Addendum to "On the p^{λ} problem"
 (Acta Arith. 113 (2004), 77-101)

by
Stephan Baier (Cambridge)

In [Bai] we proved the following mean value estimate for products of shifted and ordinary Dirichlet polynomials.

Theorem 1 ([Bai, Theorem 4]). Suppose that $\alpha \neq 0,0 \leq \theta<1, T>0$, $K \geq 1, L \geq 1$. If $\theta \neq 0$, then additionally suppose that $L \leq T^{1 / 2}$. Let $\left(a_{k}\right)$ and $\left(b_{l}\right)$ be arbitrary sequences of complex numbers. Suppose that $\left|a_{k}\right| \leq A$ for all $k \sim K$ and $\left|b_{l}\right| \leq B$ for all $l \sim L$. Then

$$
\begin{array}{rl}
\int_{0}^{T}\left|\sum_{k \sim K} a_{k} k^{i t}\right|^{2}\left|\sum_{l \sim L} b_{l}(l+\theta)^{i \alpha t}\right|^{2} & d t \tag{1}\\
& \ll A^{2} B^{2}(T+K L) K L \log ^{3}(2 K L T)
\end{array}
$$

the implied \ll-constant depending only on α. If $\theta=0$, then $\log ^{3}(2 K L T)$ on the right side of (1) may be replaced by $\log ^{2}(2 K L T)$.

We then used this mean value estimate to prove the following result on the p^{λ} problem.

Theorem 2 ([Bai, Theorem 3]). Suppose that $\varepsilon>0, B>0, \lambda \in(0,1 / 2]$ and a real θ are given. If θ is irrational, then suppose that $\lambda<5 / 19$. Let $N \geq 3$. Let \mathbb{A} be an arbitrarily given subset of the set of positive integers. Define

$$
F_{\theta}(\lambda):= \begin{cases}\max _{k \in \mathbb{N}} \min \left\{\frac{5}{12}-\frac{(k+6) \lambda}{6(k+1)}, \frac{5}{11}-\frac{(5 k+1) \lambda}{11}\right\} & \text { if } \theta \text { is rational } \\ \frac{5}{12}-\frac{7 \lambda}{12} & \text { otherwise }\end{cases}
$$

Suppose that

$$
N^{-F_{\theta}(\lambda)+\varepsilon \lambda} \leq \delta \leq 1
$$

2000 Mathematics Subject Classification: 11N05, 11M26.

Then

$$
\sum_{\substack{N<n \leq 2 N \\\left\{n^{\lambda}-\theta\right\}<\delta}} \Lambda(n)=\frac{\delta}{\lambda} \cdot \sum_{\substack{N^{\lambda}<n \leq(2 N)^{\lambda} \\ n \in \mathbb{A}}} n^{1 / \lambda-1}+O\left(\frac{\delta N}{(\log N)^{B}}\right)
$$

At the end of the last section in [Bai] we pointed out that if the condition $L \leq T^{1 / 2}$ in the above Theorem 1 could be omitted, then the condition $\lambda<5 / 19$ in Theorem 2 could be omitted as well. In the following we will see that the condition $L \leq T^{1 / 2}$ in Theorem 1 is actually superfluous if we allow ourselves to weaken the mean value estimate (1) slightly. We establish the following

Theorem 3. Let $\theta, \xi, \alpha, \beta$ be real numbers with $0 \leq \theta, \xi<1$ and $\alpha \beta \neq 0$. Suppose that $T, K, L \geq 1,\left|a_{k}\right| \leq 1$ and $\left|b_{l}\right| \leq 1$. Then

$$
\begin{equation*}
\int_{0}^{T}\left|\sum_{k \sim K} a_{k}(k+\theta)^{i \alpha t}\right|^{2}\left|\sum_{l \sim L} b_{l}(l+\xi)^{i \beta t}\right|^{2} d t \ll(T+K L) K L(\log T)^{15} \tag{2}
\end{equation*}
$$

In accordance with the proof of [Bai, Theorem 3], from the above Theorem 3 with $\xi=0$ it can be deduced that Theorem 2 holds true with the condition $\lambda<5 / 19$ omitted.

The main idea of our proof of Theorem 3 is to relate the shifted Dirichlet polynomials on the left-hand side of (2) to the corresponding Hurwitz zeta functions. For technical reasons we here define the Hurwitz zeta function $\zeta(s, y)$ in a slightly different manner to normal usage. For $0 \leq y<1$ and $\operatorname{Re} s>1$ we write

$$
\zeta(s, y):=\sum_{n=1}^{\infty}(n+y)^{-s}
$$

In the usual definition the series on the right-hand side starts with $n=0$, and the case $y=0$ is excluded, which we seek to avoid here.

As a function of s, the Hurwitz zeta function has a meromorphic continuation to the entire complex plane, with a simple pole at $s=1$ (see [Ivi]). At first, we establish the following fourth power moment estimate for the Hurwitz zeta function on the critical line.

