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1. Introduction. The purpose of the present paper is to give an ex-
plicit application of equidistribution of Hecke points to the problem of small
solutions of linear congruences modulo primes. Let p be an odd prime. For
a random system of d linear congruences in n variables modulo p, we shall
ask how many “small” solutions it has. One typically expects the smallest
solution to be of size pd/n, and accordingly we shall study the number of
solutions with size comparable to pd/n. We will show that the answer has a
limit distribution as p→∞.

Questions of a similar flavour for varieties of higher degree have been
studied, i.e. given an affine variety V ⊂ An over Z/pZ of codimension d, it
may be regarded as defining a system of polynomial congruences for n in-
tegers (x1, . . . , xn) ∈ Zn. One can ask (if very optimistic) whether there

always exists an integral solution so that max1≤i≤n |xi| ≤ Cpd/n, for some
constant C depending only on the invariants of V , e.g. degree. This is easily
seen to be false, but it turns out that one may prove weaker assertions of this
nature: see, for example, [L]. The present paper shows that in the seemingly
easy case of linear varieties, the small solutions exhibit interesting statistical
properties which are, somewhat surprisingly, related to automorphic forms.

The question of small solutions of linear congruences is also closely re-
lated to the study of fractional parts of linear forms (cf. Section 7 below),
which have been investigated by a number of authors using ergodic the-
ory: see, e.g., Marklof [M1]. In our context, we shall use automorphic forms
and spectral theory in place of ergodic theory; we are therefore able to give
explicit error estimates.
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The application of the spectral theory of automorphic forms to certain
Diophantine questions in number theory is not new; see, for instance, Sar-
nak’s ICM address [Sa2]. Hecke equidistribution in particular has been stud-
ied in great generality by Clozel, Oh and Ullmo in [COU]. Our problem
involves passing from smooth to sharp cutoff test functions in the equidis-
tribution results; for this we give a simple way of optimizing the harmonic
analysis (Section 2). Our methods here allow us to get sharper error esti-
mates than previous authors (see comments after Theorem 2). The applica-
tion of Hecke equidistribution on SLn(R) to the case of homogeneous linear
congruences is carried out in Section 3.

We will also make use of the non-reductive group SLn(R)n Rn, and es-
tablish some results about its spectrum that may be of independent interest.
(Similar non-reductive groups have found applications in other works which
use ergodic theory, for example [K], [EM] and [M2]; the spectral bounds that
we discuss here allow for error estimates, and we hope they will be useful
in other contexts.) These results are established in Section 4 and applied to
the statistics of inhomogeneous linear congruences in Section 5.

In the case of SL2(R)n R2 we go further. By explicit geometric consid-
erations we show how to obtain a better error term than is obtainable by
“general representation-theoretic considerations” (Section 6). This involves
a careful analysis of the smoothness at the boundary for several subsets of
SL2(R)n R2.

We now give a typical result; prior to doing so, we fix some notation
that will be valid throughout the paper. Firstly, recalling that p will always
denote an odd prime, we will repeatedly identify Fp = Z/pZ with the set
{−(p − 1)/2,−(p − 3)/2, . . . , (p − 1)/2}. Correspondingly, we will identify
Frp = (Z/pZ)r with the set {−(p−1)/2,−(p−3)/2, . . . , (p−1)/2}r. Secondly,
by an affine line or affine hyperplane in a vector space V we mean a translate
of a (usual) line or hyperplane; thus, for instance, the linear congruence
x+ y + z ≡ 1 (mod p) defines an affine hyperplane in (Z/pZ)3. With these
conventions:

Theorem 1. Let K > 0 be fixed. Let p be a prime, and B the subset of
(Z/pZ)3 defined by {|xi| ≤ Kp2/3 : 1 ≤ i ≤ 3}. There are real positive con-
stants cr, for r a non-negative integer , with the property that

∑∞
r=0 cr = 1,

and so that the number of affine lines in (Z/pZ)3 that intersect B in precisely

r points is crp
4(1 +Or(p

−1/12)).

Thus the probability that a system of two linear congruences a1x+b1y+
c1z ≡ d1, a2x + b2y + c2z ≡ d2 (mod p) has exactly r solutions in the box
(x, y, z) ∈ [−Kp2/3,Kp2/3]3 converges to cr as p→∞. Note that one could

also make the implicit constant in O(p−1/12) explicit.
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The corresponding statement for usual (non-affine) lines in (Z/pZ)3 (i.e.
lines passing through (0, 0, 0)) is significantly easier, as it only uses SL3.

This theorem holds (with the appropriate modifications) for affine hy-
perplanes of any dimension in any (Z/pZ)n. In the case n = 2 we have
determined the constants cr explicitly for r or K small, by explicit com-
putation of the relevant volumes in SL2(R) n R2 (as well as in SL2(R), for
the case of homogeneous congruences); see Section 8. The formulas obtained
generalize results of Mazel and Sinai [MS] in the context of Diophantine ap-
proximation (cf. Section 7). It is interesting to note that the cr do not vary
smoothly with K, the parameter that controls the size of the box; a similar
phenomenon occurs in [EM].

Our approach of course owes much to previous authors. The notion of
“smooth set” that we use appeared (as “well-rounded”) in the paper [EsM]
of Eskin–McMullen. The estimates for Hecke operators that are used in
Section 3 are already in [COU], and Sobolev norms are used elegantly in
[GO]. The computations in Section 8 are inspired by the method of Elkies
and McMullen [EM, pp. 124–131].

We would like to thank T. Ekholm, J. Marklof, S. Janson, P. Sarnak and
F. Strömberg for useful and inspiring discussions.

2. Harmonic analysis on Lie groups. The material in this section
contains no essentially new ideas; we do however note in Lemma 2 a very
simple method for obtaining essentially sharp (within ε) pointwise estimates
for functions in terms of their Sobolev norms without explicit interpolation.
This will later allow us to get estimates for Hecke equidistribution with
sharp cutoff functions, better than those obtained by previous authors (cf.
Theorem 2).

Let G be a real Lie group, and Γ ⊂ G a lattice. Fix a basis {Xi} for
the Lie algebra of G. If V is any unitary G-representation, we define the
Sobolev norm

(1) Sk(v) =

√ ∑

ord(D)≤k
‖Dv‖22,

the sum being over all monomials in the Xis of degree ≤ k. This norm
depends on the choice of basis only up to a constant; in each of our appli-
cations, we will regard a basis {Xi} as having been fixed for all time, and
we will make use of it without explicit mention.

Throughout this paper, by representation we mean unitary representa-
tion.

If X is a metric space, S ⊂ X, and δ > 0, we set B(S, δ) to be the
δ-neighbourhood of S in X. We further set ∂εS = B(S, ε) ∩B(X − S, ε).
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If X is a metric space endowed with a measure ν, we say a subset S ⊂ X
is K-smooth if ν(∂εS) ≤ Kε (this being assumed for ε ≤ 1, say). We say it
is smooth if it is K-smooth for some K.

Finally, suppose that X is as above (a metric space endowed with a
measure ν), and additionally suppose that it is a smooth manifold and G
acts on X smoothly and in a measure-preserving fashion. Then L2(X) is a
unitary G-representation. If f ∈ C∞(X) is any smooth function, we may
define the k-Sobolev norm Sk(f) formally according to (1), even if f or its
derivatives do not belong to L2(X); with this definition it is possible that
Sk(f) =∞.

To avoid confusion, we denote by µ a (left) Haar measure on G and by vol
the standard Lebesgue measure on Rn. For definiteness, we will normalize
so that µ(Γ\G) = 1.

We now set X = Γ\G. We fix a Riemannian metric d on G, left invariant
for the G-action. Let Uε be the ε-neighbourhood of 1 ∈ G. The metric d
descends to a Riemannian metric on X = Γ\G that we also denote by d.
In particular, for x, y ∈ X, one has d(x, y) < ε if and only if x ∈ yUε. We
endow X with the G-invariant measure with total mass 1. As above, we have
a notion of Sobolev norm Sk(f) for f ∈ C∞(X).

For each δ ≤ 1 we fix kδ to be a positive smooth compactly supported
test function on G, so that:

(1)
�
G kδ(g) dg = 1;

(2)
�
G |Dkδ(g)| dg �j δ

−j for any D, a monomial in the Xis of order j;

(3) Supp kδ ⊂ Uδ.
Our first lemma concerns approximating the characteristic function of a

smooth set by C∞ functions. Let us recall that if G acts on the space X
and f is a function on X, we define the convolution

f ? kδ(x) = �
g∈G

f(xg)kδ(g
−1) dg.

Lemma 1. Let T ⊂ X be K-smooth, and let eT be its characteristic
function. For each 0 < δ ≤ 1/2 there exist functions e−,δ and e+,δ in C∞(X)
so that for all j ≥ 1 one has:

0 ≤ e−,δ ≤ eT ≤ e+,δ ≤ 1;(2)

Sj(e−,δ), Sj(e+,δ)�j K
1/2δ1/2−j;(3)

‖e±,δ(x)− eT (x)‖L1 ≤ 2Kδ.(4)

Proof. Let T− = T − (∂δT ) and T+ = T ∪ ∂δT . Now set eT− to be the
characteristic function of T−, and set e−,δ = eT− ? kδ; similarly define e+,δ.
It is easy to see the first and last conditions.
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Let D be any monomial in the Xis of degree ≤ j. Then De−,δ = eT− ?
(Dkδ) is supported in a 2δ-neighbourhood of the boundary of T , in particular
a set of volume ≤ 2Kδ; further ‖De−,δ‖∞ ≤

�
G |Dkδ(g)| dg �j δ

−j . One
obtains immediately the stated result.

The following lemma allows us to give an almost sharp (to within ε)
pointwise bound of Sobolev type.

Lemma 2 (Pointwise bounds). Let M = dim(G)/2. Let k = [M ] and
{M} = M − k. Let x ∈ X and f ∈ C∞(X). Then

|f(x)| �x,ε Sk(f)1−{M}−εSk+1(f){M}+ε.

Proof. Indeed, by choosing a coordinate chart, it suffices to prove this
for Rn, where the result follows (for example) from Hölder’s inequality and
the usual Sobolev estimate.

It is more precise and more canonical to use interpolation (in fact, evi-
dently the lemma above is an approximate form of interpolation). However,
this very simple lemma allows us to get estimates that are just as good with
a minimum of technical overhead!

We now give a variant of Lemma 1, needed in Section 6 below. Specifi-
cally, the above lemma concerned approximation of a characteristic function
by smooth functions. The next lemma concerns approximation of functions
that have (roughly speaking) one more derivative of smoothness than a
characteristic function (e.g. the absolute value function on R).

Lemma 3. Let f : X → R be a continuous function such that for some
positive constants K,C,C1, C2, . . . , the following assumptions hold :

(i) |f(x)− f(y)| ≤ Cd(x, y) for all x, y ∈ X;
(ii) there is a K-smooth closed subset S ⊂ X of measure 0 such that

f ∈ C∞(X − S);
(iii) |Df(x)| ≤ Cjδ

1−j for each monomial D in the Xis of order j ≥ 1
and all 0 < δ < 1, x ∈ X −B(S, δ).

Then for each 0 < δ < 1/2 there exist functions e−,δ and e+,δ in C∞(X)
such that :

e−,δ ≤ f ≤ e+,δ;(5)

Sj(e−,δ), Sj(e+,δ)�
{

1 for j = 1,

δ3/2−j for j ≥ 2;
(6)

‖e±,δ − f‖L1 � δ2 log(δ−1).(7)

(The implied constants depend only on the constants K,C,C1, C2, . . . , and
on j.)

Proof. The idea is to smoothen f by convolving it with a kδ, and then to
modify the result so as to ensure that it is either larger than or less than f .
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Applying Taylor’s formula to the function t 7→ f(x exp tY ) for x ∈ X
and Y in the Lie algebra of G, and using (iii) for j = 2, we find that there
is a positive constant A which only depends on C1, C2, such that for all
sufficiently small δ1 > 0 and all x ∈ X −B(S, δ1), δ ∈ (0, δ1/2],

∣∣1
2(f(xg) + f(xg−1))− f(x)

∣∣ ≤ Aδ−1
1 δ2, ∀g ∈ Uδ ⊂ G.(8)

We increase A, if necessary, so that (8) holds whenever 0 < 2δ ≤ δ1 ≤ 1. Now
let kδ be as before, and impose the extra assumption that kδ(g

−1) = kδ(g)
for all g ∈ G. We then have f ? kδ(x) = 1

2

�
G(f(xg) + f(xg−1))kδ(g) dg, and

hence by (8), if 0 < 2δ ≤ δ1 ≤ 1,

|f ? kδ(x)− f(x)| ≤ Aδ−1
1 δ2, ∀x ∈ X −B(S, δ1).(9)

We also have, because of (i),

|f ? kδ(x)− f(x)| ≤ Cδ, ∀x ∈ X.(10)

Now let 0 < δ < 1/2 be given. For any monomial D = Xi1 · · ·Xij (j ≥ 1)
we have, by (i) and (ii),

D[f ? kδ](x) = Xi1 [f ? Xi2 · · ·Xijkδ](x)

= �
G

(Ad(h)Xi1)f(xh−1) ·Xi2 · · ·Xijkδ(h) dh.

