Improved bounds on the number of low-degree points on certain curves

by
Pavlos Tzermias (Knoxville, TN)

1. Introduction. Let \mathbb{Q} be the field of rational numbers and $\overline{\mathbb{Q}}$ a fixed algebraic closure of \mathbb{Q}. If C is a smooth projective curve defined over \mathbb{Q}, a point $P \in C(\overline{\mathbb{Q}})$ is said to be of degree k over \mathbb{Q} if its field of definition is an extension of \mathbb{Q} of degree k. If C is a smooth plane curve of gonality γ (i.e., γ is the smallest degree of a morphism from C to \mathbb{P}^{1}), a point on C of degree at most $\gamma-1$ over \mathbb{Q} is called a low-degree point on C. Under certain (and quite general) conditions, the set of low-degree points on such a curve C is finite, as proven by Debarre and Klassen ([DK]) using results of Faltings $([\mathrm{F}])$. In what follows, we exclude any discussion of the case $k=1$ (i.e. the case of \mathbb{Q}-rational points). For some Fermat curves of prime degree $p \geq 5$, explicit (full or partial) results describing the low-degree points have appeared in the literature (see [GR], [KT], [T1], [T2], [T3], [MT]). For results regarding higher-degree points on certain Fermat curves, we refer the reader to $[\mathrm{S}]$. Recall that the Fermat curve F_{p} of degree p is given by the equation $X^{p}+Y^{p}+Z^{p}=0$. We also denote by H_{5} the Hurwitz-Klein curve given by the equation $X^{4} Y+Y^{4} Z+Z^{4} X=0$; the curve H_{5} is also known as the Snyder quintic. As explained in [T3], H_{5} is a quotient of F_{13}.

The purpose of this paper is to improve the bounds obtained in [T2] and [T3] on the number of points of degree 6 on F_{11}, the number of points of degree 3 on H_{5} and the number of points of degree 3 on F_{13}. Note that by [GR], [T3], all points on these curves of degree lower than the one indicated above have been explicitly determined; in each case, there are only two such points and they are quadratic over \mathbb{Q}. Our main tool will be the remarkable improvement of Coleman's effective Chabauty bound ([C]) given by Lorenzini and Tucker in [LT].

Identify the symmetric group S_{3} with the group of automorphisms of the Fermat curve obtained by permuting the letters X, Y and Z. Also denote by ϱ the 3 -cycle in S_{3} defined by $\varrho(X, Y, Z)=(Y, Z, X)$. Then ϱ (viewed
both as an automorphism of F_{13} and of H_{5}) commutes with the morphism $F_{13} \rightarrow H_{5}$ described in [T3]. The following two results improve Theorem 1.2 in [T2] and Theorem 1.2 in [T3], respectively:

Theorem 1.1. There exist at most 84 points of degree 6 on F_{11} and the Galois orbit of each of these points equals its S_{3}-orbit.

Theorem 1.2. There exist at most 21 cubic points on H_{5} and at most 15 cubic points on F_{13}. The Galois orbit of each of these points equals its $\langle\varrho\rangle$-orbit.

The statements about the Galois orbits have already been proven in [T2] and [T3], so it remains to establish the stated bounds in the above theorems. For the reader's convenience, we recall that the bounds obtained in [T2] and [T3] gave at most 120 (resp. 33, 27) such points on F_{11} (resp. H_{5}, F_{13}).
2. Proof of Theorem 1.1. Let C be a smooth projective model of the curve obtained as the quotient of F_{11} by the action of S_{3}. Both C and the projection map $\phi: F_{11} \rightarrow C$ are defined over \mathbb{Q}. In [T2] we showed that C has genus 5, its Jacobian has Mordell-Weil rank 1 over \mathbb{Q} and the Galois orbits of points of degree at most 6 on F_{11} are in bijective correspondence with the \mathbb{Q}-rational points on the curve C. Moreover, an affine model for C is given by

