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The iterated Carmichael λ-function

and the number of cycles of the power generator
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Greg Martin (Vancouver) and Carl Pomerance (Hanover, NH)

1. Introduction. A common pseudorandom number generator is the
power generator: x 7→ xl (modn). Here, l, n are fixed integers at least 2, and
one constructs a pseudorandom sequence by starting at some residue mod n
and iterating this lth power map. (Because it is the easiest to compute,
one often takes l = 2; this case is known as the BBS generator, for Blum,
Blum, and Shub.) To be a good generator, the period should be large. Of
course, the period depends somewhat on the number chosen for the initial
value. However, a universal upper bound for this period is λ(λ(n)) where λ is
Carmichael’s function. Here, λ(m) is defined as the order of the largest cyclic
subgroup of the multiplicative group (Z/mZ)×. It may be computed via the
identity λ(lcm{a, b}) = lcm{λ(a), λ(b)} and its values at prime powers: with
φ being Euler’s function, λ(pa) = φ(pa) = (p − 1)pa−1 for every odd prime
power pa and for 2 and 4, and λ(2a) = φ(2a)/2 = 2a−2 for a ≥ 3.

Statistical properties of λ(n) were studied by Erdős, Schmutz, and
the second author in [7], and in particular, they showed that λ(n) =
n/exp((1 + o(1)) log logn log log logn) as n → ∞ through a certain set of
integers of asymptotic density 1. This does not quite pinpoint the normal
order of λ(n) (even the sharper version of this theorem from [7] falls short
in this regard), but it is certainly a step in this direction, and does give the
normal order of the function log(n/λ(n)).

In this paper we prove a result of similar quality for the function λ(λ(n)),
which we have seen arises in connection with the period of the power genera-
tor. We obtain the same expression as with λ(n), except that the log logn is
squared. That is, λ(λ(n)) = n/exp((1+o(1))(log log n)2 log log logn) almost
always.
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We are able to use this result to say something nontrivial about the
number of cycles for the power generator. This problem has been consid-
ered in several papers, including [3], [4], and [15]. We show that for almost
all integers n, the number of cycles for the lth power map modulo n is
at least exp((1 + o(1))(log log n)2 log log logn), and we conjecture that this
lower bound is actually the truth. Under the assumption of the Generalized
Riemann Hypothesis (GRH), and using a new result of Kurlberg and the
second author [12], we prove our conjecture. (By the GRH, we mean the Rie-
mann Hypothesis for Kummerian fields as used by Hooley in his celebrated
conditional proof of the Artin conjecture.)

For an arithmetic function f(n) whose values are in the natural numbers,
let fk(n) denote the kth iterate of f evaluated at n. One might ask about
the normal behavior of λk(n) for k ≥ 3. Here we make a conjecture for each
fixed k. We also briefly consider the function L(n) defined as the least k such
that λk(n) = 1. A similar undertaking was made by Erdős, Granville, Spiro,
and the second author in [5] for the function F (n) defined as the least k with
φk(n) = 1. Though λ is very similar to φ, the behavior of L(n) and F (n)
seems markedly different. We know that F (n) is always of order of magnitude
logn, and it is shown in [5], assuming the Elliott–Halberstam conjecture
on the average distribution of primes in arithmetic progressions with large
moduli, that in fact F (n) ∼ α logn on a set of asymptotic density 1 for a
particular positive constant α. We know far less about L(n), not even its
typical order of magnitude. We raise the possibility that it is normally of
order log logn and show that it is bounded by this order infinitely often.

A more formal statement of our results follows.

Theorem 1. The normal order of log(n/λ(λ(n))) is

(log logn)2 log log logn.

That is,

λ(λ(n)) = n exp(−(1 + o(1))(log log n)2 log log logn)

as n→ ∞ through a set of integers of asymptotic density 1.

We actually prove the slightly stronger result: given any function ψ(n)
going to infinity arbitrarily slowly, we have

λ(λ(n)) = n exp(−(log logn)2(log log logn+O(ψ(n))))

for almost all n.
Given integers l, n ≥ 2, let C(l, n) denote the number of cycles when

iterating the modular power map x 7→ xl (modn).