But {Ad(h)(Xi1) : h ∈ U1/2} is a bounded subset of the Lie algebra of G, and

hence ‖D(f ?kδ)‖∞ � δ1−j. Similarly, if x /∈ B(S, 2δ) we have D[f ?kδ](x) =�
G(Ad(h)D)f(xh−1) · kδ(h) dh, and hence, writing M = [log2 δ

−1] ∈ Z+ and

using (iii), we have D[f ? kδ](x) �j (2mδ)1−j for all m = 1, . . . ,M and all
x ∈ X−B(S, 2mδ). Using these bounds and decomposing X into the regions
B(S, 2δ), B(S, 2m+1δ)−B(S, 2mδ) for m = 1, . . . ,M , and X −B(S, 2M+1δ)
(which have measures � δ, � 2mδ and � 1, respectively), we obtain

Sj(f ? kδ)�
{

1 if j = 1,

δ3/2−j if j ≥ 2.
(11)

For any δ1 > 0 we define uδ1 = 1B(S,2δ1) ? kδ1 , and let

e±,δ = f ? kδ ±max(C,A)
(
δ2 + δ

M+1∑

m=1

21−mu2mδ

)
.

Note that 0 ≤ uδ1 ≤ 1 and uδ1(x) = 1 for all x ∈ B(S, δ1). Hence (5)
follows easily from (9) and (10). Furthermore, arguing as in the proof of

Lemma 1, we find that Sj(uδ1)�j,K δ
1/2−j
1 for each j ≥ 1 and 0 < δ1 < 10.

Combining this with (11), we obtain (6). Finally, decomposing X as before
and using (9), (10) we find that ‖f ? kδ − f‖1 � δ2 log(δ−1). We also have
‖uδ1‖1 ≤ ‖1B(S,3δ1)‖1 � δ1 for 0 < δ1 < 10. Hence we obtain (7).
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3. Homogeneous linear congruences. Let Ω be a compact subset
of Rn. We shall assume that Ω contains a neighbourhood of the origin,
and that Ω satisfies a certain mild smoothness condition (see below). For
instance, if K > 0, the sets Ω = {(x1, . . . , xn) :

∑
i |xi|2 ≤ K} or Ω =

{(x1, . . . , xn) : |xj| ≤ K for all 1 ≤ j ≤ n} are both certainly admissible.
We shall now study how many solutions a system of j linear congruences

mod p has in the set pj/nΩ; the final result is stated in Theorem 2.
Set in this section Γ = SLn(Z), G = SLn(R),X = Γ\G. As usual, Γ\G is

identified with the moduli space of unimodular rank n lattices, via g 7→ Zng.

3.1. Hecke operators for SLn. Let Tp,j be the jth Hecke operator at p,
explicitly described as follows: if L is a lattice, Tp,j is the following formal
linear combination of lattices:

Tp,j =

∑
L/L′≡(Z/p)j [(1/p

j/n)L′]
∑

L′ 1
.

Then Tp,j induces a correspondence from SLn(Z)\SLn(R) to itself, whereby
it induces an endomorphism of L2(SLn(Z)\SLn(R)); we shall use the nota-
tion Tp,j to also denote this endomorphism. To compute the operator norms
of the Tp,j , we invoke some representation theory. Let µTj be the restriction
of Haar measure to the following GLn(Zp)-double coset in GLn(Qp):

(12) GLn(Zp)diag(p−1, p−1, . . . , p−1, 1, . . . , 1)GLn(Zp).

We normalize µTj so its total mass is 1. Here diag(a1, . . . , an) refers to the

diagonal matrix with entries a1, . . . , an, and there are exactly j p−1s in the
matrix diag(p−1, p−1, . . . , p−1, 1, . . . , 1).

It is then easy to verify that the action of Tp,j corresponds, in the adelic
viewpoint, to the action of µTj on functions that is given by right convo-
lution. (To be precise, identify SLn(Z)\SLn(R) with PGLn(Z)\PGLn(R).
This latter space may be identified with PGLn(Q)\PGLn(A)/Kf , where
A is the ring of adeles of Q and Kf =

∏
p PGLn(Zp), where p ranges over

finite places. Using this, one sees that a GLn(Zp)-bi-invariant measure on
GLn(Qp) acts on L2(SLn(Z)\SLn(R)).)

It is also known (cf. [T, O]) that the operator norm of µTj on any irre-
ducible representation of GLn(Qp) that is not one-dimensional is bounded

above by cnp
−min(j,n−j)/2 if n > 2; here cn depends only on n. If n = 2 there

is no such upper bound owing to the absence of property (T).
Furthermore, Tp,j acts on L2(Γ\G). Let L2

0(Γ\G) be the orthogonal com-
plement of the constants. We define, for 1 ≤ j ≤ n− 1 and n ≥ 2,

(13) β(j, n) =

{−1/2 + 7/64, j = 1, n = 2,

−min(j, n− j)/2, n > 2.
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Then, by the above remarks (for n > 2) and by the work of Kim and
Sarnak [KiS] (for n = 2), the operator norm of Tp,j acting on L2

0(Γ\G) is

�n p
β(j,n). (Implicitly, we are using the fact that the orthogonal complement

of the constants in L2(PGLn(Q)\PGLn(A)) does not weakly contain any
1-dimensional GLn(Qp)-subrepresentation; we omit the easy proof, cf. the
proof of Lemma 8 below.)

3.2. Homogeneous linear congruences and lattices. Set Ω̃r = {g ∈
SLn(Z)\SLn(R) : |Zng ∩ Ω| = r}. We must first ascertain that Ω̃r does
not have too badly behaved a boundary. Recall that the Haar measure µ is
normalized so that µ(SLn(Z)\SLn(R)) = 1.

Lemma 4. Suppose Ω is smooth (with respect to Lebesgue measure) and

contains a neighbourhood of the origin. Then Ω̃r is also smooth (with respect
to Haar measure).

Proof. Take 0 < ε < 1. Let Uε be an ε-neighbourhood of the identity in

SLn(R). Suppose g ∈ ∂εΩ̃r. Then there exist u, u′ ∈ Uε so that gu ∈ Ω̃r and

gu′ /∈ Ω̃r.
It follows |Zng ∩Ωu−1| = r and |Zng ∩Ωu′−1| 6= r. There is a constant

C (depending on how large Ω is) so that the symmetric difference of Ωu−1

and Ωu′−1 is contained in ∂CεΩ. (Indeed, if h ∈ Uε and x ∈ Rn, one has
‖xh− x‖ � ε‖x‖.)

In particular the lattice Zng must contain a point in ∂CεΩ. Note that for
ε sufficiently small, ∂CεΩ does not contain the origin. By Siegel’s theorem
(see [Si, Lecture XV]) the Haar measure of the set of such g is at most
vol(∂CεΩ) = O(ε).

Lemma 5. Let Ω satisfy the same hypotheses as in Lemma 4. Let β(j, n)
be as in (13) and let ε > 0. Then the number of Hecke translates (under Tp,j)

of Zn that lie in Ω̃r is

µ(Ω̃r) +OΩ,r,ε(p
2β(j,n)/n2+ε).

Proof. We have seen that Ω̃r is smooth.
Let f be an arbitrary smooth L1 function on SLn(Z)\SLn(R), set f0 =

f −
�
Γ\G f dµ, and k = [(n2− 1)/2], α = (n2− 1)/2− k. The operator norm

of Tp,j , considered as an endomorphism of L2
0(Γ\G) with the usual norm,

bounds from above the operator norm of Tp,j considered as an endomorphism
of the corresponding k-Sobolev spaces (i.e. the completion of the space of
smooth vectors in L2

0(Γ\G) with respect to Sk). This is a straightforward
deduction from the fact that Tp,j commutes with the G-action; in fact the
norms are equal, but we do not need this.

Combining this, Lemma 2, and the definition of β(j, n) (see (13) and the
remarks that follow), we obtain
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(14) Tp,jf(Zn)− �
Γ\G

f dµ = Tp,jf0(Zn)�ε p
β(j,n)Sk(f0)1−α−εSk+1(f0)α+ε.

Let e
Ω̃r

be the characteristic function of Ω̃r. We have seen in Lemma 1
that one may approximate e

Ω̃r
from above and below by smooth functions

e
Ω̃r,±,δ. We apply (14) with f = e

Ω̃r ,±,δ. The estimates on Sobolev norms

supplied by Lemma 1 yield

Tp,jeΩ̃r(Z
n) = µ(Ω̃r) +O(δ) + pβ(j,n)O(δ1/2−(n2−1)/2−ε).

Choosing δ optimally, one obtains (possibly for a new ε)

e
Ω̃r

(Zn) = µ(Ω̃r) +O(p2β(j,n)/n2+ε).

Note that a hyperplane H ⊂ (Z/pZ)n of codimension j determines,
by taking its inverse image in Zn, a sublattice LH ⊂ Zn so that Zn/L ≡
(Z/pZ)j . As H varies through all hyperplanes in (Z/pZ)n, the corresponding

(rescaled) lattices p−j/nLH vary through the Hecke orbit of Zn under Tp,j .
With this, we may translate the previous result into a statement about hy-
perplanes. Note that the number of hyperplanes of codimension j in (Z/pZ)n

is pj(n−j)(1 +O(p−1)); utilizing this, we obtain:

Theorem 2. Fix j and let Ω ⊂ Rn be compact. Let ε > 0. For 0 ≤ r
≤ ∞ set cr = µ({g ∈ SLn(Z)\SLn(R) : |Zng∩Ω| = r}). Assume that Ω con-
tains a neighbourhood of the origin and is smooth with respect to Lebesgue
measure. Then the number of hyperplanes of codimension j in Fnp that in-

tersect pj/nΩ in precisely r points is

crp
j(n−j)(1 +OΩ,r,ε(p

2β(j,n)/n2+ε)).

Here β(j, n) is as in (13). In particular , as p → ∞, a random system of j
linear congruences in n variables modulo p has exactly r solutions in pj/nΩ
with probability cr.

By way of comparison, let us note that Gan and Oh in [GO] use Hecke
equidistribution to study points on certain varieties admitting a group ac-
tion (cf. [GO, Thm. 4.7]). The idea of the above theorem is similar, but in
the present context our methods yield considerably sharper error estimates
(indeed the exponent of the above error term is about twice as good as that
which would be obtained from [GO, Thm. 4.7]).

4. Analysis on the space of affine lattices. In this section we set
up the necessary framework to prove a version of Theorem 2 in the context
of affine hyperplanes. The main result is the computation of the operator
norm of an “affine Hecke operator”; this is done by reducing to the case of
the usual Hecke operators Tp,j on GLn.
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The reader who wishes to take the proof for granted may read only
the definition of these operators at the start of Section 4.1 and proceed to
Section 5.

4.1. Hecke operators for affine lattices. Let AL(V ) denote the space of
affine lattices in Rn of covolume V . Here an affine lattice of covolume V is
a translate of a lattice of covolume V . These form a homogeneous space for
ASLn(R) = SLn(R)nRn. If L is an affine lattice, the set (L−L) = {λ1−λ2 :
λ1, λ2 ∈ L} is a usual lattice of the same covolume. One has a natural family
of “Hecke operators”: for each 1 ≤ j ≤ n− 1 we define a correspondence

AL(V )
ATp,j−−−→ AL(pjV )

which is equivariant for the ASLn(R)-action. Namely,

(15) ATp,j(L) =

∑
L′⊂L,(L−L)/(L′−L′)≡(Z/p)j L

′
∑

L′ 1
.

This associates to a lattice of covolume L a formal sum of lattices of covolume
pjV . In particular, it induces a map from L2(AL(V )) to L2(AL(p−jV )); this
map will also be denoted ATp,j . Our aim (realized eventually in Lemma 9)
is to compute its norm when restricted to the complement of the constants;
it will be no worse than for the usual SLn-Hecke operator.

Let AL =
⋃
V AL(V ). This is a homogeneous space for AGLn(R) =

GLn(R) n Rn, which we shall view as acting on the right, and it possesses
an invariant measure for this action (a word of caution: AGLn(R) is not
unimodular and it has no center). For any ring R, we consider AGLn(R) =
{(A,v) : A ∈ GLn(R), v ∈ Rn} acting on the right on Rn via x · (A,v) =
xA + v. The multiplication rule is (A,v).(A′,v′) = (AA′,vA′ + v′). With
this definition, it is easy to verify that the stabilizer of the affine lattice Zn
under the AGLn(R)-action is AGLn(Z).