Theorem 4. Suppose that $V>2 \pi$ and $0 \leq y<1$. Then

$$
\int_{-V}^{V}|\zeta(1 / 2+i t, y)|^{4} d t \ll V(\log V)^{10}
$$

Proof. By $\zeta(\bar{s}, y)=\overline{\zeta(s, y)}$, it suffices to show that

$$
\begin{equation*}
\int_{2 \pi}^{V}|\zeta(1 / 2+i t, y)|^{4} d t \ll V(\log V)^{10} \tag{3}
\end{equation*}
$$

By [Tch, Lemma 1], the Hurwitz zeta function satisfies an approximate functional equation of the form

$$
\begin{aligned}
\zeta(1 / 2+i t, y)= & \sum_{1 \leq m \leq M}(m+y)^{-1 / 2-i t}+\chi(1 / 2+i t) \sum_{1 \leq n \leq N} e(-n y) n^{-1 / 2+i t} \\
& +O\left(1+M^{-3 / 2}|t|^{1 / 2}\right)
\end{aligned}
$$

if $|t| \geq 2 \pi, 1 \leq M \leq|t|, N \geq 1$ and $2 \pi M N=|t|$, where $|\chi(1 / 2+i t)|=1$. Hence, we have

$$
\begin{align*}
\int_{2 \pi}^{V}|\zeta(1 / 2+i t, y)|^{4} d t \ll & +\int_{2 \pi}^{V}\left|\sum_{1 \leq m \leq \sqrt{t /(2 \pi)}}(m+y)^{-1 / 2-i t}\right|^{4} d t \tag{4}\\
& +\left.\left.\int_{2 \pi}^{V}\right|_{1 \leq n \leq \sqrt{t /(2 \pi)}} \sum_{1} e(-n y) n^{-1 / 2+i t}\right|^{4} d t
\end{align*}
$$

By the orthogonality relation

$$
\int_{0}^{1} e(z u) d u= \begin{cases}1 & \text { if } z=0 \\ 0 & \text { if } z \in \mathbb{Z} \backslash\{0\}\end{cases}
$$

we get

$$
\begin{equation*}
\sum_{1 \leq m \leq \sqrt{t /(2 \pi)}}(m+y)^{-1 / 2-i t}=\int_{0}^{1} \sum_{1 \leq m \leq \sqrt{V}}(m+y)^{-1 / 2-i t} e(m u) K(t, u) d u \tag{5}
\end{equation*}
$$

for $2 \pi \leq t \leq V$, where

$$
K(t, u):=\sum_{1 \leq n \leq \sqrt{t /(2 \pi)}} e(-n u)
$$

If $2 \pi \leq t \leq V$, then the geometric sum $K(t, u)$ can be estimated by

$$
\begin{equation*}
K(t, u) \ll \min \left\{\sqrt{V},\|u\|^{-1}\right\} \tag{6}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\int_{0}^{1}|K(t, u)| d u \ll \log V \tag{7}
\end{equation*}
$$

Using Hölder's inequality, from (5) and (7), we obtain

$$
\begin{align*}
& \left|\sum_{1 \leq m \leq \sqrt{t /(2 \pi)}}(m+y)^{-1 / 2-i t}\right|^{4} \tag{8}\\
& \left.\left.\ll(\log V)^{3} \int_{0}^{1}\right|_{1 \leq m \leq \sqrt{V}}(m+y)^{-1 / 2-i t} e(m u)\right|^{4}|K(t, u)| d u
\end{align*}
$$

Employing Hölder's inequality and [Har, Lemma 3] after dividing the sum on the right-hand side of (8) into $O(\log V)$ sums of the form

$$
\sum_{M<m \leq 2 M}(m+y)^{-1 / 2-i t} e(m u)
$$

we obtain

$$
\begin{equation*}
\int_{2 \pi}^{V}\left|\sum_{1 \leq m \leq \sqrt{V}}(m+y)^{-1 / 2-i t} e(m u)\right|^{4} d t \ll V(\log V)^{6} \tag{9}
\end{equation*}
$$

where the implied \ll-constant does not depend on u. Combining (6), (8) and (9), we get

$$
\begin{equation*}
\left.\left.\int_{2 \pi}^{V}\right|_{1 \leq m \leq \sqrt{t /(2 \pi)}}(m+y)^{-1 / 2-i t}\right|^{4} d t \ll V(\log V)^{10} \tag{10}
\end{equation*}
$$

In a similar manner, we can prove

$$
\begin{equation*}
\left.\left.\int_{2 \pi}^{V}\right|_{1 \leq n \leq \sqrt{t /(2 \pi)}} e(-n y) n^{-1 / 2+i t}\right|^{4} d t \ll V(\log V)^{10} \tag{11}
\end{equation*}
$$

Combining (4), (10) and (11), we obtain (3). This completes the proof.
To all appearances, there is no result like Theorem 4 in the literature.
We now prove Theorem 3 along the lines of the proof of $[\mathrm{BaH}$, Theorem 3]. First we write

$$
\begin{aligned}
F(t):=\sum_{k \sim K} a_{k}(k+\theta)^{i t}, \quad G(t) & :=\sum_{l \sim L} b_{l}(l+\xi)^{i t}, \quad D(t):=\sum_{k \sim K}(k+\theta)^{i t}, \\
E(t) & :=\sum_{l \sim L}(l+\xi)^{i t} .
\end{aligned}
$$

Similarly to the proof of $[\mathrm{BaH}$, Theorem 3], we can suppose that $K \leq L \leq$ T, for otherwise the desired estimate follows from a classical mean value estimate for $G(t)$.

