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Divisibility of integer polynomials and
tilings of the integers
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1. Introduction. If A,B ⊆ Z and every integer can be written uniquely
as a+ b with a ∈ A and b ∈ B, then we write A⊕ B = Z, and we say that
A⊕B is a tiling of Z by A. If A⊕B = Z and A is finite, it follows from the
pigeon-hole principle (see e.g. [N]) that B is periodic, i.e. B + k = B with
some positive integer k.

We mention here that the analogous statement for Zr in place of Z is
an open problem (Periodic Tiling Conjecture, see [L-W]). Partial results are
proved in [Sz]. However, we deal here only with the case of Z. For references
to related work, see [K], [Sz] and [T].

Let A ⊕ B = Z. If the diameter of A is n, and the least period of B
is k, the pigeon-hole principle gives that k ≤ 2n (see [N]). This result was
recently improved by I. Z. Ruzsa, who proved in [R] that log k � √n log n.
A slightly weaker result was proved by M. Kolountzakis in [K]. In the other
direction, the best known result is that k = o(n2) is not true (see [K]). We
see that these upper and lower estimates are very far from each other.

In the present paper we improve the upper bound (see the Corollary be-
low), i.e. Ruzsa’s result. However, the problem whether a polynomial upper
bound can be given for k or not, remains open.

We remark here that the proofs for the upper bound by Ruzsa and by
Kolountzakis are nearly identical, except for a minor detail which makes the
slight difference in the result. However, since I used [R] while I was working
on my proof, I will refer to Ruzsa’s work below.

The new upper bound will be a corollary of the following theorem on the
divisibility of integer polynomials.
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Theorem. Let ε > 0 be any fixed constant , and let 0 6≡ q(x) ∈ Z[x]
with leading coefficient 1. Assume that there is a polynomial Q 6≡ 0 such
that every coefficient of Q is 0 or 1 and

q(x) | (1− x)Q(x).

Denote by n the degree of the polynomial (1 − x)Q(x), and assume that
n ≥ n0, where n0 is a large enough number depending only on ε. If there is
a positive integer k such that q(x) |xk − 1, then for the smallest such k we
have

log k ≤ n1/3+ε.

Remark. What is actually used about the polynomial (1 − x)Q(x) is
that the sum of the absolute values of its coefficients is small, and the order
of its vanishing at 1 is also small. So it would be possible to formulate the
theorem imposing such conditions, and it would be nice to use more about
Q(x) in order to improve the result.

Corollary. Let ε > 0 be any fixed constant , and let A,B ⊆ Z be such
that A is a finite set and A ⊕ B = Z. Write n for the diameter of A, i.e.
n := maxa∈A a − mina∈A a, and assume that n ≥ n0, where n0 is a large
enough number depending only on ε. Then there is a positive integer k such
that the set B is periodic with respect to k and

log k ≤ n1/3+ε.

Examining Ruzsa’s proof in [R], we can see that the following statement
on polynomials was proved there implicitly, and this was the basis of the
proof of the result on tilings:

Proposition (Ruzsa). Let q(x) ∈ Z[x] with deg q ≤ n. If there is a
positive integer k such that q(x) |xk − 1, then for the smallest such k we
have log k � √n log n.

This result is sharp, as one can see from the example (p runs over primes)

q(x) =
∏

√
n log n≤p≤2

√
n log n

(1 + x+ · · ·+ xp−1).

So the meaning of our Theorem is that if we assume a new condition on
q(x) (not only the upper bound for its degree), then the upper bound for
k can be improved. Since the polynomial q(x) for which Ruzsa applied the
above statement also satisfies the additional condition of our Theorem, the
Corollary follows simply by substituting our Theorem into Ruzsa’s proof.
But, for the sake of completeness, we give the proof of the Corollary (i.e. we
reconstruct Ruzsa’s argument) at the end of the paper (Section 4).

