pn and then, if ηj and λj are achieved, by
using the reverse algorithm (of the construction of the εj from the λj):

if
ηj
b

+
1
b

(ϕσj−1

b,pj
)′(Nb−j) = 0 then λj−1 := ηj−1 := pj−1

else (i.e. if
ηj
b

+
1
b

(ϕσj−1

b,pj
)′(Nb−j) = 1)
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if pj−1 ≥ 1 then ηj−1 := pj−1 and λj−1 := ηj−1 − 1

else (i.e. if pj−1 = 0) ηj−1 := b and λj−1 := ηj−1 − 1;

the algorithm ends when j = r0 + 1 (see the notations of Lemma 6.2); this
means that we have exactly br0 values of λ for which the above upper bound
is reached.

The end of the proof of Theorem 1 is straightforward by letting n→∞.

Remark. This proof gives the reals α ∈ [0, 1[ for which the discrepancy
D+ is reached, as well as that for D−, for both XC

b and SΣb (by using
Lemma 5.2 of [2] for the last one); explicit computations of these α could
be made to obtain formulas like those we obtained in [1] for the initial
van der Corput sequence in base 2 (remember that, in this case, we have
D = D∗ = D+ and D− = 0).

6.5. Proof of Theorem 3. Here, the proof is parallel to the analogous
one of [2, Theorem 4.1], but it is simpler for two reasons: first we work
with a fixed base and then our sequences XC

b begin with x1 = 0 unlike the
SΣb which begin with x1 =

∑∞
r=0 σr(ar(1))/br+1. We give the outline with

these simplifications and emphasize the leading part of Lemma 6.3 in the
appearance of the functions ϕσb and φσb .

First, we write E(α,N) := E(α,N,XC
b ) and compute the L2-discrepancy

T 2(N) = � 1
0E

2(α,N) dα by using Lemma 6.1. For 1 ≤ λ ≤ bn and α ∈
[(λ− 1)b−n, λb−n[, we have

E(α,N) =
{
E(λb−n, N) + (λb−n − α)N if (λ− 1)b−n < α,

E((λ− 1)b−n, N) if (λ− 1)b−n = α,

so that, after computation,
1�

0

E2(α,N) dα =
1
bn

bn∑

λ=1

E2(λb−n, N) +
N

b2n

bn∑

λ=1

E(λb−n, N) +
N2

3b2n
.

Next, applying Lemma 6.2 with σj−1 = δj−1 ] θj−1(N), we get successively

A :=
bn∑

λ=1

E(λb−n, N) =
n∑

j=1

bn∑

λ=1

ϕ
σj−1

b,εj
(Nb−j),

B :=
bn∑

λ=1

E2(λb−n, N)

=
n∑

j=1

bn∑

λ=1

(ϕσj−1

b,εj
)2(Nb−j) + 2

∑

1≤i<j≤n

bn∑

λ=1

ϕ
σi−1
b,εi

(Nb−i)ϕσj−1

b,εj
(Nb−j)

in which (remember again) the εj ’s are functions of λ and N .
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For a fixed j, since λ = λ1b
n−1 + · · · + λj−1b

n−j+1 + Λj−1, the set of
λ’s is divided into bn−j+1 classes, each with bj−1 elements, where Λj−1 is
constant; thus, from Lemma 6.3, we get εj(λ) = p for bn−1 values of λ.
Therefore,

A =
n∑

j=1

(
bn−1

b−1∑

p=0

ϕ
σj−1

b,p (Nb−j)
)

= bn−1
n∑

j=1

ϕ
σj−1

b (Nb−j)

and similarly

n∑

j=1

bn∑

λ=1

(ϕσj−1

b,εj
)2(Nb−j) = bn−1

n∑

j=1

φ
σj−1

b (Nb−j).

The second part of B requires a further analysis: for fixed i and j, each class
above is itself divided into bj−1−i subclasses with bi−1 elements each, where
Λi−1 is constant; thus for all p and q, we have εj(λ) = p and εi(λ) = q for
bn−2 values of λ; in the end, we get

B = bn−1
n∑

j=1

φ
σj−1

b (Nb−j) + 2bn−2
∑

1≤i<j≤n
ϕ
σi−1

b (Nb−i)ϕσj−1

b (Nb−j).

Finally, carrying back A and B into the integral, we obtain Theorem 3 by
letting n → ∞ with fixed N : indeed, |A| ≤ nbn+1/4 since |ϕσb | ≤ b2/4
(Property 3.0), so that the two last summands in the integral have a null
limit.

6.6. Proofs of Theorems 2 and 4. The main argument is the same for
both theorems; this is the reason why we gather together the proofs. Before
giving it in the proposition below, we prepare the formulas for D and F .