$$
\begin{aligned}
\mathcal{E}: & r^{11}+22 r^{10}-11 r^{9} s+121 r^{9}-187 r^{8} s+44 r^{7} s^{2}-374 r^{8}-616 r^{7} s+528 r^{6} s^{2} \\
& -77 r^{5} s^{3}-4004 r^{7}+3432 r^{6} s+605 r^{5} s^{2}-550 r^{4} s^{3}+55 r^{3} s^{4}+1672 r^{6} \\
& +13332 r^{5} s-7590 r^{4} s^{2}+440 r^{3} s^{3}+154 r^{2} s^{4}-11 r s^{5}+39523 r^{5} \\
& -30481 r^{4} s-3905 r^{3} s^{2}+3597 r^{2} s^{3}-319 r s^{4}-30250 r^{4}-45331 r^{3} s \\
& +31064 r^{2} s^{2}-3652 r s^{3}-108009 r^{3}+117557 r^{2} s-20625 r s^{2} \\
& +164450 r^{2}-57453 r s-63151 r-1=0 .
\end{aligned}
$$

We will now use the Lorenzini-Tucker result ([LT]) to give a new upper bound on the number of \mathbb{Q}-rational points on C. The argument is very similar to the one given in [T2], but we include it here for the sake of completeness. Note that F_{11} has good reduction at $p=5$, hence so does C. Let \widetilde{C} denote a smooth projective model of the reduction of C at $p=5$. Applying Theorem 1.1 of [LT] (where $p=5$ and $d=2$) gives

$$
\# C(\mathbb{Q}) \leq \# \widetilde{C}\left(\mathbb{F}_{5}\right)+10
$$

We first show that there are exactly $6 \mathbb{F}_{5}$-rational points on \widetilde{C}. Let \widetilde{F}_{11} be the reduction of F_{11} at $p=5$. Also let $\widetilde{\mathcal{E}}$ denote the projectivization of the singular model of \widetilde{C} obtained by reducing \mathcal{E} at $p=5$. We have morphisms
of curves

$$
\widetilde{F}_{11} \xrightarrow{\widetilde{\phi}} \widetilde{C} \xrightarrow{\widetilde{\pi}} \widetilde{\mathcal{E}},
$$

where $\widetilde{\pi}$ is the normalization map and $\widetilde{\phi}$ is the reduction of ϕ at $p=5$. Clearly, any \mathbb{F}_{5}-rational point on \widetilde{C} maps to an \mathbb{F}_{5}-rational point on $\widetilde{\mathcal{E}}$ under $\widetilde{\pi}$. It is straightforward to check that $\widetilde{\mathcal{E}}$ has exactly 6 points defined over \mathbb{F}_{5}, namely the points (r, s) with coordinates $(1,0),(1,1),(1,2),(2,1)$, $(3,4)$ and the unique point at infinity. Now each of the five affine points listed above is a nonsingular point of $\widetilde{\mathcal{E}}$, so its fiber under $\widetilde{\pi}$ consists of a unique \mathbb{F}_{5}-rational point on \widetilde{C}. The point at infinity on $\widetilde{\mathcal{E}}$ is singular. We claim that, among the points in its fiber under $\widetilde{\pi}$, there is exactly one which is defined over \mathbb{F}_{5}.

To see this, note that any such point P lifts under $\widetilde{\phi}$ to a point at infinity R (i.e. one of the projective coordinates of R vanishes). Since P is \mathbb{F}_{5}-rational, every Galois conjugate of R belongs to the fiber $\widetilde{\phi}^{-1}(P)$, which in turn consists of the S_{3}-conjugates of R. If R is not defined over \mathbb{F}_{5}, then it is of degree 5 over \mathbb{F}_{5}, because the cyclotomic polynomial of degree 10 splits into a product of two irreducible factors of degree 5 over \mathbb{F}_{5}. Since there can be at most two S_{3}-conjugates of R with the same coordinate vanishing, we have a contradiction. It follows that R has to be equal to $(0,-1,1),(-1,0,1)$ or $(-1,1,0)$, and this proves that there exists exactly one such point P.