The proof of some lemmas are presented in Section 2. We remark that
Lemma 4 is crucial for the improvement of the exponent 1/2 of n. We give
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the proof of the Theorem in Section 3. The proof begins by an analysis of
Ruzsa’s proof of the above Proposition. Then the new idea, leading to the
improvement, is to substitute certain roots of unity into our polynomial,
producing in this way nonzero and not very large integers divisible by too
many primes, which will be a contradiction.

We introduce some notations. If d ≥ 1 is an integer, U(d) denotes the
set of primitive dth roots of unity. The cardinality of this set is φ(d) (Euler’s
function). The cyclotomic polynomial of order d is ψd(x) :=

∏
ξ∈U(d)(x−ξ).

We will use many times the fact that ψd(x) is an irreducible polynomial in
Z[x], and also the following fact: if P1(x), P2(x) ∈ Z[x], P1(x) |P2(x) and
P1 has leading coefficient 1, then P2(x)/P1(x) ∈ Z[x] (Gauss’ lemma). For
a polynomial P we denote by ‖P‖ the sum of the absolute values of its
coefficients; for a positive integer r we write ω(r) for the number of distinct
prime divisors of r. As usual, log will denote the natural logarithm.

Acknowledgements. I am grateful to R. Tijdeman for drawing my
attention to this problem.

2. Some lemmas. The first lemma is needed for Lemma 2. We remark
that, as the referee pointed out, Lemma 1 could be easily improved, if we
took into account the dependence on d, but this would not improve the final
result.

Lemma 1. Let P 6≡ 0 be a polynomial with complex coefficients and
degP = n. Let d be a positive integer , assume that xd − 1 |P (x), and let
P ?(x) = P (x)/(xd − 1). Then

‖P ?‖ ≤ n‖P‖.
Proof. Let

P (x) = a0 + a1x+ · · ·+ anx
n, P ?(x) = b0 + b1x+ · · ·+ bn−dx

n−d.

It is easy to see that ([y] denotes the integer part of a real y)

−bj =
[j/d]∑

t=0

aj−td,

so |bj | ≤ ‖P‖ for j = 0, 1, . . . , n− d. Since d ≥ 1, the lemma follows.

Lemma 2. Let ε > 0 be any fixed constant , and let P 6≡ 0 be a polynomial
with complex coefficients. Assume that degP ≤ n with an n ≥ n0, where n0

is a large enough number depending only on ε. Let m be a positive integer
satisfying ψm(x) |P (x), and let P ?(x) = P (x)/ψm(x). Then

‖P ?‖ ≤ enε‖P‖.
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Proof. It is known that (µ denotes the Möbius function)

ψm(x) =
∏

d|m
(xd − 1)µ(m/d).

We can write it as ψm(x) = ψ?m(x)/ψ??m (x), where

ψ?m(x) =
∏

d|m,µ(m/d)=1

(xd − 1), ψ??m (x) =
∏

d|m,µ(m/d)=−1

(xd − 1).

Then the polynomial P ? can be written as

P ?(x) =
P (x)ψ??m (x)∏

d|m,µ(m/d)=1(xd − 1)
,

so the denominator here divides the numerator. Denote by τ(r) the number
of divisors of a positive integer r. It is clear that degψ??m ≤ mτ(m) and
‖ψ??m ‖ ≤ 2τ(m), so applying Lemma 1 repeatedly we get

‖P ?‖ ≤ (‖P‖2τ(m))(n+mτ(m))τ(m).

Since φ(m) ≤ n follows from ψm(x) |P (x), and since it is well known that

φ(r) > r1−ε, τ(r) < rε

for large enough r, the lemma is proved.

The following lemma is well known, but since its proof requires only a
few lines, we present the proof.

Lemma 3. Let ε > 0 be any fixed constant , let K be a real number and
assume that K ≥ K0, where K0 is a large enough number depending only
on ε. Set C = 105 logK. Then

∑

1≤r≤K
Cω(r) ≤ K1+ε.