From the relations D = D+ + D− and ψσb = ψσ,+b + ψσ,−b , we deduce
immediately from Theorem 1 that

D(N,XC
b ) =

∞∑

j=1

ψ
δj−1]θj−1(N)
b (Nb−j).

Concerning F , we apply the formula of Koksma and Theorem 3: using the
method of 6.5, it is easy to compute � 1

0 E(α,N) dα with the help of the
quantity A, so that

1�

0

E(α,N) dα =
1
b

n∑

j=1

ϕ
σj−1

b (Nb−j) +
N

2bn
.

Therefore, using the computation for T 2 and letting n→∞, we obtain
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(2π)−2F 2(N,XC
b ) = T 2(N,XC

b )−
( 1�

0

E(α,N) dα
)2

=
∞∑

j=1

(
1
b
φ
σj−1

b − 1
b2

(ϕσj−1

b )2
)

(Nb−j)

=
1
b2

∞∑

j=1

χ
σj−1

b (Nb−j),

of course with σj−1 = δj−1 ] θj−1(N).
Now, we claim that the translation of δ by θ does not affect D and F

because of the special nature of ψ and χ, according to the following propo-
sition:

Proposition. Let σ be a permutation of Fb and t an element of Fb.
Then

ψσ]tb = ψσb , χσ]tb = χσb .

Proof. First, according to the formulas

ψσb = max
0≤h<h′≤b−1

|ϕσb,h − ϕσb,h′ |, χσb =
∑

0≤h<h′≤b−1

(ϕσb,h − ϕσb,h′)2

(end of 4.1), we need only verify that the set of differences ϕb,h−ϕb,h′ is the
same for σ and σ ] t; and since the translation (t, t) is a permutation of F2

b ,
this amounts to proving that ϕσb,h −ϕσb,h′ = ϕσ]tb,h+t −ϕσ]tb,h′+t for all h and h′

(in which, of course, h+ t and h′ + t are mod b).
Next, remember the functions are continuous and piecewise affine, so it

is enough to check that

ϕσb,h(k/b)− ϕσb,h′(k/b) = ϕσ]tb,h+t(k/b)− ϕσ]tb,h′+t(k/b)

for all h, h′ and k (1 ≤ k ≤ b). Coming back to the definition of ϕb,h, this is
equivalent to

E(h/b, k, Zσb )−E(h′/b, k, Zσb ) = E((h+t)/b, k, Zσ]tb )−E((h′+t)/b, k, Zσ]tb ),

i.e.

E

([
h

b
,
h′

b

[
; k;Zσb

)
= E

([
h+ t

b
,
h′ + t

b

[
; k;Zσ]tb

)
,

which is obvious since the interval and the set of points are translated by
the same quantity.

This proposition completes the proof of Theorems 2 and 4.

6.7. Proof of the Corollary. For D+, D−, D, and F , it is a direct con-
sequence of the knowledge of the functions ψσ,+b , ψσ,−b , ψσb and χσb on the
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interval [0, 1/b]:

ψσ,+b (x) = (b− σ(0)− 1)x, ψσ,−b (x) = σ(0)x,

ψσb (x) = (b− 1)x, χσb (x) =
b2(b2 − 1)x2

12
([3, Property 3.2.1(ii)] and [2, Property 3.5(ii)]); indeed, remember that
σr = δr for all r ≥ n − 1 (see 4.2) and that δr(0) = 0 since δr is the
multiplication with crr; therefore the end of the sum from n + 1 to infinity
is geometric in each case and the formulas follow.

Concerning T , we use the formula of Koksma with the formula we just
got for the diaphony and the expression we got for � 1

0 E(α,N) dα in 6.6, so
that we obtain the desired result without any geometric summation:

T 2(N,XC
b ) =

(
1
b

n∑

j=1

ϕ
σj−1

b

(
N

bj

)
+

N

2bn

)2

+
1
b2

n∑

j=1

χ
δj−1

b

(
N

bj

)
+

N2

12b2n
.

As a consequence of this Corollary, letting n → ∞ with fixed N , we
obtain the following asymptotic formula for the L2-discrepancy of XC

b , the
same we got for SΣb in [2, 4.2.1, Remark 3], since the order of the diaphony
is O(

√
logN):

T 2(N,XC
b ) =

1
b2

( ∞∑

j=1

ϕ
δj−1]θj−1(N)
b

(
N

bj

))2

+O(logN).

Therefore, the asymptotic behaviour of T (N,XC
b ) is directly linked to the

properties of the functions ϕδj−1]θj−1(N)
b .
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