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1. Introduction. Let Q be the field of rational numbers and Q a fixed
algebraic closure of Q. If C is a smooth projective curve defined over Q, a
point P ∈ C(Q) is said to be of degree k over Q if its field of definition is
an extension of Q of degree k. If C is a smooth plane curve of gonality γ
(i.e., γ is the smallest degree of a morphism from C to P1), a point on C
of degree at most γ − 1 over Q is called a low-degree point on C. Under
certain (and quite general) conditions, the set of low-degree points on such
a curve C is finite, as proven by Debarre and Klassen ([DK]) using results of
Faltings ([F]). In what follows, we exclude any discussion of the case k = 1
(i.e. the case of Q-rational points). For some Fermat curves of prime degree
p ≥ 5, explicit (full or partial) results describing the low-degree points have
appeared in the literature (see [GR], [KT], [T1], [T2], [T3], [MT]). For results
regarding higher-degree points on certain Fermat curves, we refer the reader
to [S]. Recall that the Fermat curve Fp of degree p is given by the equation
Xp + Y p + Zp = 0. We also denote by H5 the Hurwitz–Klein curve given
by the equation X4Y + Y 4Z +Z4X = 0; the curve H5 is also known as the
Snyder quintic. As explained in [T3], H5 is a quotient of F13.

The purpose of this paper is to improve the bounds obtained in [T2]
and [T3] on the number of points of degree 6 on F11, the number of points
of degree 3 on H5 and the number of points of degree 3 on F13. Note that
by [GR], [T3], all points on these curves of degree lower than the one in-
dicated above have been explicitly determined; in each case, there are only
two such points and they are quadratic over Q. Our main tool will be the
remarkable improvement of Coleman’s effective Chabauty bound ([C]) given
by Lorenzini and Tucker in [LT].

Identify the symmetric group S3 with the group of automorphisms of the
Fermat curve obtained by permuting the letters X, Y and Z. Also denote
by % the 3-cycle in S3 defined by %(X,Y,Z) = (Y,Z,X). Then % (viewed
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both as an automorphism of F13 and of H5) commutes with the morphism
F13 → H5 described in [T3]. The following two results improve Theorem 1.2
in [T2] and Theorem 1.2 in [T3], respectively:

Theorem 1.1. There exist at most 84 points of degree 6 on F11 and the
Galois orbit of each of these points equals its S3-orbit.

Theorem 1.2. There exist at most 21 cubic points on H5 and at most
15 cubic points on F13. The Galois orbit of each of these points equals its
〈%〉-orbit.

The statements about the Galois orbits have already been proven in [T2]
and [T3], so it remains to establish the stated bounds in the above theorems.
For the reader’s convenience, we recall that the bounds obtained in [T2] and
[T3] gave at most 120 (resp. 33, 27) such points on F11 (resp. H5, F13).

2. Proof of Theorem 1.1. Let C be a smooth projective model of the
curve obtained as the quotient of F11 by the action of S3. Both C and the
projection map φ : F11 → C are defined over Q. In [T2] we showed that C
has genus 5, its Jacobian has Mordell–Weil rank 1 over Q and the Galois
orbits of points of degree at most 6 on F11 are in bijective correspondence
with the Q-rational points on the curve C. Moreover, an affine model for C
is given by

E : r11 +22r10−11r9s+121r9−187r8s+44r7s2−374r8−616r7s+528r6s2

− 77r5s3 − 4004r7 + 3432r6s+ 605r5s2 − 550r4s3 + 55r3s4 + 1672r6

+ 13332r5s− 7590r4s2 + 440r3s3 + 154r2s4 − 11rs5 + 39523r5

− 30481r4s− 3905r3s2 + 3597r2s3 − 319rs4 − 30250r4 − 45331r3s

+ 31064r2s2 − 3652rs3 − 108009r3 + 117557r2s− 20625rs2

+ 164450r2 − 57453rs− 63151r − 1 = 0.

We will now use the Lorenzini–Tucker result ([LT]) to give a new upper
bound on the number of Q-rational points on C. The argument is very
similar to the one given in [T2], but we include it here for the sake of
completeness. Note that F11 has good reduction at p = 5, hence so does C.
Let C̃ denote a smooth projective model of the reduction of C at p = 5.
Applying Theorem 1.1 of [LT] (where p = 5 and d = 2) gives

#C(Q) ≤ #C̃(F5) + 10.