Therefore, there are exactly $6 \mathbb{F}_{5}$-rational points on \widetilde{C}. This implies that there are at most $6+10=16 \mathbb{Q}$-rational points on C. Now the three \mathbb{Q} rational and the two quadratic points on F_{11} project to two distinct \mathbb{Q} rational points on C under the morphism ϕ. Therefore, there are at most 14 \mathbb{Q}-rational points on C which lift to points of degree 6 on F_{11}. Therefore, there are at most $14 \cdot 6=84$ points of degree 6 on F_{11}. This completes the proof of Theorem 1.1.

It should be noted that there are at least 6 known points of degree 6 on F_{11}; these points are obtained by intersecting F_{11} with the line $X+Y+$ $Z=0$ in \mathbb{P}^{2}. An easy calculation shows that these points are of the form $(c,-1-c, 1)$, where c is a root of the equation

$$
X^{6}+3 X^{5}+7 X^{4}+9 X^{3}+7 X^{2}+3 X+1=0 .
$$

Note also that the action of S_{3} on F_{11} permutes the above points.
3. Proof of Theorem 1.2. Let X denote a smooth projective model of the curve obtained as the quotient of H_{5} by the action of $\langle\varrho\rangle$. Both X and the natural projection $\operatorname{map} \Phi: H_{5} \rightarrow X$ of degree 3 are defined over \mathbb{Q}. The genus of X equals 2. As shown in [T3], the Jacobian of X has Mordell-Weil rank 1 over \mathbb{Q} and the Galois orbits of points of degree 1 or 3 on H_{5} are in bijective correspondence with the \mathbb{Q}-rational points on X. Note that the
two quadratic points on H_{5} are fixed by ϱ, so their images under Φ are not Q-rational.

We now produce an explicit model for X :
Proposition 3.1. An affine model for X is given by

$$
\mathcal{X}: r^{4}-4 s r^{2}-3 s r+4 r+s^{3}+2 s^{2}+s+3=0
$$

Proof. Let $h(r, s)$ be the left-hand side of the above equation. Consider the rational map

$$
\ominus: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}
$$

given by $(x, y) \mapsto(r, s)$, where

$$
r=x+\frac{1}{y}+\frac{y}{x}, \quad s=y+\frac{1}{x}+\frac{x}{y} .
$$

Let \mathcal{H}_{5} be the affine curve $x^{4} y+y^{4}+x=0$. It suffices to show that \ominus induces, by restriction, a rational map $\psi: \mathcal{H}_{5} \rightarrow \mathcal{X}$ whose fiber above (r, s) equals

$$
\left\{(x, y),\left(\frac{1}{y}, \frac{x}{y}\right),\left(\frac{y}{x}, \frac{1}{x}\right)\right\}
$$

for all but finitely many $(r, s) \in \mathcal{X}(\mathbb{C})$. First we compute the fibers of \ominus. Fix $(r, s) \in \mathbb{C}^{2}$ and $(x, y) \in \ominus^{-1}(r, s)$. We claim that

$$
\ominus^{-1}(r, s)=\left\{(x, y),\left(\frac{1}{y}, \frac{x}{y}\right),\left(\frac{y}{x}, \frac{1}{x}\right),\left(\frac{1}{y}, \frac{1}{x}\right),\left(\frac{y}{x}, y\right),\left(x, \frac{x}{y}\right)\right\}
$$

It is clear that all of the above six points are in $\ominus^{-1}(r, s)$. Now note that for any $(c, d) \in \ominus^{-1}(r, s)$, we have

$$
d^{3}-s d^{2}+r d-1=0, \quad d c^{2}+(1-r d) c+d^{2}=0
$$

Therefore, there are at most six possible values for the pair (c, d) and this proves the claim. Now a straightforward calculation shows that

$$
h(\ominus(x, y))=\frac{\left(x^{4} y+y^{4}+x\right)\left(x^{4} y^{3}+y^{4}+x^{3}\right)}{x^{4} y^{4}}
$$