Proof. Let

f(r) =
∏

p|r, p>P
eλ,

where p runs over primes and we will choose the positive parameters P and
λ later. Then we have

Cω(r) ≤ eλπ(P )(Ce−λ)ω(r)f(r)

for every r ≥ 1, where π(P ) is the number of primes not exceeding P .
Obviously f(mn) ≤ f(m)f(n) for every m,n ≥ 1, and so

1
K

∑

1≤r≤K
f(r) ≤

∑

1≤r≤K

f(r)
r
≤
∏

p≤K

(
1− f(p)

p

)−1

≤ e2
∑
p≤K f(p)/p
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provided f(p)/p ≤ 1/2 for all p. This condition is true if eλ ≤ P/2. Hence,
using also that for large enough K we have

∑

p≤K

1
p
≤ 2 log logK and ω(r) ≤ 2

logK
log logK

for 1 ≤ r ≤ K,

we get ∑

1≤r≤K
Cω(r) ≤ K(Ce−λ)2 logK

log logK eλP+4eλ log logK

for large K, if eλ ≤ P/2 and eλ ≤ C. By the choice

P = 2eλ, λ = log logK − 2 log log logK,

say, the lemma follows.

Lemma 4. Let P 6≡ 0 be a polynomial such that every coefficient of P
is 0 or 1 and degP = n. Assume that n ≥ n0, where n0 is a large enough
number. Let d be a positive integer. Then ψd(x)V |P (x) implies that V ≤
(100 logn)ω(d).

Proof. Let d = d1p
α, where p is a prime, (p, d1) = 1 and α ≥ 1. For

every integer U ≥ 0 we have (P (U) denotes the Uth derivative of P )

ψd(x)V−U |P (U)(x), ‖P (U)‖ ≤ nU (n+ 1) ≤ nU+2.

Then ( ∏

ξ∈U(d1)

ψd(ξ)
)V−U ∣∣∣N :=

∏

ξ∈U(d1)

P (U)(ξ).

We know that N ∈ Z and |N | ≤ (nU+2)φ(d1). On the other hand,
∏

ξ∈U(d1)

ψd(ξ) =
∏

ξ1,ξ2∈U(d1)

∏

η∈U(pα)

(ξ1 − ξ2η).

The right-hand side here is divisible by pφ(d1). Indeed, we see this from the
ξ1= ξ2 part, using the fact that

∏

η∈U(pα)

(1− η) = ψpα(1) = p.

Hence,
(pφ(d1))V−U |N and |N | ≤ (nU+2)φ(d1).

If N 6= 0, this implies

2V−U ≤ pV−U ≤ e(U+2) log n.

If V ≥ 100 logn and U ≤ V/100 logn, then this is clearly a contradiction
for large n, so N must be 0.
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We proved so far: if n ≥ n0 and

ψd(x)V |P (x), V ≥ 100 logn, U ≤ V

100 logn
,

then
ψd1(x)U+1 |P (x).

Let d = pα1
1 · · · pαtt be the prime decomposition of the integer d. We apply

the above step t times. We conclude that if V > (100 logn)t, then P (1) = 0,
which is impossible by the assumptions. The lemma is proved.

3. Proof of the Theorem. We will use Lemmas 2–4 of Section 2.
In the present section the positive constants c1, c2, . . . are either absolute

or depend only on ε; if a constant depends on ε, we will indicate it. If

q(x) |xk − 1

for some k, then

q(x) =
∏

d∈D
ψd(x)

with some set D. Define

k = lcm{d : d ∈ D},
where lcm stands for the least common multiple. We have to estimate this k.
Observe the important relation

(1) deg q =
∑

d∈D
φ(d) ≤ n.

Let

(2) n1/3 < M <
1
2
n1/2, L > 2n1/2.

We will fix these parameters later.