We first show that there are exactly 6 F5-rational points on C̃. Let F̃11 be
the reduction of F11 at p = 5. Also let Ẽ denote the projectivization of the
singular model of C̃ obtained by reducing E at p = 5. We have morphisms
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of curves

F̃11
φ̃→ C̃

π̃→ Ẽ ,
where π̃ is the normalization map and φ̃ is the reduction of φ at p = 5.
Clearly, any F5-rational point on C̃ maps to an F5-rational point on Ẽ un-
der π̃. It is straightforward to check that Ẽ has exactly 6 points defined
over F5, namely the points (r, s) with coordinates (1, 0), (1, 1), (1, 2), (2, 1),
(3, 4) and the unique point at infinity. Now each of the five affine points
listed above is a nonsingular point of Ẽ , so its fiber under π̃ consists of a
unique F5-rational point on C̃. The point at infinity on Ẽ is singular. We
claim that, among the points in its fiber under π̃, there is exactly one which
is defined over F5.

To see this, note that any such point P lifts under φ̃ to a point at
infinity R (i.e. one of the projective coordinates of R vanishes). Since P is
F5-rational, every Galois conjugate of R belongs to the fiber φ̃−1(P ), which
in turn consists of the S3-conjugates of R. If R is not defined over F5, then it
is of degree 5 over F5, because the cyclotomic polynomial of degree 10 splits
into a product of two irreducible factors of degree 5 over F5. Since there can
be at most two S3-conjugates of R with the same coordinate vanishing, we
have a contradiction. It follows that R has to be equal to (0,−1, 1), (−1, 0, 1)
or (−1, 1, 0), and this proves that there exists exactly one such point P .

Therefore, there are exactly 6 F5-rational points on C̃. This implies that
there are at most 6 + 10 = 16 Q-rational points on C. Now the three Q-
rational and the two quadratic points on F11 project to two distinct Q-
rational points on C under the morphism φ. Therefore, there are at most 14
Q-rational points on C which lift to points of degree 6 on F11. Therefore,
there are at most 14 · 6 = 84 points of degree 6 on F11. This completes the
proof of Theorem 1.1.

It should be noted that there are at least 6 known points of degree 6 on
F11; these points are obtained by intersecting F11 with the line X + Y +
Z = 0 in P2. An easy calculation shows that these points are of the form
(c,−1− c, 1), where c is a root of the equation

X6 + 3X5 + 7X4 + 9X3 + 7X2 + 3X + 1 = 0.

Note also that the action of S3 on F11 permutes the above points.

3. Proof of Theorem 1.2. Let X denote a smooth projective model
of the curve obtained as the quotient of H5 by the action of 〈%〉. Both X and
the natural projection map Φ : H5 → X of degree 3 are defined over Q. The
genus of X equals 2. As shown in [T3], the Jacobian of X has Mordell–Weil
rank 1 over Q and the Galois orbits of points of degree 1 or 3 on H5 are
in bijective correspondence with the Q-rational points on X. Note that the
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two quadratic points on H5 are fixed by %, so their images under Φ are not
Q-rational.

We now produce an explicit model for X:

Proposition 3.1. An affine model for X is given by

X : r4 − 4sr2 − 3sr + 4r + s3 + 2s2 + s+ 3 = 0.

Proof. Let h(r, s) be the left-hand side of the above equation. Consider
the rational map

	 : C2 → C2

given by (x, y) 7→ (r, s), where

r = x+
1
y

+
y

x
, s = y +

1
x

+
x

y
.

Let H5 be the affine curve x4y + y4 + x = 0. It suffices to show that 	
induces, by restriction, a rational map ψ : H5 → X whose fiber above (r, s)
equals {

(x, y),
(

1
y
,
x

y

)
,

(
y

x
,

1
x

)}

for all but finitely many (r, s) ∈ X (C). First we compute the fibers of 	.
Fix (r, s) ∈ C2 and (x, y) ∈ 	−1(r, s). We claim that
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It is clear that all of the above six points are in 	−1(r, s). Now note that
for any (c, d) ∈ 	−1(r, s), we have

d3 − sd2 + rd− 1 = 0, dc2 + (1− rd)c+ d2 = 0.