Let Z[1/p] denote the ring of p-integers (rational numbers whose denom-
inators are divisible by no primes other than p), i.e. the localization of Z
at p.

Let Zp ⊂ Qp, as usual, be the maximal compact subring of the p-adic
numbers. Considering Z[1/p] as a subset of Qp, we have Z[1/p] ∩ Zp = Z,
Z[1/p] + Zp = Qp and Z×p · Z[1/p]× = Q×p .

AGLn(Qp) acts on “affine Zp-lattices in Qnp”, i.e. translates of a free,
rank n, Zp-submodule of Qnp . Set Kp ⊂ AGLn(Qp) to be the stabilizer of Znp
in this action. Thus Kp = AGLn(Zp) = {(A,v) : A ∈ GLn(Zp), v ∈ Znp}.

Lemma 6. AL is naturally identified with AGLn(Z[1/p])\AGLn(R) ×
AGLn(Qp)/Kp.

Note that here we consider AGLn(Z[1/p]) as a subgroup of AGLn(R)×
AGLn(Qp) by means of the natural diagonal embedding Z[1/p] ↪→ R×Qp.
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Proof. Indeed, consider the map

AGLn(Z)\AGLn(R) ↪→ AGLn(Z[1/p])\AGLn(R)× AGLn(Qp)/Kp

which is induced from the inclusion g 7→ (g, 1) of AGLn(R) into AGLn(R)×
AGLn(Qp). It is an inclusion as AGLn(Z[1/p]) ∩Kp = AGLn(Z). We claim
it is surjective. It suffices to verify that AGLn(Qp) = AGLn(Z[1/p]) ·Kp.

Note first that det(GLn(Z[1/p]) · GLn(Zp)) = Z[1/p]× · Z×p = Q×p . On
the other hand, SLn(Z[1/p]) is dense in SLn(Qp) (as follows from strong
approximation for SLn) and we see that GLn(Z[1/p]) · GLn(Zp) is dense
in GLn(Qp). This implies GLn(Z[1/p]) · GLn(Zp) = GLn(Qp) (for, given
g ∈ GLn(Qp), the coset g · GLn(Zp) must intersect GLn(Z[1/p]) · GLn(Zp)
by the denseness just established).

Therefore the set of products

{(AA′,vA′ + v′) : A ∈ GLn(Z[1/p]), A′ ∈ GLn(Zp), v ∈ Z[1/p]n, v′ ∈ Znp}
projects surjectively onto the first factor. On the other hand, given A ∈
GLn(Z[1/p]) and A′ ∈ GLn(Zp) the set of vectors (vA′+v′) = (v+v′A′−1)A′

exhausts Qnp , as v varies through Z[1/p]n and v′ varies through Znp . Thus
AGLn(Z[1/p]) ·Kp = AGLn(Qp).

This allows us to transfer questions about the action of ATp,j to questions
about representation theory.

In fact, observe that the previous lemma ensures that anyKp-bi-invariant
measure on AGLn(Qp) acts on L2(AL). It is not hard to construct such a
measure whose action on AL corresponds to ATp,j (defined in (15)). Namely,
define µATp,j to be the restriction of Haar measure to

(16) {(A,v) : A ∈ GLn(Zp)diag(p−1, . . . , p−1, 1, . . . , 1)GLn(Zp), v ∈ Znp ·A}
= Kp · (diag(p−1, . . . , p−1, 1, . . . , 1),0) ·Kp,

normalized so the total mass of µATp,j is 1. (Here there are exactly j p−1s

in diag(p−1, . . . , p−1, 1, . . . , 1).) In order to verify that the action of µATp,j
coincides with that of ATp,j one notes that, since the actions of µATp,j and

ATp,j on L2(AL) are AGLn(R)-equivariant, it suffices to check that they
coincide when applied to Zn. This is easily done.

Note that the resulting measure is independent of whether one chooses
a left or right Haar measure on AGLn(Qp).

For each V > 0, we normalize the ASLn(R)-invariant measure on AL(V )
so that the total mass is 1. We also fix any AGLn(R)-invariant measure
on AL.

Lemma 7. Let V > 0. Let L2
0(AL(V )) denote the orthogonal comple-

ment of the constants in L2(AL(V )). Let C ⊂ L2(AL) denote the subspace
of L2(AL) consisting of functions that are essentially constant on each
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subset AL(V ) ⊂ AL. Let L2
0(AL) be the orthogonal complement of C in

L2(AL). Then the operator norm of ATp,j , considered as a map L2
0(AL(V ))

→ L2(AL(p−jV )), is bounded above by the operator norm of ATp,j , consid-
ered as a map L2

0(AL)→ L2(AL).

Proof. Fix s, a non-negative continuous compactly supported bump
function on R+ centred around 1. For L an affine lattice, we denote by
vol(L) the covolume of L.

For any V and any function f on AL(V ), let Ff be the function on AL
given by Ff (L) = s(vol(L)/V )f(L · (V/vol(L))1/n). Then one has ‖Ff‖2 =
C‖f‖2 for some constant C that depends on s, V and the choice of measure
on AL. One may also check that f ∈ L2

0(AL(V )) if and only if Ff ∈ L2
0(AL).

On the other hand, one verifies that ATp,jFf = FATp,jf , and one deduces
the result.

4.2. Computation of the norm of ATp,j on L2
0(AL) for n ≥ 3. In this

section we apply some representation theory to compute the operator norm
of ATp,j : L2

0(AL)→ L2(AL).
We now recall the representation theory for AGLn(Qp). Let N be the

unipotent radical of AGLn, so N(Qp) = Qnp , and let ψ be a non-zero char-
acter of N(Qp); let Pψ be the stabilizer of ψ in GLn(Qp). (Here, GLn(Qp) is
viewed as acting on N(Qp), and therefore as the character group of N(Qp),
by conjugation.)

Then, by the Mackey theory, an irreducible representation of AGLn(Qp)
is either:

(1) lifted from an irreducible representation of GLn(Qp), via the natural
map AGLn(Qp)→ GLn(Qp) with kernel N(Qp); or

(2) induced, of the form

Ind
AGLn(Qp)
Pψ ·N(Qp) (σ.ψ).

Here σ is an irreducible representation of Pψ, and σ.ψ is the repre-
sentation of Pψ ·N(Qp) that is σ when restricted to Pψ, and is scalar
multiplication by ψ(n) when restricted to N(Qp).

Lemma 8. The operator norm of µATp,j (defined as in (16)) on L2
0(AL)

is �n p
β(j,n).

Proof. We give the proof for n ≥ 3. For n = 2 the result remains valid
and may be proved by a direct spectral decomposition of L2

0(AL) (roughly
speaking, “Fourier analysis along N”); since we present in subsequent sec-
tions an alternate and very direct approach to the case n = 2 we will not
give details here.

Set ÃL = AGLn(Z[1/p])\AGLn(R) × AGLn(Qp). Then AL is the quo-

tient of ÃL by the compact group AGLn(Zp).
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Note that the right-invariant Haar measure on AGLn(R)×AGLn(Qp) is

invariant under left multiplication by AGLn(Z[1/p]). We equip ÃL with the
quotient measure.

There is a “determinant” map ÃL → Z[1/p]×\R× × Q×p . Let L2
0(ÃL)

be the orthogonal complement in L2(ÃL) to functions pulled back from
Z[1/p]×\R× ×Q×p . (More precisely, take the orthogonal complement of the
pullbacks of continuous, compactly supported functions.) Then one sees

that, under the map ÃL → AL, functions in L2
0(AL) pull back to func-

tions in L2
0(ÃL).

L2
0(ÃL) may be decomposed as a direct integral of AGLn(Qp)-representa-

tions which do not involve any one-dimensional irreducible representations.
This can be proved by an explicit spectral decomposition, or more abstractly

as follows: suppose that the spectral support of a non-zero F ∈ L2
0(ÃL) were

supported entirely on 1-dimensional representations of AGLn(Qp). In partic-
ular, F is ASLn(Qp)-invariant. Now, convolve F with an appropriate com-
pactly supported, continuous function in AGLn(R) × AGLn(Qp); by doing
this, we may replace F by F ′ 6= 0 which is continuous and also ASLn(Qp)-
invariant. One verifies by an approximation argument (viz. ASLn(Z[1/p]) is
dense in ASLn(R)) together with the continuity of F ′ that F ′ is ASLn(R)-
invariant. Thus F ′ is ASLn(R) × ASLn(Qp)-invariant; it is therefore the
pullback of a function on Z[1/p]×\R× × Q×p . On the other hand, since

F ′ ∈ L2
0(ÃL), F ′ is perpendicular to such pullbacks, so ‖F ′‖22 = 0, which is

a contradiction.
It therefore suffices to bound the operator norm of µATp,j in each of

the types of representation considered above, excluding case (1) when the
representation of GLn(Qp) is one-dimensional.

(1) Representations lifted from GLn(Qp): It is clear from the definitions—
see remarks before (13)—that the operator norm of µATp,j on a representa-
tion that is lifted from an infinite-dimensional representation of GLn(Qp) is

bounded by pβ(j,n). (Observe that the push-forward of the measure µATp,j
to GLn(Qp) is just the GLn(Zp)-bi-invariant measure corresponding to the
usual Hecke operator Tj (for GLn(Qp))—see (12).) Note this requires n ≥ 3!

(2) Induced representations: It is formal to see that the operator norm

of µATp,j in the induced representation Ind
AGLn(Qp)
Pψ ·N(Qp)

(σ.ψ) is bounded by the

corresponding operator norm in

W = Ind
AGLn(Qp)
Pψ ·N(Qp) (1),

the induction of the trivial representation. N(Qp) acts trivially on W , so W
is the extension of a certain unitary GLn(Qp)-representation. Further, one
may check that W does not weakly contain any 1-dimensional representation
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of GLn(Qp)—indeed, directly from the definition, one may verify that W is
a direct integral of representations of GLn(Qp) that are induced from the
parabolic of type (n− 1, 1).

One verifies as in case (1) that the operator norm of µATp,j in this case

is again bounded by pβ(j,n).

We conclude that the operator norm of µATp,j on L2
0(ÃL) (and so also

the operator norm of ATp,j acting on L2
0(AL)—see Lemma 7 for definitions)

is bounded by pβ(j,n).

Combining Lemma 7, the definition of µATp,j in (16), and Lemma 8, we
have proved:

Lemma 9. The operator ATp,j , considered as a map from L2
0(AL(V )) to

L2
0(AL(p−jV )), has operator norm �n p

β(j,n).

5. Inhomogeneous linear congruences. We fix a left-invariant Rie-
mannian metric on ASLn(R). For V ∈ R+, set L0(V ) = V 1/n · Zn; then
g 7→ L0(V )g identifies AL(V ) with a quotient of ASLn(R), and we give it
the induced metric. We assign to AL(V ) the measure µ that is invariant
under ASLn(R) and has total mass 1.

Set Ω̃r = {L ∈ AL(pj) : |L∩Ωpj/n| = r}. Warning: Note that the map

from AL(V ) to AL(pjV ) defined as “scaling by pj/n” does not commute
with the ASLn(R)-action.

Lemma 10. Let Ω ⊂ Rn be smooth with respect to Lebesgue measure.

Then Ω̃r, considered as a subset of AL(pj), is C-smooth for a constant C
that is independent of p.

Proof. We mimic the proof of Lemma 4. Let Uε be an ε-neighbourhood of

the identity in ASLn(R), and suppose L ∈ ∂εΩ̃r. Then there exist u, u′ ∈ Uε
so that Lu ∈ Ω̃r and Lu′ /∈ Ω̃r.

It follows that |L∩Ωpj/nu−1| = r and |L∩Ωpj/nu′−1| 6= r. Now there is
a constant C so that the symmetric difference of Ωpj/nu−1 and Ωpj/nu′−1

has volume ≤ Cpjε, and L contains at least one point belonging to this
symmetric difference. Denote this symmetric difference by S.

Now note—by a version of Siegel’s theorem for AL that is actually much
easier, since one can integrate first over translates of a given lattice—one has

vol{L ∈ AL(V ) : |L ∩ S| ≥ 1} ≤ V −1 vol(S). It follows that Ω̃r is smooth
as claimed. (Note that Ω containing a neighbourhood of the origin is not
necessary for this argument.)