(a) If p is a prime, α ≥ 1, pα ‖ k and pα ≥ L, then pα | d for some d ∈ D.
A given d ∈ D cannot be divisible by two different such prime powers,
because then we would have (see also (2))

φ(d) ≥ φ(pα1
1 )φ(pα2

2 ) ≥
(

1
2
pα1

1

)(
1
2
pα2

2

)
≥ L2

4
> n,

which contradicts (1). Hence every such prime power divides a different
d ∈ D, and if pα | d, then φ(d) ≥ φ(pα). So

1
2

∑

pα‖k, pα≥L
L ≤ 1

2

∑

pα‖k, pα≥L
pα ≤

∑

pα‖k, pα≥L
φ(pα) ≤

∑

d∈D
φ(d) ≤ n.
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This implies that for every such pα we have pα ≤ 2n, and the number of
such prime powers is ≤ 2n/L; consequently,

(3)
∏

pα‖k, pα≥L
pα ≤ (2n)2n/L.

(b) It is clear that

(4)
∏

pα‖k, pα≤M
pα ≤

∏

pα≤M
pα ≤ ec1M .

(c) It is also clear that

(5)
∏

pα‖k,M<pα<L,α≥2

pα ≤
∏

pα<L,α≥2

pα ≤ ec2
√
L.

(d) We are left with ∏

p‖k,M<p<L

p.

If p1, p2, p3 are three different such primes, and pi | d ∈ D for i = 1, 2, 3,
then

φ(d) ≥ (p1 − 1)(p2 − 1)(p3 − 1) ≥M3 > n

by (2), which contradicts (1). So every such p divides a d ∈ D, but a given
d ∈ D is divisible by at most two such primes. If d ∈ D is divisible by
two such primes, then φ(d) ≥ M 2, so the number of such numbers d ∈ D
is at most n/M2 by (1). Consequently, the number of primes p ‖ k with
M < p < L for which there is another such prime p? and a d ∈ D with
p, p? | d, is at most 2n/M2. It follows that

(6)
∏

p‖k,M<p<L

p ≤ L2n/M2 ∏

p∈P
p,

where P is a set

(7) P ⊆ {p ‖ k : M < p < L}
such that each d ∈ D is divisible by at most one p ∈ P.

Then for every p ∈ P there is a dp ∈ D with p | dp, and dp1 6= dp2 for
p1 6= p2. So by (1), we obtain

(8)
∑

p∈P
φ(dp) ≤ n.

Since p ‖ k for p ∈ P, we have (p, dp/p) = 1. Consequently,

(9) φ(dp) = (p− 1)φ(dp/p) ≥ c3(ε)M(dp/p)1−ε.

Introduce a new parameter K ≥ K0, where K0 is a large number de-
pending only on ε. If p ∈ P and dp/p ≥ K, then φ(dp) ≥ c3(ε)MK1−ε by
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(9), so we deduce by (7) and (8) that

(10)
∏

p∈P
p ≤

( ∏

p∈P?
p
)
Lc4(ε)n/MK1−ε

,

where P? ⊆ P is a subset of P such that 1 ≤ dp/p < K for every p ∈ P?.
We divide P? into subsets,

(11) P? =
⋃

1≤r<K
Pr,

where

(12) Pr = {p ∈ P? : dp = rp}.
Let 1 ≤ r < K be fixed. Assume that Vr ≥ 0 is the largest integer with the
property

(13) ψr(x)Vr |Q(x)(1− x),

and let

(14) Q?(x) =
Q(x)(1− x)
ψr(x)Vr

.

Then Q?(ξ) 6= 0 for ξ ∈ U(r), and by Lemma 2 we have

(15) ‖Q?‖ ≤ 2neVrn
ε

,

so, with the definition

(16) ν :=
∏

ξ∈U(r)

Q?(ξ)

we have

(17) ν ∈ Z, ν 6= 0, |ν| ≤ ‖Q?‖φ(r).