Therefore, there are at most six possible values for the pair (c, d) and this
proves the claim. Now a straightforward calculation shows that

h(	(x, y)) =
(x4y + y4 + x)(x4y3 + y4 + x3)

x4y4 .

In particular, ψ is a rational map from H5 to X and for (r, s) ∈ X (C) it
follows that, for each (x, y) ∈ 	−1(r, s), either (x, y) or (1/y, 1/x) is on H5.
Note that, with the exception of finitely many cases, only one of the latter
two points can lie on H5. By the above calculation of the fibers of 	 and
the evident symmetry of ψ, the assertion follows.

Now we are ready to prove Theorem 1.2. Note that F13 has good reduc-
tion at p = 5, hence so do H5 and X. Let X̃ denote a smooth projective
model of the reduction of X at p = 5. Applying Theorem 1.1 of [LT] (where
p = 5 and d = 1) gives

#X(Q) ≤ #X̃(F5) + 2.
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We first show that there are exactly 6 F5-rational points on X̃. Let H̃5 be
the reduction of H5 at p = 5. Also let X̃ denote the projectivization of the
singular model of X̃ obtained by reducing X at p = 5. We have morphisms
of curves

H̃5
Φ̃→ X̃

Π̃→ X̃ ,
where Π̃ is the normalization map and Φ̃ is the reduction of Φ at p = 5.
Clearly, any F5-rational point on X̃ maps to an F5-rational point on X̃ under
Π̃. It is straighforward to check that X̃ has exactly 7 points defined over F5,
namely the points (r, s) with coordinates (1, 1), (1, 3), (1, 4), (3, 1), (4, 3),
(4, 0), and the unique point at infinity. Now the point at infinity and each
of the first five affine points listed above is a nonsingular point on X̃ , so its
fiber under Π̃ consists of a unique F5-rational point on X̃. The point (4, 0)
on X̃ is singular. We claim that none of the points in its fiber under Π̃ is
defined over F5.

Suppose that this is not the case. Let P be an F5-rational point on X̃
such that Π̃(P ) = (4, 0). Let R be a point on H̃5 such that Φ̃(R) = P . Note
that R has coordinates (c, d) such that

d3 + 4d− 1 = 0, cd2 + d+ c2 = 0, c3 − 4c2 − 1 = 0.

Now, over F5, we have the factorizations d3 + 4d− 1 = (d− 2)(d2 + 2d+ 3)
and c3−4c2−1 = (c−3)(c2−c+2). Note that we cannot have (c, d) = (3, 2),
because then cd2 + d+ c2 6= 0. So we are left with three cases to consider:

Case 1: d = 2 and c 6= 3. Since P is F5-rational, the Galois conjugate
Rσ = (2/c, 2) of R satisfies Φ̃(Rσ) = P . In other words, Rσ is a 〈%〉-conjugate
of R, so it equals either (1/2, c/2) or (2/c, 1/c). Since c 6∈ F5, we get a
contradiction.

Case 2: d 6= 2 and c = 3. As in the previous case, the Galois conjugate
Rσ = (3, 3/d) equals either (1/d, 3/d) or (d/3, 1/3). Since d 6∈ F5, we get a
contradiction.

Case 3: d 6= 2 and c 6= 3. Note that 3d + 1 is a root of the poly-
nomial T 2 − T + 2, therefore, c = 3d + 1 or c = −3d. In the former
case, we have Rσ = (1 − 1/d, 3/d) and, as before, Rσ must equal either
(1/d, 3 + 1/d) or (d/(3d+ 1), 1/(3d+ 1)), a contradiction, since d 6∈ F5. In
the latter case, Rσ = (1/d, 3/d) and, as before, it must equal either (1/d,−3)
or (−1/3,−1/3d), a contradiction, since d 6∈ F5. This proves the claim.

Therefore, there are exactly 6 F5-rational points on X̃, so there are at
most 6+2 = 8 Q-rational points on X. One of these points is the projection
of a Q-rational point on H5, so it must be discarded. Therefore there are at
most 7 Q-rational points on X which lift to cubic points on H5, so there are
at most 21 cubic points on H5, and this is our upper bound. As explained
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in [T3], the six known cubic points on H5 (obtained by intersecting H5 with
the line X + Y + Z = 0 or the conic XY + YZ + ZX = 0) do not lift to
cubic points on F13. Hence, there are at most 15 cubic points on F13 and
this completes the proof.
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