In particular, ψ is a rational map from \mathcal{H}_{5} to \mathcal{X} and for $(r, s) \in \mathcal{X}(\mathbb{C})$ it follows that, for each $(x, y) \in \ominus^{-1}(r, s)$, either (x, y) or $(1 / y, 1 / x)$ is on \mathcal{H}_{5}. Note that, with the exception of finitely many cases, only one of the latter two points can lie on \mathcal{H}_{5}. By the above calculation of the fibers of \ominus and the evident symmetry of ψ, the assertion follows.

Now we are ready to prove Theorem 1.2. Note that F_{13} has good reduction at $p=5$, hence so do H_{5} and X. Let \widetilde{X} denote a smooth projective model of the reduction of X at $p=5$. Applying Theorem 1.1 of [LT] (where $p=5$ and $d=1$) gives

$$
\# X(\mathbb{Q}) \leq \# \widetilde{X}\left(\mathbb{F}_{5}\right)+2
$$

We first show that there are exactly $6 \mathbb{F}_{5}$-rational points on \widetilde{X}. Let \widetilde{H}_{5} be the reduction of H_{5} at $p=5$. Also let $\widetilde{\mathcal{X}}$ denote the projectivization of the singular model of \widetilde{X} obtained by reducing \mathcal{X} at $p=5$. We have morphisms of curves

$$
\widetilde{H}_{5} \xrightarrow{\widetilde{\Phi}} \widetilde{X} \xrightarrow{\widetilde{\Pi}} \widetilde{\mathcal{X}},
$$

where $\widetilde{\Pi}$ is the normalization map and $\widetilde{\Phi}$ is the reduction of Φ at $p=5$. Clearly, any \mathbb{F}_{5}-rational point on \widetilde{X} maps to an \mathbb{F}_{5}-rational point on $\widetilde{\mathcal{X}}$ under $\widetilde{\Pi}$. It is straighforward to check that $\widetilde{\mathcal{X}}$ has exactly 7 points defined over \mathbb{F}_{5}, namely the points (r, s) with coordinates $(1,1),(1,3),(1,4),(3,1),(4,3)$, $(4,0)$, and the unique point at infinity. Now the point at infinity and each of the first five affine points listed above is a nonsingular point on $\widetilde{\mathcal{X}}$, so its fiber under $\widetilde{\Pi}$ consists of a unique \mathbb{F}_{5}-rational point on \widetilde{X}. The point $(4,0)$ on $\widetilde{\mathcal{X}}$ is singular. We claim that none of the points in its fiber under $\widetilde{\Pi}$ is defined over \mathbb{F}_{5}.

Suppose that this is not the case. Let P be an \mathbb{F}_{5}-rational point on \widetilde{X} such that $\widetilde{\Pi}(P)=(4,0)$. Let R be a point on \widetilde{H}_{5} such that $\widetilde{\Phi}(R)=P$. Note that R has coordinates (c, d) such that

$$
d^{3}+4 d-1=0, \quad c d^{2}+d+c^{2}=0, \quad c^{3}-4 c^{2}-1=0
$$

Now, over \mathbb{F}_{5}, we have the factorizations $d^{3}+4 d-1=(d-2)\left(d^{2}+2 d+3\right)$ and $c^{3}-4 c^{2}-1=(c-3)\left(c^{2}-c+2\right)$. Note that we cannot have $(c, d)=(3,2)$, because then $c d^{2}+d+c^{2} \neq 0$. So we are left with three cases to consider:

CASE 1: $d=2$ and $c \neq 3$. Since P is \mathbb{F}_{5}-rational, the Galois conjugate $R^{\sigma}=(2 / c, 2)$ of R satisfies $\widetilde{\Phi}\left(R^{\sigma}\right)=P$. In other words, R^{σ} is a $\langle\varrho\rangle$-conjugate of R, so it equals either $(1 / 2, c / 2)$ or $(2 / c, 1 / c)$. Since $c \notin \mathbb{F}_{5}$, we get a contradiction.