Since, using (12),
∏

p∈Pr
ψpr(x)

∣∣∣ q(x), q(x) |Q(x)(1− x),

and (
ψr(x),

∏

p∈Pr
ψpr(x)

)
= 1,

it follows that ∏

p∈Pr
ψpr(x)

∣∣∣Q?(x)

by (14). Consequently,

(18)
∏

p∈Pr

( ∏

ξ∈U(r)

ψpr(ξ)
) ∣∣∣ ν
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by (16). We have (p, r) = 1 for every p ∈ Pr, since p ‖ k for every such p (see
(12), (7) and remember that Pr ⊆ P). Hence, for every p ∈ Pr we have

∏

ξ∈U(r)

ψpr(ξ) =
∏

ξ1,ξ2∈U(r)

∏

η∈U(p)

(ξ1 − ξ2η).

Here the right-hand side is divisible by pφ(r). This can be seen from the
ξ1= ξ2 part, since ∏

η∈U(p)

(1− η) = ψp(1) = p.

So the left-hand side is also divisible by pφ(r). This is true for every p ∈ Pr,
and so by (18) we obtain ∏

p∈Pr
pφ(r)

∣∣∣ ν.

Then, taking into account (17) and (15), we get
∏

p∈Pr
p ≤ ‖Q?‖ ≤ 2neVrn

ε

.

Since p ≥ 2 for every p, this implies that for large enough n,

(19) |Pr| ≤ c5(Vr + 1)nε.

Summing up: using the relations (3)–(7), P? ⊆ P, (10), (11) and (19) we
infer that for large n,

log k ≤ 2n
L

log(2n) + c1M + c2
√
L

+ c6(ε)(logL)(Kn)ε
(

n

M2 +
n

MK
+

∑

1≤r<K
(Vr + 1)

)
.

The L-part is (nearly) optimized by taking L = n2/3. Using Lemma 4, we
see that Vr+1 ≤ (200 logn)ω(r) for large n (see the definition of Vr at (13)).
So, assuming a weak estimate

(20) K ≥ n1/100,

and using Lemma 3, we finally have

log k ≤ c7(ε)(Kn)2ε
(
n1/3 +M +

n

M2 +
n

MK
+K

)
.

This is nearly optimized in K by K = (n/M)1/2, and the remaining ex-
pression is nearly optimized in M with M = n1/3. So finally we fix the
parameters in the following way:

K = n1/3, M = 2n1/3, L = n2/3.
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Since the conditions (2) and (20) are satisfied with these choices (and the
earlier assumption K ≥ K0 follows from (20)), we have

log k ≤ n1/3+10ε,

say, for large enough n, so (writing 10ε in place of ε in the statement of the
Theorem) the proof is complete.

4. Proof of the Corollary. We may assume that

min
a∈A

a = 0, max
a∈A

a = n.

Let
B+ = B ∩ [0,∞),

C = {n ∈ Z : n ≥ 0, n = a+ b, a ∈ A, b ∈ B, b < 0}.
Define

f(x) =
∑

a∈A
xa, g(x) =

∑

b∈B+

xb, h(x) =
∑

c∈C
xc.

Here f and h are polynomials. It is a consequence of A⊕B = Z that

f(x)g(x) + h(x) =
1

1− x,

and so

g(x) =
1− (1− x)h(x)

(1− x)f(x)
=
p(x)
q(x)

,

where p and q are coprime polynomials in Z[x]. In particular, q has leading
coefficient 1 and

q(x) | (1− x)f(x).

We know (from [N]) that B is periodic, therefore there is a positive integer
k for which g(x)(xk − 1) is a polynomial. Then, since (p(x), q(x)) = 1, we
have

q(x) |xk − 1.

Since every coefficient of the polynomial f is 0 or 1, the conditions of the
Theorem are fulfilled. We deduce from deg f = n that there is a positive
integer k with

q(x) |xk − 1, log k ≤ n1/3+ε.

It remains to prove that this k is a period of B. But it is obvious that
g(x)(xk − 1) is a polynomial, and since we know that B has a period (not
necessarily this k, but some positive integer), in view of the definition of
g(x) this implies that k is a period of B.
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