Let f be a C∞ and L1 function on AL(pj), f0 = f −
�
f , and k =

[(n2 + n − 1)/2], α = (n2 + n − 1)/2 − k. Then, proceeding as in (14), and
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using Lemma 9, we see that

ATp,jf(Zn)− �
AL(pj)

f dµ = ATp,jf0(Zn)� pβ(j,n)Sk(f0)1−α−εSk+1(f0)α+ε.

We may now proceed exactly as before, applying Lemma 1 with X =
AL(pj). At this point it is important to note (since p is varying) that the
implicit constants furnished when applying Lemma 1 to X = AL(pj) do
not depend on p. This is immediate from the proof of Lemma 1; indeed the
implicit constant depends only on kδ.

Theorem 3. Fix j and let Ω ⊂ Rn be compact and smooth with respect
to Lebesgue measure. Set c′r = µ{g ∈ ASLn(Z)\ASLn(R) : |Zng ∩ Ω| = r}.
Let ε > 0. Then the number of affine hyperplanes of codimension j in Fnp
that intersect pj/nΩ in precisely r points is

c′rp
j(n−j+1)(1 +OΩ,r,ε(p

2β(j,n)/(n2+n)+ε)).

Here β(j, n) is as in (13). In particular , as p→∞, the corresponding system

of linear congruences has r solutions in pj/nΩ with probability c′r.

6. A stronger bound for n = 2. In this section we give an alternative
approach in the inhomogeneous case; this yields an improved error bound
for n = 2 and special choices of Ω. It seems that it should be possible to
extend this approach to the case n ≥ 3, but we have not carried this out.

Let Ω̃r be as in Section 5. The starting point of our approach here is
Lemma 11 below, which allows us to (roughly speaking) “push down” the

characteristic function of Ω̃r to SLn(Z)\SLn(R) and work only with the usual
Hecke operators on SLn(R). The main issue is then to get an understanding
of the smoothness of the pushed-down function on SLn(Z)\SLn(R); this is
effected in Proposition 1 by two very explicit computations, dealing with
the smoothness away from the cusp and near the cusp, respectively; both
these computations use n = 2 and the special choices of Ω. However, until
Proposition 1 we are able to work with general n and Ω.

Let Γ = SLn(Z), G = SLn(R), X = Γ\G, and let Tp,j be as in Section 3.
We fix r ∈ Z≥0 once and for all. Given Ω ⊂ Rn we define fΩ : X → [0, 1] as

fΩ(Γg) = vol({x ∈ (R/Z)n : |(Zn + x)g ∩Ω| ≤ r}).(17)

Now taking Ω ⊂ Rn to be fixed, for each δ > 0 we assume that we are given
some subsets Ω−,δ, Ω+,δ ⊂ Rn such that

Ω−,δ ⊂ Ω − ∂δΩ, Ω ∪ ∂δΩ ⊂ Ω+,δ.(18)

Lemma 11. Fix j, let Ω, Ω±,δ be as above, and keep p > diam(Ω)n/(n−j).
Let N(p) be the total number of affine hyperplanes of codimension j in Fnp ,
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and let NΩ,r(p) be the number of such hyperplanes that intersect pj/nΩ in

at most r points. Then, for δ = p−j/n
√
n/2,

Tp,jfΩ+,δ
(Zn) ≤ NΩ,r(p)

N(p)
≤ Tp,jfΩ−,δ(Zn).(19)

Proof. For L a sublattice of Zn and x ∈ Rn we define

g(x,L,Ω) = |(x+ L) ∩ pj/nΩ|.
We then have

N(p) = pj
∑

L

1, NΩ,r(p) = pj−n
∑

L

∑

x∈{0,1,...,p−1}n
I(g(x,L,Ω) ≤ r),

where I is the indicator function, and both L-sums are taken over all sub-
lattices L ⊂ Zn such that Zn/L ≡ (Z/pZ)j . It follows from (18) and our
choice of δ that

g(x+ x′, L,Ω−,δ) ≤ g(x,L,Ω) ≤ g(x+ x′, L,Ω+,δ)

for all x ∈ Rn and x′ ∈ [−1/2, 1/2]n. Hence, writing J = [−1/2, p− 1/2),

(20) pj−n
∑

L

�
Jn

I(g(x,L,Ω+,δ) ≤ r) dx

≤ NΩ,r(p) ≤ pj−n
∑

L

�
Jn

I(g(x,L,Ω−,δ) ≤ r) dx.

Note that for each L ⊂ Zn with Zn/L ≡ (Z/pZ)j we have pZn ⊂ L, and Jn

contains exactly pn−j points from each L-congruence class x+L. Hence the
above integrals

�
Jn . . . dx may be rewritten as pn−j

�
F . . . dx, where F is any

fundamental domain for Rn modulo L. Also note that p−j/nL is unimodular,
and (17) implies after scaling that

fΩ±,δ(p
−j/nL) = p−j �

F
I(|(L+ x) ∩ pj/nΩ±,δ| ≤ r) dx.

Hence it follows from the definition of Tp,j that (20) is equivalent to (19).

Lemma 12. Let Y ⊂ X be a compact subset and let Ω ⊂ Rn be K-
smooth. Let fΩ be as in (17). Then fΩ is uniformly Lipschitz on Y : There
is a constant C = C(Y,K,diam(Ω)) > 0 such that

|fΩ(x)− fΩ(y)| ≤ Cd(x, y), ∀x, y ∈ Y.(21)

Proof. Viewing fΩ as a function on SLn(R), it suffices to prove that given
any compact subset Y0 ⊂ SLn(R), there is some C = C(Y0,K,diam(Ω)) > 0
such that |fΩ(g1)− fΩ(g2)| ≤ Cd(g1, g2) for all g1, g2 ∈ Y0.
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Let AΩ,g = {x ∈ Rn : |(Zn + x)g ∩ Ω| > r}, so that fΩ(g) = 1 −
vol(AΩ,g/Zn). For each subset M ⊂ Zn we define

Ag(M) =
⋂

v∈M
(Ω − vg)−

⋃

v∈Zn−M
(Ω − vg).

Then, given g, for each x ∈ Rn there is a unique subset M ⊂ Zn for which
xg ∈ Ag(M), and x ∈ AΩ,g if and only if the corresponding set M has
|M | > r. For each w ∈ Zn we note that xg ∈ Ag(M) implies (x + w)g ∈
Ag(M−w); thus if the set corresponding to x isM then the set corresponding
to x+ w is M − w. Let ∼ be the equivalence relation on the subsets of Zn
which is defined by M1 ∼M2 ⇔ [∃w ∈ Zn : M1 = M2 − w].

Given a compact subset Y0 ⊂ SLn(R), we take c(Y0) > 0 so that |vg| ≥
c(Y0) · |v| for all g ∈ Y0, v ∈ Rn, and let D = diam(Ω)/c(y0). Then note
that if g ∈ Y0, then Ag(M) 6= ∅ implies |v − w| ≤ D for all v, w ∈ M . Let
F be the family of all subsets M ⊂ Zn satisfying |M | > r and |v − w| ≤ D
for all v, w ∈ M , and let F0 be a set of representatives for F/∼. Clearly
F0 is finite, and it is easy to give an upper bound for its cardinality which
only depends on D. It follows from our observations that if g ∈ Y0, then the
set

⊔
M∈F0

Ag(M)g−1 (a disjoint union) is a fundamental domain for AΩ,g
modulo Zn, and hence since g is unimodular,

fΩ(g) = 1−
∑

M∈F0

vol(Ag(M)), ∀g ∈ Y0.

Hence it suffices to prove that for each M ∈ F0 there is a constant C > 0
such that |vol(Ag1(M))− vol(Ag2(M))| ≤ Cd(g1, g2) for all g1, g2 ∈ Y0. We
may assume that 0 ∈M ; then note that Ag(M) may be expressed as a finite
intersection,

Ag(M) =
⋂

v∈BD

{
Ω − vg if v ∈M
{(Ω − vg) if v /∈M

}
,

where BD = {v ∈ Zn : |v| ≤ D} and { denotes complement. It follows that

|vol(Ag1(M))− vol(Ag2(M))| ≤
∑

v∈BD
vol(∂aΩ) ≤ Ka · ]BD,

where a = supv∈BD |v(g1 − g2)|. The proof is completed by noting that
a ≤ Cd(g1, g2) for some constant C = C(Y0,D) > 0 and all g1, g2 ∈ Y0.

We now specialize to n = 2, so that X = SL2(Z)\SL2(R). Recall that
we have fixed a basis X1,X2,X3 for the Lie algebra of SL2(R) and a left
invariant metric d on SL2(R).

Proposition 1. Let r ∈ Z≥0 be as fixed from the start. Given any
numbers 0 < A1 < A2, there exist positive numbers K and C1, C2, . . . such
that the following holds for each A ∈ [A1, A2]: If Ω ⊂ R2 equals either
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the disk {(x, y) : x2 + y2 ≤ A2} or the square {(x, y) : |x|, |y| ≤ A}, then
there exists a K-smooth closed subset S ⊂ X of measure 0, such that fΩ ∈
C∞(X − S) and |DfΩ(x)| ≤ Cj max(1, δ3/2−j) for each monomial D in
X1,X2,X3 of order j ≥ 1 and all 0 < δ < 1, x ∈ X −B(S, δ).

Note that combined with Lemma 12, the bounds on the derivatives ob-
tained here are more than sufficient to make us able to later apply Lemma 3.

Proof. Let Y0 be any fixed compact subset of SL2(R). To start with,
we will prove that the conclusion in Proposition 1 holds with X replaced
by Y0 throughout. In view of the proof of Lemma 12, it suffices to prove a
corresponding statement with fΩ replaced by fM,B : SL2(R)→ R,

fM,B(g) = Area

(⋂

v∈B

{
Ω − vg if v ∈M
{(Ω − vg) if v /∈M

})
,

where M,B are any fixed finite subsets ∅ 6= M ⊂ B ⊂ Z2. We first assume
that Ω is the disk {(x, y) : x2 + y2 ≤ A}. Then let S = S1 ∪ S2, where

Sv1,v2 = {g ∈ SL2(R) : |v1g − v2g| = 2A}, S1 =
⋃

v1,v2∈B
Sv1,v2 ,

Sv1,v2,v3 =
{
g ∈ SL2(R) :

3⋂

j=1

(∂Ω − vjg) 6= ∅
}
, S2 =

⋃

v1,v2,v3∈B
Sv1,v2,v3 ,

the unions being taken over all pairs v1, v2 and triples v1, v2, v3, respectively,
of pairwise distinct elements in B.

We claim that S is of measure 0 and K-smooth as a subset of SL2(R),
whereK only depends on A1, A2, B. To see this, it suffices to show that Sv1,v2

and Sv1,v2,v3 are of measure 0 and K-smooth for any given pairwise distinct
elements v1, v2, v3 ∈ Zn, where now K only depends on A1, A2, v1, v2, v3. We
prove this for Sv1,v2,v3 ; the case of Sv1,v2 is easier. Since Sv1,v2,v3 only depends
on v2 − v1 and v3 − v1, we may assume v1 = 0. We may then also assume
v2, v3 to be linearly independent, since otherwise Sv1,v2,v3 = ∅. Hence, writing

d = det
(
v2

v3

)
, we have a diffeomorphism R+ × R× (R/2πZ)→ SL2(R):

(a, b, ϕ) 7→ g =

(
v2

v3

)−1(
a 0

b d/a

)(
cosϕ sinϕ

− sinϕ cosϕ

)
.

Note that g ∈ SL2(R) satisfies
⋂3
j=1(∂Ω − vjg) 6= ∅ if and only if the three

circles in R2 with equal radii A and centers at (0, 0), (a, 0), (b, d/a) go
through a common point. One checks that this holds if and only if

(22) (a2b(b− a) + d2)2 = (4A2 − a2)d2a2.
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From the geometrical description it is clear that this implies |a|, |b| ≤ 2A.
Solving for b we obtain the equivalent equation

(
b− a

2

)2

= η
d

a

√
4A2 − a2 − d2

a2
+
a2

4
(|a| ≤ 2A, η = ±1).(23)

Note that for each fixed η, there are at most 8 values a ∈ [−2A, 2A] at
which the right hand side of (23) vanishes. It follows that the set of solutions
(a, b) ∈ R2 to (22) is a union of four graphs of the form {(a, bj(a)) : a ∈ Ij},
j = 1, 2, 3, 4, where each Ij is a union of at most five closed intervals
⊂ [−2A, 2A] and each bj(a) is a continuous function on Ij which is C∞ in
the interior of Ij . Implicit differentiation in (22) and Bézout’s theorem show
that there are certainly not more than 56 values of a for which b′j(a) = 0
can hold; hence each Ij can be expressed as a union of at most 61 closed
intervals Ijk, 1 ≤ k ≤ 61, such that bj(a) is either increasing or decreasing
on each interval Ijk.