Analogously to $[\mathrm{BaH},(17)]$, we have

$$
\begin{equation*}
\int_{0}^{T}|F(\alpha t) G(\beta t)|^{2} d t \ll(K L)^{2}+\log T \max _{1 \leq V \leq T} \int_{V}^{2 V}|D(\alpha t) E(\beta t)|^{2} d t \tag{12}
\end{equation*}
$$

We fix V in the interval $1 \leq V \leq T$ for which the maximum is attained.
In the same manner like $[\mathrm{BaH},(19)]$ one can prove

$$
\begin{equation*}
|D(\alpha t)| \ll K^{1 / 2} \int_{-V}^{V}|\zeta(1 / 2+i \sigma-i \alpha t, \theta)| \varrho(\sigma) d \sigma+\frac{K \log T}{V} \tag{13}
\end{equation*}
$$

as well as

$$
\begin{equation*}
|E(\beta t)| \ll L^{1 / 2} \int_{-V}^{V}|\zeta(1 / 2+i \tau-i \beta t, \xi)| \varrho(\tau) d \tau+\frac{L \log T}{V} \tag{14}
\end{equation*}
$$

where $\varrho(x):=\min (1,1 /|x|)$. Using (13), (14) and the inequality of CauchySchwarz, we deduce

$$
\text { 15) } \begin{align*}
& \int_{V}^{2 V}|D(\alpha t) E(\beta t)|^{2} d t \tag{15}\\
\ll & \frac{(K L)^{2} \log ^{4} T}{V^{3}}+\frac{K^{2} L \log ^{3} T}{V^{2}} \int_{-V}^{V} \varrho(\tau) \int_{V}^{2 V}|\zeta(1 / 2+i \tau-i \beta t, \xi)|^{2} d t d \tau \\
+ & \frac{K L^{2} \log ^{3} T}{V^{2}} \int_{-V}^{V} \varrho(\sigma) \int_{V}^{2 V}|\zeta(1 / 2+i \sigma-i \alpha t, \theta)|^{2} d t d \sigma+K L \log ^{2} T
\end{align*}
$$

$$
\times \int_{-V}^{V} \int_{-V}^{V} \varrho(\sigma) \varrho(\tau) \int_{V}^{2 V}|\zeta(1 / 2+i \sigma-i \alpha t, \theta) \zeta(1 / 2+i \tau-i \beta t, \xi)|^{2} d t d \sigma d \tau
$$

$$
\ll \frac{(K L)^{2} \log ^{4} T}{V^{3}}+\frac{K^{2} L \log ^{4} T}{V^{2}} \int_{-C V}^{C V}|\zeta(1 / 2+i t, \xi)|^{2} d t
$$

$$
+\frac{K L^{2} \log ^{4} T}{V^{2}} \int_{-C V}^{C V}|\zeta(1 / 2+i t, \theta)|^{2} d t
$$

$$
+K L \log ^{4} T\left(\int_{-C V}^{C V}|\zeta(1 / 2+i t, \theta)|^{4} d t\right)^{1 / 2}\left(\int_{-C V}^{C V}|\zeta(1 / 2+i t, \xi)|^{4} d t\right)^{1 / 2}
$$

where C is a certain constant which depends only on α and β. From (12), (15), Theorem 4 and a similar second power moment estimate for the Hurwitz zeta function (which can be derived directly from Theorem 4 using the
inequality of Cauchy-Schwarz), we obtain (2). This completes the proof of Theorem 3.

Acknowledgements. This research has been supported by a Marie Curie Fellowship of the European Community programme "Improving the Human Research Potential and the Socio-Economic Knowledge Base" under contract number HPMF-CT-2002-02157.

References

[Bai] S. Baier, On the p^{λ} problem, Acta Arith. 113 (2004), 77-101.
[BaH] A. Balog and G. Harman, On mean values of Dirichlet polynomials, Arch. Math. (Basel) 57 (1991), 581-587.
[Har] G. Harman, Fractional and integral parts of p^{λ}, Acta Arith. 58 (1991), 141-152.
[Ivi] A. Ivić, The Riemann Zeta-Function, Wiley-Interscience, New York, 1985.
[Tch] N. Tchudakoff, On Goldbach-Vinogradov's theorem, Ann. of Math. 48 (1947), 515-545.

Centre for Mathematical Sciences
Department of Pure Mathematics and Mathematical Statistics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB, United Kingdom
E-mail: S.Baier@dpmms.cam.ac.uk