Case 2: $d \neq 2$ and $c=3$. As in the previous case, the Galois conjugate $R^{\sigma}=(3,3 / d)$ equals either $(1 / d, 3 / d)$ or $(d / 3,1 / 3)$. Since $d \notin \mathbb{F}_{5}$, we get a contradiction.

Case 3: $d \neq 2$ and $c \neq 3$. Note that $3 d+1$ is a root of the polynomial $T^{2}-T+2$, therefore, $c=3 d+1$ or $c=-3 d$. In the former case, we have $R^{\sigma}=(1-1 / d, 3 / d)$ and, as before, R^{σ} must equal either $(1 / d, 3+1 / d)$ or $(d /(3 d+1), 1 /(3 d+1))$, a contradiction, since $d \notin \mathbb{F}_{5}$. In the latter case, $R^{\sigma}=(1 / d, 3 / d)$ and, as before, it must equal either $(1 / d,-3)$ or $(-1 / 3,-1 / 3 d)$, a contradiction, since $d \notin \mathbb{F}_{5}$. This proves the claim.

Therefore, there are exactly $6 \mathbb{F}_{5}$-rational points on \tilde{X}, so there are at most $6+2=8 \mathbb{Q}$-rational points on X. One of these points is the projection of a \mathbb{Q}-rational point on H_{5}, so it must be discarded. Therefore there are at most $7 \mathbb{Q}$-rational points on X which lift to cubic points on H_{5}, so there are at most 21 cubic points on H_{5}, and this is our upper bound. As explained
in [T3], the six known cubic points on H_{5} (obtained by intersecting H_{5} with the line $X+Y+Z=0$ or the conic $X Y+Y Z+Z X=0$) do not lift to cubic points on F_{13}. Hence, there are at most 15 cubic points on F_{13} and this completes the proof.

Acknowledgments. I thank Dino Lorenzini for encouraging me to use the effective Chabauty bounds given in [LT] in the context of [T2] and [T3] and for his comments on this work. I also thank the referee for his/her suggestions on a previous version of this manuscript.

References

[C] R. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), 765-770.
[DK] O. Debarre and M. Klassen, Points of low degree on smooth plane curves, J. Reine Angew. Math. 446 (1994), 81-87.
[F] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math. 133 (1991), 549-576.
[GR] B. Gross and D. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), 201-224.
[KT] M. Klassen and P. Tzermias, Algebraic points of low degree on the Fermat quintic, Acta Arith. 82 (1997), 393-401.
[LT] D. Lorenzini and T. Tucker, Thue equations and the method of Chabauty-Coleman, Invent. Math. 148 (2002), 47-77.
[MT] W. McCallum and P. Tzermias, On Shafarevich-Tate groups and the arithmetic of Fermat curves, in: London Math. Soc. Lecture Note Ser. 303 (special volume in honor of P. Swinnerton-Dyer), Cambridge Univ. Press, 2003, 203-226.
[S] O. Sall, Points algébriques de petit degré sur les courbes de Fermat, C. R. Acad. Sci. Paris Sér. I. Math. 330 (2000), 67-70.
[T1] P. Tzermias, Algebraic points of low degree on the Fermat curve of degree seven, Manuscripta Math. 97 (1998), 483-488.
[T2] -, Parametrization of low-degree points on a Fermat curve, Acta Arith. 108 (2003), 25-35.
[T3] -, Low degree points on Hurwitz-Klein curves, Trans. Amer. Math. Soc. 356 (2004), 939-951.

Department of Mathematics
University of Tennessee
Knoxville, TN 37996-1300, U.S.A.
E-mail: tzermias@math.utk.edu