Now each curve segment {(a, bj(a)) : a ∈ Ijk} is easily seen to be K1-
smooth with respect to the Euclidean metric in the (a, b)-plane with K1 =
4 + 2|β2 − β1|+ 2|α2 − α1|, where (α1, β1) and (α2, β2) are the endpoints of
the curve segment. Indeed, assuming α1 < α2 and that bj(a) is increasing
on Ijk, one checks that for each 0 < ε ≤ 1, the ε-neighbourhood of the given
curve segment is completely contained in the region which is bounded by
the two curves {(a− ε, bj(a) + ε) : a ∈ Ijk} and {(a+ ε, bj(a)− ε) : a ∈ Ijk},
and the four lines a = α1 − ε, a = α2 + ε, b = β1 − ε, b = β2 + ε; and the
area of this region is 4ε2 + 2(|β2 − β1|+ |α2 − α1|)ε. Using |a|, |b| ≤ 2A, we
deduce that the full set of solutions to (22) has measure 0 and is K2-smooth
in the (a, b)-plane, with K2 = 104(1 + A). Hence Sv1,v2,v3 is of measure 0
and K-smooth for some K which only depends on A2, v1, v2, v3, Y0.

We now fix some g ∈ Y0 − S. Let us write M = {v1, . . . , vm}, B −M =
{vm+1, . . . , vb}, and

F = F (w1, . . . , wb) = Area

(
b⋂

l=1

{
Ω − wl if l ≤ m
{(Ω − wl) if l > m

})
,(24)

so that fM,B(g) = F (v1g, . . . , vbg). By our construction of S, there is some

neighbourhood W ⊂ R2b of (v1g, . . . , vbg) such that for each (w1, . . . , wb)
∈ W , the boundary B of the region considered in (24) consists of a fi-
nite number of closed curves, each of which is a finite union of segments
of the various circles ∂Ω − wl, joined at points (x1, y1), . . . , (xK , yK), say,
where each (xk, yk) is a point of intersection between (exactly) two of the
circles and varies smoothly with respect to (w1, . . . , wb) ∈ W . But we have
F =

�
B x dy =

�
B(−y) dx, where the integrals are taken over B in posi-

tive direction. It follows that there are numbers ηkl ∈ {0, 1,−1} such that,
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writing wl = (xwl , ywl), we have

∂

∂xwl
F =

K∑

k=1

ηklyk,
∂

∂ywl
F = −

K∑

k=1

ηklxk

throughout W .
We now wish to give bounds on derivatives of the form Dxk and Dyk,

where D is a monomial in ∂/∂xwl and ∂/∂ywl (l = 1, . . . , b) of order j ≥ 1.
We may assume that (xk, yk) is a point of intersection between ∂Ω−w1 and
∂Ω − w2. The functions xk, yk satisfy (xk − xw1)2 + (yk − yw1)2 = A2 and
(xk − xw2)2 + (yk − yw2)2 = A2, and applying D to these two relations we
obtain

{
2(xk − xw1)Dxk + 2(yk − yw1)Dyk = ∗,
2(xk − xw2)Dxk + 2(yk − yw2)Dyk = ∗,

where the right hand sides are 0 or 2(xk − xwl) or 2(yk − ywl) for some l if
j = 1, while for j ≥ 2 they are finite sums of products of the form [const] ·∏
sDsxk or [const] ·∏sDsyk, where all Ds are monomials in ∂/∂xwl and

∂/∂ywl satisfying 1 ≤ order(Ds) < j and
∑

s order(Ds) ≤ j. (Some product
may be empty, i.e. giving a constant term.) Note that the determinant

∣∣∣∣∣
xk − xw1 yk − yw1

xk − xw2 yk − yw2

∣∣∣∣∣

has absolute value |w1w2|
√
A2 − |w1w2|2/4, where |w1w2| denotes the dis-

tance between w1 and w2. Note also that for g ∈ Y0−B(S, δ) and (w1, . . . , wb)
= (v1g, . . . , vbg) the distance |w1w2| is bounded from below by a posi-
tive constant which only depends on Y0, and 2A − |w1w2| � δ. Hence
Dxk,Dyk � δ1/2−j, by induction on j. It follows that for each j ≥ 1 there is
a positive constant Cj which only depends on Y0,M,B,A1, A2, j such that

|DfM,B(g)| ≤ Cj max(1, δ3/2−j) for each monomial D in X1,X2,X3 of order
j ≥ 1 and all 0 < δ < 1, g ∈ Y0 −B(S, δ).

The case of a square Ω = {(x, y) : |x|, |y| ≤ A} is similar but easier. In
this case we let SA = {(x, y) : x ∈ {0, A,−A} or y ∈ {0, A,−A}} and

S = {g ∈ Y0 : ∃v1 6= v2 ∈ B : v1g − v2g ∈ SA}.
Then S is of measure 0 and K-smooth as a subset of SL2(R), where K only
depends on A1, A2, Y0, B. Furthermore fM,B ∈ C∞(Y0 − S), and this time
we can give bounds on the derivatives which do not blow up: There are
positive constants Cj which only depend on Y0,M,B,A1, A2, j such that
|DfM,B(g)| ≤ Cj for each monomial D in X1,X2,X3 of order j ≥ 1 and all
g ∈ Y0 −B(S, δ).
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It now remains to treat the case when Γg ∈ X lies far out in the cusp.
We use a form of Iwasawa coordinates, writing

g =

(
1 t

0 1

)(
%−1 0

0 %

)(
cosϕ − sinϕ

sinϕ cosϕ

)
, t ∈ R, % > 0, ϕ ∈ R.(25)

We restrict attention to the cuspidal region Xc ⊂ X defined by % <
min((4A)−1, A(r+10)−1). Writing vϕ = (cosϕ,− sinϕ), wϕ = (sinϕ, cosϕ),
we have

g =

(
%−1vϕ + t%wϕ

%wϕ

)

and hence by (17), fΩ(Γg) is the volume of the set of those (x, y) ∈ [−1/2,
1/2]2 which satisfy

|{(n,m) ∈ Z2 : (n+ x)(%−1vϕ + t%wϕ) + (m+ y)%wϕ ∈ Ω}| ≤ r.(26)

For each x ∈ R let `(x) be the length of the line segment {y : xvϕ + ywϕ
∈ Ω}. Then if Ω is the disk {(x, y) : x2 + y2 ≤ A2}, we have supp(`) =

[−A,A] and `(x) = 2
√
A2 − x2 for x ∈ [−A,A], whereas if Ω is the square

{(x, y) : |x|, |y| ≤ A} then for 0 < ϕ ≤ π/4 we have supp(`) = [−x1, x1]
with x1 = A

√
2 cos(π/4− ϕ), and

`(x) =





2A

cosϕ
, 0 ≤ x ≤ x2

x1 − x
cosϕ sinϕ

, x2 ≤ x ≤ x1

(x2 = A
√

2 cos(π/4 + ϕ)).

Note also that `(x) is even, and concave in its interval of support. It follows
from our assumption on % that supp(`) ⊂ [−(2%)−1, (2%)−1]; hence only
points (n,m) with n = 0 occur in the set in (26) when (x, y) ∈ [−1/2, 1/2]2.
This gives

fΩ(Γg) =

1/2

�
−1/2

1/2

�
−1/2

I(|(x%−1vϕ + (Z+ y)%wϕ) ∩Ω| ≤ r) dy dx

=

(2%)−1

�
−(2%)−1





% if `(x) < r%

(r + 1)%− `(x) if r% ≤ `(x) < (r + 1)%

0 if (r + 1)% ≤ `(x)




dx.

Hence we obtain, in the case of the square and 0 < ϕ ≤ π/4,

fΩ(Γg) = 1− 2A(cosϕ+ sinϕ)%+ (2r + 1)%2 cosϕ sinϕ.

Note that this formula also holds for ϕ = 0, and since fΩ(Γg) is invariant
under ϕ 7→ −ϕ and ϕ 7→ ϕ+π/2, this determines fΩ(Γg) for all values of ϕ.
Now let S be the subset of our cuspidal region Xc defined by ϕ ∈ (π/2)Z;
we then see that fΩ ∈ C∞(Xc − S), and a standard computation shows
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that S is smooth (and of measure 0) as a subset of X. Finally, if we take
the basis elements X1,X2,X3 to be

(
0 1
0 0

)
,
(

0 0
1 0

)
,
(

1 0
0 −1

)
, respectively, one

quickly computes that in our coordinates t, %, ϕ (cf. (25)), the corresponding
differential operators are

X1 = [. . .]
∂

∂t
+ % sinϕ cosϕ

∂

∂%
− sin2 ϕ

∂

∂ϕ
,

X2 = [. . .]
∂

∂t
+ % sinϕ cosϕ

∂

∂%
+ cos2 ϕ

∂

∂ϕ
,

X3 = [. . .]
∂

∂t
+ %(sin2 ϕ− cos2 ϕ)

∂

∂%
+ 2 cosϕ sinϕ

∂

∂ϕ
.

Hence for each monomial D in X1,X2,X3 we see that |DfΩ(x)| is bounded
on all of Xc − S, by some constant which only depends on A1, A2, D, r.

In the case of the disk we obtain fΩ(Γg) = 1+2h(r%/2)−2h((r+1)%/2),
where

h(x) = x
√
A2 − x2 −A2 arctan(x−1

√
A2 − x2).

Note that h′(x) = 2
√
A2 − x2. Hence in this case we may take S = ∅; we

find that fΩ ∈ C∞(Xc) and |DfΩ(x)| is bounded on all of Xc, for each
monomial D.

For Ω a disk or a square we now have the following improvement of
Theorem 3. We write β = β(1, 2) (cf. (13) above).

Theorem 4. Fix ε > 0 and A > 0 and let Ω ⊂ R2 be either the disk
{(x, y) : x2 + y2 ≤ A2} or the square {(x, y) : |x|, |y| ≤ A}. Set c′r = µ(Ω̃r)

where Ω̃r = {g ∈ ASL2(Z)\ASL2(R) : |Z2g ∩ Ω| = r}. Then the number of
affine lines in F2

p that intersect p1/2Ω in precisely r points is

c′rp
2(1 +OA,r,ε(p

8β/9+ε)) as p→∞.
Proof. Let Ω̃≤r =

⋃r
s=0 Ω̃s = {g ∈ ASL2(R) : |Z2g ∩Ω| ≤ r}, which we

view as a subset of ASL2(Z)\ASL2(R). Clearly, it suffices to prove, for each
fixed r ∈ Z≥0, that the number of affine lines in F2

p that intersect p1/2Ω in
at most r points is

µ(Ω̃≤r) · p2(1 +OA,r,ε(p
8β/9+ε)) as p→∞.(27)

Note that we may take Ω±,δ in (18) as the disk or square with parameter
A replaced by A ± δ. Note also that by Lemma 12 and Proposition 1, the
functions fΩ±,δ satisfy the assumptions of Lemma 3, for some constants
K,C,C1, C2, . . . which do not depend on δ. (To extend the uniform Lipschitz
bound in Lemma 12 to all of X we use the uniform bounds on the first
derivatives of fΩ±,δ proved in Proposition 1, together with the fact that
any two points p1, p2 in X can be joined by a piecewise C∞ curve of length
(1+ε)d(p1, p2) which only intersects the exceptional set S in a finite number
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of points. Note that this last fact is trivial in view of our explicit description
of S in the proof of Proposition 1, but it actually holds for any smooth
closed subset S ⊂ X of measure 0.)

Now by the same Sobolev technique as before we find that

TpfΩ±,δ(Z
2) = �

X

fΩ±,δ dx+O(p8β/9+ε),

uniformly for 0 < δ < A/2 and p → ∞. But by a similar argument to that

of Lemma 10, we have
�
X fΩ±,δ dx = µ(Ω̃≤r) +O(δ). Hence the estimate in

(27) follows from Lemma 11, since δ = (2p)−1/2 and β ≥ −1/2.

Remark 1. It is clear that the same technique allows us to prove The-
orem 4 for many other explicit regions Ω ⊂ R2. It is an interesting problem
to try to extend Proposition 1 to nice regions Ω in dimension n ≥ 3. Espe-
cially the treatment of the cuspidal region seems to be much more difficult
for n ≥ 3 than for n = 2. If such an extension of Proposition 1 to n ≥ 3
would turn out to be possible, this would lead to a corresponding improve-

ment in Theorem 3; the error term O(p2β/(n2+n)+ε) therein could then be

replaced by O(p4β/n2+ε).

Remark 2. By extending Lemma 3 to non-integral values of j, and
using a more refined spectral analysis, it is possible improve the error term
in Theorem 4 to O(pβ+ε).

7. Fractional parts of linear forms. In this section we recall and
comment on a result by Marklof [M1], concerning the number of values
modulo one of a random linear form α1m1 + · · · + αn−1mn−1 at integer
points (m1, . . . ,mn−1) which fall inside a given small interval. This problem
may be regarded as a kind of non-discrete relative of the counting problems
in Fnp studied in earlier sections, and it leads to limits involving the same
type of volumes in SLn(Z)\SLn(R) and ASLn(Z)\ASLn(R) as in Theorems
2 and 3. Hence our explicit computations in Section 8 will be of relevance
also here.

We will use the following notation. Given any subset Ω ⊂ Rn we write

Ω̃
(SL)
r = {g ∈ SLn(Z)\SLn(R) : |Zng ∩ Ω| = r} and Ω̃

(ASL)
r = {g ∈

ASLn(Z)\ASLn(R) : |Zng ∩Ω| = r}. Also, for a ≥ 0 we define

f
box,SLn
r (a) = µ(Ω̃(SL)

r ), f
box,ASLn
r (a) = µ(Ω̃(ASL)

r ),(28)

for Ω equal to the box (−1/2, 1/2)n−1 × (−a/2, a/2) ⊂ Rn of volume a.
(Note that µ denotes Haar measure on different groups in the two formulae

in (28).) The proofs of Lemma 4 and Lemma 10 show that f
box,SLn
r (a) and

f
box,ASLn
r (a) are continuous in a > 0, and that we may as well include part

or all of the boundary of the box (−1/2, 1/2)n−1 × (−a/2, a/2) in Ω. It
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follows from the right invariance of the Haar measure that we may take Ω

to be any box of volume a in the definition of f
box,ASLn
r (a), and any box of

volume a centred at the origin in the definition of f
box,SLn
r (a).

Theorem 5 (Marklof, [M1]). Let a > 0, r ∈ Z≥0, let d1, . . . , dn−1 > 0 be
fixed numbers with

∏
j dj = 1, and let h be a continuous probability density

on (R/Z)n−1. For α = (α1, . . . , αn−1) ∈ (R/Z)n−1, N > 0 and ξ ∈ R/Z,
let Nαa (ξ,N) be the number of values of integer tuples (m1, . . . ,mn−1) with

|mj| ≤ (dj/2)N1/(n−1) such that α1m1 + · · · + αn−1mn−1 ∈ [ξ − a/2N, ξ +
a/2N ]+Z. Now take α = (α1, . . . , αn−1) at random according to the density
function h. Then

Prob{Nαa (0, N) = r} → f
box,SLn
r (a) as N →∞.(29)

If ξ is instead taken as a uniformly distributed random variable on R/Z,
independent of α, then

Prob{Nαa (ξ,N) = r} → f
box,ASLn
r (a) as N →∞.(30)

To see the relationship between Theorem 5 and Theorem 2 (with j = 1),
note that to each of the pn−1 tuples β = (β1, . . . , βn−1) ∈ Fn−1

p , there corre-

sponds a hyperplane of codimension one in Fnp given by xn =
∑n−1

j=1 βjxj ; the
number of codimension one hyperplanes which are not parametrized in this
way is of lower order, namely� pn−2. Furthermore, if Ω = (−1/2, 1/2)n−1×
(−a/2, a/2) and p is any large prime, then one easily checks that the Fnp -hy-

perplane xn=
∑n−1

j=1 βjxj intersects the set p1/nΩ in exactlyNβ/pa (0, p(n−1)/n)

points, where Nαa (ξ,N) is the number described in Theorem 5, with d1 =
· · · = dn−1 = 1. Hence Theorem 2 can be viewed as a discrete version of (29)

for N = p(n−1)/n, where we only consider the pn−1 points α ∈ (p−1Z/Z)n−1

instead of all points α ∈ (R/Z)n−1. A similar relationship holds between
Theorem 3 and (30).

Note that Theorem 5 is the same as Theorems 4.2 and 4.4 in [M1], ex-

cept that we consider |mj| ≤ (dj/2)N1/(n−1) and the interval [ξ− a/2N, ξ+

a/2N ] + Z, instead of 1 ≤ mj ≤ djN
1/(n−1) and [ξ, ξ + a/N ] + Z; corre-

sponding to this we take Ω = (−1/2, 1/2)n−1 × (a/2, a/2) in (28), and not
Ω = (0, 1]n−1 × (0, a]. (Note that (30) remains true in both these settings,
but the limit in (29) depends on which of the two settings we consider.) The
proof remains virtually the same as in [M1].

Theorem 5 generalizes a result of Mazel and Sinai, [MS], where the case
n = 2, constant h, and a ≤ 1 was treated, and an explicit formula was given
for the limit. In Section 8 we will show how to extend these explicit formulas
to all a > 0 for n = 2 and small r.

Remark 3. In principle it should be possible to prove an explicit rate of
convergence in Theorem 5 by methods similar to those used in the present
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paper. For n = 2 in (29), the proof in [M1] hinges on the asymptotic equidis-
tribution of long closed horocycles in SL2(Z)\SL2(R), and in this case the
question of the rate of convergence has been studied by a number of authors
(cf. [Z, Sa1, FF, St]).

Remark 4. Using a result by Shah [Sh, Thm. 1.4], one can actually
prove that any fixed, irrational ξ gives the same limit as the random ξ
in (30): For α as in Theorem 5 and any fixed, irrational ξ ∈ R/Z, we have

Prob{Nαa (ξ,N) = r} → f
box,ASLn
r (a) as N →∞.(31)

Proof of (31). We set G = SLn(R), L = ASLn(R), Λ = ASLn(Z), and
let µ be the Haar measure on L normalized by µ(Λ\L) = 1. We write Nj =

djN
1/(n−1), aN = diag(N−1

1 , N−1
2 , . . . , N−1

n−1, N) ∈ G, vξ = (0, . . . , 0, ξ) ∈
Rn, and

u(α) =




1 α1

. . .
...

1 αn−1

1



∈ G for α = (α1, . . . , αn−1) ∈ Rn−1.

Arguing as in Marklof [M1, p. 1157] and using [M1, Lemma 4.1] (cf. our
Lemma 10) and standard approximation from above and below, we find
that it suffices to prove that

(32) �
α∈(R/Z)n−1

f((u(α)·aN , Nvξ))h(α) dα→ �
Λ\L

f(g) dµ(g) as N →∞,

for each bounded continuous function f : Λ\L→ C. (Note: We continue to
use the same conventions regarding the multiplication law in L = ASLn(R)
and the identification Λ\L ∼= AL(1) as in Section 4, which differ from those
used in [M1].)

We now consider G as a subgroup of L via the imbedding

G 3 g 7→ (1,vξ) · (g, 0) · (1,−vξ) ∈ L.
It then follows from Shah [Sh, Thm. 1.4], applied to the sequence a1, a2, . . . ,
that if Λ ·G is dense in L, then

lim
N→∞

�
α∈(R/Z)n−1

f0((1,vξ)(u(α), 0)(aN , 0)(1,−vξ))h(α) dα = �
Λ\L

f0(g) dµ(g)

for each bounded continuous function f0 : Λ\L→ C. Taking f0 as the right
(1,vξ)-shift of f , viz., f0(Λ`) := f(Λ` · (1,vξ)) for all Λ` ∈ Λ\L, we obtain
(32).
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Hence it only remains to prove that Λ · G is dense in L. But for each
fixed g0 ∈ G, one checks by a quick computation that

{w ∈ Rn : (g0,w) ∈ Λ ·G} = Mξ · g0 − vξ,

where

Mξ = {x + vξγ : γ ∈ SLn(Z), x ∈ Zn} ⊂ Rn.
Hence it suffices to prove that Mξ is dense in Rn. This, however, is ele-
mentary: Given y ∈ Rn and ε > 0 we may find integers xj and γn,j (j =
1, . . . , n− 1) such that |xj +γn,jξ− yj | < ε; letting d = gcd(γn,1, . . . , γn,n−1)
and taking r to be any integer relatively prime to d, we may then also
find integers m and xn such that |xn + mdξ − (yn − rξ)| < ε. Letting
γn,n = md + r and choosing integers γij for 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n
such that γ = (γij) ∈ SLn(Z) (this is possible by [Si, Thm. 32]), we then
have |x + vξγ − y| < √n ε.

8. Computations. We will now discuss how to compute f
box,ASL2
r (a),

i.e. the volume µ(Ω̃r) of the set Ω̃r = {L ∈ AL(1) : |L∩Ω| = r}, for Ω ⊂ R2

an arbitrary rectangle of area a (cf. (28)). We will use the same basic method
as in Elkies and McMullen [EM, pp. 124–131], where the case corresponding
to Ω a triangle and r = 0 was treated.

We fix r ∈ Z≥0, and write fr(a) = f
box,ASL2
r (a) for short. For any interval

I ⊂ R we write ΩI = I × (0, 1), so that fr(a) = µ{L : |L ∩ Ω(a1,a2)| = r}
for any real numbers a1, a2 with a2 − a1 = a. We noted in Section 7 that
fr(a) is continuous. Set ∆εF (a) = F (a + ε) − F (a). We wish to study the
iterated difference ∆ε1∆ε2fr(a) for ε1, ε2 > 0 small. We will show that for
each r ≥ 0 there exists a continuous function gr(a) of a > 0 such that the
following two ratios:

(33)
(ε1ε2)−1µ{L : |L ∩Ω(a1,a2)| = r, |L ∩Ω[a1−ε1,a1]| ≥ 1, |L ∩Ω[a2,a2+ε2]| ≥ 1},

(ε1ε2)−1µ{L : |L ∩Ω(a1,a2)| = r, |L ∩Ω[a1−ε1,a1]| = 1, |L ∩Ω[a2,a2+ε2]| = 1}
both tend to gr(a) as ε1, ε2 → 0+, uniformly for a in compact subsets of R+.
Interpreting (ε1ε2)−1∆ε1∆ε2fr(a) in terms of such ratios, we obtain

lim
ε1,ε2→0+

(ε1ε2)−1∆ε1∆ε2fr(a) = gr(a)− 2gr−1(a) + gr−2(a),

where we understand g−1(a) ≡ g−2(a) ≡ 0. It follows that fr is a C2 function
satisfying

f ′′r (a) = gr(a)− 2gr−1(a) + gr−2(a).(34)

For m∈Z+, a3<a4 and x0, y1, y2∈R, we define g=g[m](a3, a4, x0, y1, y2)
to be the unique element in ASL2(R) with (0, 0)g = (a3, y1), (m, 0)g =
(a4, y2) and such that (0, 1)g has x-coordinate = a3 + (a4 − a3)x0/m. In
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this parametrization, the Haar measure on ASL2(R), normalized as usual so
that µ(ASL2(Z)\ASL2(R)) = 1, equals

dg[m] =
6

m2π2
dx0dy1dy2da3da4.

Let S and S′ denote the subsets of AL(1) occurring in the first and the
second line of (33), respectively. Then S ′ ⊂ S, and for each element L in S
there exists at least one m ∈ Z+ such that L has a representative in the set

S
[m]
0 = {g = g[m](a3, a4, x0, y1, y2) : a3 ∈ [a1 − ε1, a1], a4 ∈ [a2, a2 + ε2],

x0, y1, y2 ∈ [0, 1), |Z2g ∩Ω(a1,a2)| = r}.
Clearly

µ(S
[m]
0 ) =

6

m2π2

a1�
a1−ε1

a2+ε2�
a2

V [m]
r (a1, a2, a3, a4) da3 da4,(35)

where V = V
[m]
r (a1, a2, a3, a4) is the three-dimensional Euclidean volume

(36) V = |{(x0, y1, y2) ∈ (0, 1)3 : |Z2g[m](a3, a4, x0, y1, y2) ∩Ω(a1,a2)| = r}|.
Writing V

[m]
r (a) := V

[m]
r (a1, a2, a1, a2) (recall a = a2 − a1), we will prove

that for a3 ∈ [a1 − ε1, a1] and a4 ∈ [a2, a2 + ε2] we have

V [m]
r (a1, a2, a3, a4)→ V [m]

r (a)(37)

as ε1, ε2 → 0, uniformly for a2 − a1 = a in any compact subset of R+.

Hence limε1,ε2→0(ε1ε2)−1µ(S
[m]
0 ) = 6(mπ)−2V

[m]
r (a). We will also prove that

V
[m]
r (a) is continuous, and that if S

[m]
1 is the subset of those g ∈ S[m]

0 for

which |Z2g∩Ω[a1−ε1,a1]| ≥ 2 or |Z2g∩Ω[a2,a2+ε2]| ≥ 2, then µ(S
[m]
1 ) = o(ε1ε2)

as ε1, ε2 → 0, uniformly for a in compacta. Let us first note that these facts
will immediately allow us to deduce our earlier claims regarding the two
ratios in (33), with

gr(a) =
r+1∑

m=1

6

m2π2
V [m]
r (a).(38)

Indeed, note that if ε1, ε2 < a/(r + 2) then S
[m]
0 = ∅ for m > r + 1, so that

µ(S′) ≤ µ(S) ≤ ∑r+1
m=1 µ(S

[m]
0 ). On the other hand, the sets S

[m]
0 − S

[m]
1 ,

m = 1, . . . , r+1, are pairwise disjoint, and every element g in
⋃
m(S

[m]
0 −S

[m]
1 )

certainly represents a lattice in S ′, and is not ASL2(Z)-left equivalent to any

other element in
⋃
m S

[m]
0 ; hence µ(S′) ≥ ∑r+1

m=1(µ(S
[m]
0 ) − µ(S

[m]
1 )). This

leads to the desired conclusion.
Hence it now only remains to prove our statements made in connection

with (37). We fix J as some large integer. We keep 0 < 2a < J , 0 < ε1, ε2 <
a/(r+2), a2−a1 = a > 0, a3 ∈ [a1−ε1, a1], a4 ∈ [a2, a2 +ε2], and m ≤ r+1.
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Given j ∈ Z and any g = g[m](a3, a4, x0, y1, y2) in the set defining V we let
Lj be the line {(t, j)g : t ∈ R}. Using the definition of g one checks that the
equation of Lj is

y =
1

a4 − a3
(jm+ (y2 − y1)(x− a3)) + y1.(39)

From this it follows easily that Lj ∩ Ω(a3,a4) = ∅ whenever |j| > 2a; hence
only lines Lj with |j| ≤ J can have any points inside Ω(a3,a4).

Define (x(k, j), y(k, j)) = (k, j)g ∈ Z2 ∩ Lj. Then

x(k, j) = a3 +
(jx0 + k)(a4 − a3)

m
,(40)

y(k, j) =
jm

a4 − a3
+

(y2 − y1)(jx0 + k)

m
+ y1.

In particular, because of our restriction on ε1, ε2, we have x(k, 0) ∈ (a1, a2)
for 1 ≤ k < m, and x(0, 0) = a3, x(0,m) = a4, while x(k, 0) /∈ [a1−ε1, a2+ε2]
whenever k < 0 or k > m. By (40),

a3 ≤ x(k, j) ≤ a4 ⇔ −jx0 ≤ k ≤ m− jx0.(41)

In particular, |j| ≤ J and a3 ≤ x(k, j) ≤ a4 forces −J ≤ k ≤ m + J .
For each such pair j, k, the locus of those x0 ∈ (0, 1) for which x(k, j) ∈
[a1 − ε1, a1] ∪ [a2, a2 + ε2] is a set (a union of at most two intervals) of
measure ≤ m(ε1 + ε2)(|j|(a4 − a3))−1 ≤ (m/a)(ε1 + ε2). Let S ∈ (0, 1) be
the union of these sets taken over all 1 ≤ |j| ≤ J and −J ≤ k ≤ m+J . Then,
by construction, the symmetric difference between the set in (36) defining

V
[m]
r (a1, a2, a3, a4) and the set defining V

[m]
r (a3, a4, a3, a4) = V

[m]
r (a4 − a3)

contains only points (x0, y1, y2) ∈ (0, 1)3 with x0 ∈ S. Hence

|V [m]
r (a1, a2, a3, a4)− V [m]

r (a4 − a3)| ≤ |S| ≤ 2J(2J +m+ 1)m

a
(ε1 + ε2).

Here a ≤ a4 − a3 ≤ a + ε1 + ε2. Hence (37) will be proved once we have

shown that V
[m]
r (a) is continuous. Similarly we obtain µ(S

[m]
1 ) = o(ε1ε2)

as ε1, ε2 → 0, by writing S
[m]
1 as an integral analogous to (35), (36), and

noticing that this will only involve points (x0, y1, y2) ∈ (0, 1)3 with x0 ∈ S.

It now only remains to prove that V
[m]
r (a) is continuous. At the same

time we will indicate how this volume can be calculated explicitly. Thus
from now on we keep a3 = a1, a4 = a2. Note that in this case the set in
(36) is symmetric under (x0, y1, y2)↔ (x0, 1−y1, 1−y2). It follows from our
observations above that we may decompose the set in (36) as follows. For
each sequence e = {ej}|j|≤J of integers satisfying 0 ≤ ej ≤ m, e0 = m − 1
and

∑
j ej = r, we define
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W [m,e] = W [m,e](a)

= {(x0, y1, y2) ∈ (0, 1)3 : y1 < y2 and |Z2g ∩Ω(a3,a4) ∩ Lj | = ej, ∀j}.

(Note that the condition for j = 0 is satisfied for all (x0, y1, y2) ∈ (0, 1)3,
because of e0 = m − 1 and our observations above.) Furthermore, for any
interval I ⊂ [0, 1] we define

W
[m,e]
I (a) = {(x0, y1, y2) ∈W [m,e](a) : x0 ∈ I}.

We let I1, . . . , IN be the consecutive open intervals in a Farey dissection of
[0, 1] of order J , viz., I1, . . . , IN are the connected components which remain
after all the Farey fractions {q1/q2 : 0 ≤ q1 < q2 ≤ J, (q1, q2) = 1} have

been removed from [0, 1). Then V
[m]
r (a) can be expressed as a finite sum:

V [m]
r (a) = 2

∑

e

N∑

n=1

|W [m,e]
In

(a)|,(42)

where e runs through all sequences as above. Hence it now suffices to prove

that |W [m,e]
In

(a)| is continuous for all e, n.
The point of using the Farey dissection is to ensure that if (x0, y1, y2) ∈

W
[m,e]
In

(a) then for each j with 1 ≤ |j| ≤ J , the number jx0 falls strictly
between two consecutive integers which only depend on n and j. Hence, in
view of (41), there is an integer K = K(n, j) such that a1 < x(k, j) < a2

holds if and only if k ∈ {K,K + 1, . . . ,K +m− 1}. Furthermore, each line
Lj has positive slope, since we require y1 < y2. Hence if 1 ≤ j ≤ J and
1 ≤ ej ≤ m− 1, the condition |Z2g∩Ω(a1,a2) ∩Lj | = ej can be reformulated
as y(K+ej−1, j) < 1, y(K+ej, j) ≥ 1. If 1 ≤ j ≤ J and ej = 0 (or ej = m),
then the corresponding reformulation is y(K, j) ≥ 1 (or y(K+m−1, j) < 1,
respectively). Similarly, if −J ≤ j ≤ −1, then |Z2g ∩ Ω(a1,a2) ∩ Lj | = ej
can be formulated as one or both of the inequalities y(K + m− ej , j) > 0,
y(K +m− ej − 1, j) ≤ 0.

Let us now substitute

y3 = y2 − y1, y4 = m/a+ y3x0/m.

Then note that y(k, j) = y1 +(k/m)y3 +jy4, a linear expression in y1, y3, y4.
Also note that the inequalities 0 < y1 < y2 < 1 are equivalent to 0 < y1,
0 < y3, y1 + y3 < 1. In conclusion, for any given admissible m, e, n, we can
construct a finite set of linear inequalities in y1, y3, y4 (the coefficients of
which only depend on m, e, n) such that if Cm,e,n denotes the corresponding
convex region in the (y1, y3, y4)-space, then for all (x0, y1, y2) ∈ R3 we have

(x0, y1, y2) ∈W [m,e]
In

(a) ⇔ x0 ∈ In, (y1, y3, y4) ∈ Cm,e,n.
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(The region Cm,e,n may well be empty. In general, it contains part but not
all of its boundary ∂Cm,e,n.) Hence, since dy1dy2 = dy1dy3,

|W [m,e]
In

(a)| = �
x0∈In

Am,e,n(x0, a) dx0,(43)

where Am,e,n(x0, a) is the area of the projection onto the (y1, y3)-plane of
the intersection between Cm,e,n and the plane y4 = m/a+ y3x0/m.

Since Cm,e,n is defined by a finite set of linear inequalities, there is at
most a finite subset F ⊂ In of x0-values for which the plane y4 = m/a +
y3x0/m is parallel to a bounding 2-simplex of Cm,e,n. Clearly Am,e,n(x0, a) is
continuous for (x0, a) ∈ (In−F )×

(
0, 1

2J
)
. Note also that 0 ≤ Am,e,n(x0, a)

≤ 1/2 everywhere, since Cm,e,n is restricted by 0 < y1, 0 < y3, y1 + y3 < 1.

Hence (43) implies that |W [m,e]
In

(a)| is a continuous function of a, as claimed.

Note that it is also clear from the above how to compute f ′′r (a) explicitly,
at least in principle.

For a sufficiently small there is a simple explicit formula for fr(a):

Proposition 2. We have

fr(a) =





3

π2
a2 − a+ 1 if r = 0

− 21

4π2
a2 + a if r = 1

3

π2
((r − 1)−2 − 2r−2 + (r + 1)−2)a2 if r ≥ 2





for 0 < a ≤ 1.

If r ≥ 5, the formula fr(a) = 3π−2((r− 1)−2 − 2r−2 + (r+ 1)−2)a2 actually
holds for all 0 < a ≤ [(r − 1)/2].

In view of our remarks in Section 7, the case 0 < a ≤ 1 of the above
proposition can be viewed as a rederivation of the formulae proved by Mazel
and Sinai in [MS]. The fact that the same formula also holds for larger values
of a when r ≥ 5 seems to be new.

Proof. We will show that

gr(a) =
6

π2
(r + 1)−2 for all 0 < a < max

(
1,

[
r + 1

2

])
.(44)

Clearly this suffices to prove the proposition, if we use (34) and the fact that
lima→0+ fr(a) and lima→0+ f ′r(a) can be computed easily.

Now fix r, a as in (44), and let J be an integer > 2a as before. Let
e = {ej}|j|≤J be any sequence of integers satisfying 0 ≤ ej ≤ e0 + 1 and∑

j ej = r, and write m = e0 + 1 (thus 1 ≤ m ≤ r + 1). We will prove that

W [m,e](a) = ∅ except if e0 = r and ej = 0 for all j 6= 0, and that for this

exceptional sequence e we have W [m,e](a) = {(x0, y1, y2) ∈ (0, 1)3 : y1 < y2}.
Since this set has volume 1/2, we obtain (44) via (38) and (42).
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If m ≥ a then (39) implies Lj ∩Ω(a3,a4) = ∅ for all j 6= 0, and the desired

conclusion follows directly from the definition of V
[m]
r (a) and W [m,e](a). In

particular, the proof is complete for the case 0 < a < 1.
Now assume 1 ≤ m < a. Note that we then have r ≥ 3 and m < a < r,

by (44). We have to prove W [m,e](a) = ∅; we will do this by assuming

W [m,e](a) to contain an element (x0, y1, y2), and showing that this leads to
a contradiction.

Let N = [a/m] ≥ 1. Then note that by (39) we have Lj ∩ Ω(a3,a4) = ∅
for all |j| > N , and hence ej = 0 for all these j. Furthermore, for each
j ∈ {1, . . . , N} we note that if ej ≥ 1 then it follows from (x0, y1, y2) ∈
W [m,e](a) and (39), (40) that jm/a + (y2 − y1)(ej − 1)/m + y1 < 1, since
the line Lj has positive slope (y2 − y1)/a. Similarly, if ej−N−1 ≥ 1 we find
(j − N − 1)m/a + (y2 − y1)(m + 1 − ej−N−1)/m + y1 > 0. By considering
the difference between these two inequalities and using (N + 1)m/a > 1 we
obtain ej + ej−N−1 ≤ m+ 1. Note that this holds even if ej or ej−N−1 is 0,
since ej, ej−N−1 ≤ m. Hence

r =
∑

j

ej = e0 +
N∑

j=1

(ej + ej−N−1) ≤ m− 1 +N(m+ 1).

But N ≤ a/m < [(r + 1)/2]/m and hence N ≤ ([(r + 1)/2] − 1)/m =
m−1[(r − 1)/2]. Note here that 1 ≤ m ≤ [(r − 1)/2]. Using these facts we
obtain

r ≤ m+m−1

[
r − 1

2

]
− 1 +

[
r − 1

2

]
≤ 2

[
r − 1

2

]
≤ r − 1.

This is a contradiction.

The evaluation of fr(a) for larger values of a is much more involved. We
have written a Maple program to evaluate fr(a) for small values of r, using
the formulae (34), (38), (42), (43). To present the result, it is convenient to
define Ξ(a) for a > 0 by

Ξ ′′(a) = (1− a−1)2 log |1− a−1|, Ξ(1) = Ξ ′(1) = 0.

Then Ξ ∈ C3(R+), but the fourth derivative of Ξ has a logarithmic singu-
larity at a = 1. Now

f
box,ASL2
0 (a) = f0(a)

=





3

π2
a2 − a+ 1 if 0 ≤ a ≤ 1,

12

π2
(Ξ(a)− Ξ(a/2)) +

6

π2
a log a+ c1a+ c2 if 1 ≤ a,
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where

c1 =
6 + 6 log 2

π2
− 2, c2 =

18 log 2

π2
;

furthermore

f1(a) =





− 21

4π2
a2 + a if 0 ≤ a ≤ 1,

−12

π2
(3Ξ(a)− 4Ξ(a/2)) + `1(a) if 1 ≤ a ≤ 2,

−12

π2
(3Ξ(a)− 10Ξ(a/2)

+ 6Ξ(a/3) + 2Ξ(a/4)) + `2(a) if 2 ≤ a ≤ 4,

−12

π2
(3Ξ(a)− 6Ξ(a/2) + 3Ξ(a/3)) + `3(a) if 4 ≤ a,

f2(a) =





11

6π2
a2 if 0 ≤ a ≤ 1,

12

π2
(3Ξ(a)− 6Ξ(a/2)) + `4(a) if 1 ≤ a ≤ 2,

12

π2
(3Ξ(a)− 24Ξ(a/2) + 24Ξ(a/3)

+ 4Ξ(a/4)) + `5(a) if 2 ≤ a ≤ 3,

12

π2
(3Ξ(a)− 20Ξ(a/2) + 36Ξ(a/3)

− 12Ξ(a/4)− 6Ξ(a/6)) + `6(a) if 3 ≤ a ≤ 4,

12

π2
(3Ξ(a)− 8Ξ(a/2) + 27Ξ(a/3)

− 20Ξ(a/4)− 6Ξ(a/6)) + `7(a) if 4 ≤ a ≤ 9/2,

12

π2
(3Ξ(a)− 8Ξ(a/2) + 21Ξ(a/3)

− 18Ξ(a/4)) + `8(a) if 9/2 ≤ a ≤ 6,

12

π2
(3Ξ(a)− 12Ξ(a/2) + 15Ξ(a/3)

− 6Ξ(a/4)) + `9(a) if 6 ≤ a,
where `1(a), . . . , `9(a) are expressions of the form d1 log2 a + d2a log a
+d3 log a+d4a

2 +d5a+d6, with explicit constants dj . The formulae quickly
grow more complicated as r increases. We have posted a Maple file on the
web containing the exact formulae for fr(a), r = 0, 1, 2, 3, 4 (cf. [StV]).

The derivation of the precise formulae in [StV] involved heavy use of
computer algebra applied on long and complicated expressions, and it is
only reasonable to ask what type of tests were implemented to ascertain
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the correctness of the results. We consider the numerical data presented in
Section 9 to be our strongest evidence in this regard. As further evidence we
mention that we verified lima→∞ fr(a) = 0 for r = 0, 1, 2, 3, 4 by exact com-
putation; note that this relation is far from “built-in” to our computations,
as fr(a) is obtained by integration of (34) starting from a = 0.

0
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0.6

0.8

1

1 2 3 4 5 6 7 8 0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

The graphs of fr(a) for r = 0, 1, 2, 3, 4, and their cumulative sums
∑n
r=0 fr(a)

One more test is provided by considering the second moment of the
random variable Xa given by Prob{Xa = r} = fr(a) for r = 0, 1, . . . (i.e.,
Xa is the number of points in the intersection L∩Ω of a random translated
lattice L and the box Ω = (0, 1)× (0, a)). By a computation using Siegel’s
theorem for SLn(Z)\SLn(R), one can show that for any compact set Ω ⊂
Rn one has

∑∞
r=0 r

2 · µ(Ω̃
(ASL)
r ) = vol(Ω)2 + vol(Ω). Hence, in particular,

E(X2
a) =

∑∞
r=0 r

2fr(a) = a2 + a for all a > 0. This is of course easy to
check by a direct computation for 0 < a ≤ 1 in view of Proposition 2, but
since fr(a) = 3π−2((r− 1)−2 − 2r−2 + (r+ 1)−2)a2 also holds for 1 ≤ a ≤ 2
whenever r ≥ 5 one obtains the non-trivial relation

4∑

r=1

r2fr(a) =
6929

1200π2
a2 + a for 1 ≤ a ≤ 2.

We have verified this to hold for our explicit formulae for fr(a).
Regarding other moments, note that

∑∞
r=0 rfr(a) = E(Xa) = a by the

ASLn(R)-version of Siegel’s theorem; but this formula is also a trivial conse-

quence of (34) (which implies d2

da2E(Xa) = 0) and Proposition 2, and hence
does not give an independent test of our formulae. Note also that all higher
moments are infinite; E(Xn

a ) =∞ for n ≥ 3, by Proposition 2.
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Using methods similar to those described above, we have also computed

explicit formulas for f
box,SL2
r (a) (cf. (28)). The details of these computations

are slightly less involved than for f
box,ASL2
r (a), since we may there proceed

by studying d
daf

box,SL2
r (a), i.e. the first derivative instead of the second.

Note that by symmetry in the origin, f
box,SL2
2r (a) = 0 for all r ≥ 0. Note

also that f
box,SL2
2r+1 (a) = 0 whenever a ≥ 4(r + 1), by an easy generalization

of Minkowski’s theorem [Si, Thm. 10].
Our results are as follows.

Proposition 3. For all r ∈ Z≥0 and 0 < a ≤ 2 we have

f
box,SL2
2r+1 (a) =





1− 3

π2
a if r = 0,

3

π2
(r−2 − (r + 1)−2)a if r ≥ 1.

If r ≥ 3, the formula f
box,SL2
2r+1 (a) = 3π−2(r−2 − (r + 1)−2)a actually holds

for all 0 < a ≤ 2[(r − 1)/2] + 2.

We define Ψ(a) for a > 0 by

Ψ ′(a) = (a−1 − 1) log |a−1 − 1|, Ψ(1) = 0.

Now

f
box,SL2
1 (a) =





1− 3

π2
a if 0 ≤ a ≤ 2,

12

π2
(Ψ(a/4)− log a)

+
3

π2
a+

12

π2
(2 log 2− 1) if 2 ≤ a ≤ 4,

0 if 4 ≤ a,

f
box,SL2
3 (a) =





9

4π2
a if 0 ≤ a ≤ 2,

−24

π2
Ψ(a/4) + q1(a) if 2 ≤ a ≤ 4,

12

π2
(Ψ(a/4) + 2Ψ(a/8)) + q2(a) if 4 ≤ a ≤ 16/3,

24

π2
Ψ(a/4) + q3(a) if 16/3 ≤ a ≤ 8,

0 if 8 ≤ a,
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f
box,SL2
5 (a) =





5

12π2
a if 0 ≤ a ≤ 2,

12

π2
Ψ(a/4) + q4(a) if 2 ≤ a ≤ 4,

−12

π2
(2Ψ(a/4) + 3Ψ(a/8)) + q5(a) if 4 ≤ a ≤ 16/3,

−12

π2
(5Ψ(a/4)− 3Ψ(a/8)) + q6(a) if 16/3 ≤ a ≤ 6,

−12

π2
(5Ψ(a/4)− 3Ψ(a/8)

− 2Ψ(a/12)) + q7(a) if 6 ≤ a ≤ 36/5,

−12

π2
(4Ψ(a/4)− 3Ψ(a/8)) + q8(a) if 36/5 ≤ a ≤ 8,

24

π2
Ψ(a/4) + q9(a) if 8 ≤ a ≤ 12,

0 if 12 ≤ a,
where q1(a), . . . , q9(a) are expressions of the form d1 log a + d2a + d3, with
explicit constants dj . We again refer to [StV] for the exact formulae for

f
box,SL2
r (a), r = 3, 5, 7, 9.

Regarding moments, note that
∑∞

r=0 rf
box,SL2
r (a) = a + 1 by Siegel’s

theorem, and
∑∞

r=0 r
nf

box,SL2
r (a) = ∞ for all n ≥ 2 (and all a > 0), by

Proposition 3.

9. Numerical experiments. In this section we present some data from
numerical experiments related to several of the main results in this paper.

Table 1 concerns the error term in Theorem 2 for Ω a two-dimensional
square, Ω = Ωa = [−√a/2,√a/2]2 ⊂ R2. We let Na,r(p) denote the num-

ber of lines through the origin in F2
p which intersect p1/2Ωa in exactly

r points. Recall the definition of f
box,SL2
r (a) in (28). We note that both

Na,r(p) = 0 and f
box,SL2
r (a) = 0 hold whenever r is even, and also for all

a ≥ 2r + 2 (the fact that Na,r(p) = 0 for all a ≥ 2r + 2 follows by an
easy extension of Thue’s theorem, [N, Thm. 75]). We have computed the
deviations∣∣∣∣

Na,r(p)

p+ 1
− fbox,SL2

r (a)

∣∣∣∣, a ∈ {0.2, 0.4, 0.6, . . .}, a < 2r + 2,

for r ∈ {1, 3, 5, 7, 9} and certain values of p. The exact value of f
box,SL2
r (a)

was computed using the explicit formalae in [StV]. In Table 1 we list the

maximum δ
(max)
r and the average δ

(av.)
r of these deviations.
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Table 1. Maximum and average deviation, lines through the origin in F2
p

δ
(max)
1 δ

(max)
3 δ

(max)
5 δ

(max)
7 δ

(max)
9

p
δ

(av.)
1 δ

(av.)
3 δ

(av.)
5 δ

(av.)
7 δ

(av.)
9

5003 1.2 · 10−2 1.9 · 10−2 2.1 · 10−2 2.1 · 10−2 2.7 · 10−2

5.9 · 10−3 5.6 · 10−3 4.8 · 10−3 4.6 · 10−3 3.9 · 10−3

50021 5.4 · 10−3 6.3 · 10−3 5.6 · 10−3 6.1 · 10−3 8.5 · 10−3

1.7 · 10−3 1.8 · 10−3 1.5 · 10−3 1.5 · 10−3 1.3 · 10−3

500009 0.99 · 10−3 2.4 · 10−3 2.5 · 10−3 2.6 · 10−3 2.5 · 10−3

4.2 · 10−4 5.2 · 10−4 5.0 · 10−4 4.2 · 10−4 4.5 · 10−4

5000011 4.4 · 10−4 5.7 · 10−4 6.0 · 10−4 8.8 · 10−4 8.5 · 10−4

1.8 · 10−4 1.5 · 10−4 1.8 · 10−4 1.2 · 10−4 1.4 · 10−4

Table 2 gives similar data concerning the error term in Theorem 4 (cf.

also Remark 2): we list the maximum δ
(max)
r and the average δ

(av.)
r of the

deviations∣∣∣∣
Ña,r(p)

p(p+ 1)
− fbox,ASL2

r (a)

∣∣∣∣, a ∈ {0.1, 0.2, 0.3, . . . , 15.0},

where Ña,r(p) is the number of affine lines in F2
p which intersect the square

p1/2Ωa in exactly r points.

Table 2. Maximum and average deviation, affine lines in F2
p

δ
(max)
0 δ

(max)
1 δ

(max)
2 δ

(max)
3 δ

(max)
4

p
δ

(av.)
0 δ

(av.)
1 δ

(av.)
2 δ

(av.)
3 δ

(av.)
4

503 3.7 · 10−2 3.9 · 10−2 4.1 · 10−2 5.0 · 10−2 5.2 · 10−2

2.7 · 10−3 3.1 · 10−3 4.0 · 10−3 4.5 · 10−3 5.5 · 10−3

5003 1.4 · 10−2 1.1 · 10−2 1.6 · 10−2 1.6 · 10−2 1.6 · 10−2

0.80 · 10−3 0.18 · 10−3 1.3 · 10−3 1.5 · 10−3 1.8 · 10−3

50021 3.9 · 10−3 4.0 · 10−3 4.2 · 10−3 4.5 · 10−3 5.9 · 10−3

3.1 · 10−4 3.0 · 10−4 4.2 · 10−4 4.9 · 10−4 5.8 · 10−4

500009 1.4 · 10−3 1.3 · 10−3 1.5 · 10−3 1.5 · 10−3 1.6 · 10−3

0.87 · 10−4 0.90 · 10−4 1.3 · 10−4 1.5 · 10−4 1.6 · 10−4

Note that the above data are consistent with a p−1/2-decay of the de-
viations, both for the SL2 and the ASL2 case. For the ASL2 case this is
in agreement with Remark 2 and the Ramanujan–Petersson conjecture that
β(1, 2) = −1/2. For the SL2 case the tables might suggest that at least when
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Ω is sufficiently “nice”, the exponent in the error term in Theorem 2 is not
optimal.
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