Theorem 2. Given any fixed integer l ≥ 2, there is a set of integers of

asymptotic density 1 such that as n→ ∞ through this set ,

(1) C(l, n) ≥ exp((1 + o(1))(log logn)2 log log logn).
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Further , if ε(n) tends to 0 arbitrarily slowly, we have C(l, n) ≤ n1/2−ε(n)

for almost all n. Moreover , for a positive proportion of integers n we have

C(l, n) ≤ n.409. Finally , if the Generalized Riemann Hypothesis (GRH )
is true, we have equality in (1) on a set of integers n of asymptotic den-

sity 1.

Conjecture 3. The normal order of log(n/λk(n)) is

(1/(k − 1)!)(log logn)k log log logn.

That is, for each fixed integer k ≥ 1,

λk(n) = n exp

(

−
(

1

(k − 1)!
+ o(1)

)

(log logn)k log log log n

)

for almost all n.

Define L(n) to be the number of iterations of λ required to take n to 1,
that is, L(n) equals the smallest nonnegative integer k such that λk(n) = 1.

Theorem 4. There are infinitely many integers n such that

L(n) < (1/log 2 + o(1)) log logn.

2. Notation, strategy, and preliminaries. The proof of Theorem 1,
our principal result, proceeds by comparing the prime divisors of λ(λ(n))
with those of φ(φ(n)). The primes dividing φ(m) and λ(m) are always the
same. However, this is not always true for φ(φ(m)) and λ(λ(m)). The prime 2
clearly causes problems; for example, we have φ(φ(8)) = 2 but λ(λ(8)) = 1.
However this problem also arises from the interaction between different
primes, for example, φ(φ(91)) = 24 but λ(λ(91)) = 2.

We shall use the following notation throughout the paper. The letters
p, q, r will always denote primes. Let vq(n) denote the exponent on q in the
prime factorization of n, so that

n =
∏

q

qvq(n)

for every positive integer n. We let Pn = {p : p ≡ 1 (modn)}. We let x > eee

be a real number and y = y(x) = log log x. By ψ(x) we denote a function
tending to infinity but more slowly than log log logx = log y. In Sections 2–5,
the phrase “for almost all n” always means “for all but O(x/ψ(x)) integers
n ≤ x”.

First we argue that the “large” prime divisors typically do not contribute
significantly:

Proposition 5. For almost all n ≤ x, the prime divisors of φ(φ(n))
and λ(λ(n)) that exceed y2 are identical.
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Proposition 6. For almost all n ≤ x,

(2)
∑

q>y2

vq(φ(φ(n)))≥2

vq(φ(φ(n))) log q ≪ y2ψ(x).

Next we argue that the contribution of “small” primes to λ(λ(n)) is
typically small:

Proposition 7. For almost all n ≤ x, we have
∑

q≤y2

vq(λ(λ(n))) log q ≪ y2ψ(x).

Finally, we develop an understanding of the typical contribution of small
primes to φ(φ(n)) by comparing it to the additive function h(n) defined by

(3) h(n) =
∑

p|n

∑

r|p−1

∑

q≤y2

vq(r − 1) log q.

Proposition 8. For almost all n ≤ x,
∑

q≤y2

vq(φ(φ(n))) log q = h(n) +O(y log y · ψ(x)).

Proposition 9. For almost all n ≤ x, we have h(n) = y2 log y+O(y2).

Proof of Theorem 1. Let x be a sufficiently large real number. For any
positive integer n ≤ x we may write

log
n

λ(λ(n))
= log

n

φ(n)
+ log

φ(n)

φ(φ(n))
+ log

φ(φ(n))

λ(λ(n))
.

Since n/φ(n) ≪ log logn, the first two terms are both O(log log log x). Thus,
it suffices to show that

log
φ(φ(n))

λ(λ(n))
= (log log x)2(log log log x+O(ψ(x)))(4)

= y2 log y +O(y2ψ(x))

for almost all n ≤ x. We write

log
φ(φ(n))

λ(λ(n))
=

∑

q

(vq(φ(φ(n))) − vq(λ(λ(n)))) log q(5)

=
∑

q≤y2

vq(φ(φ(n))) log q −
∑

q≤y2

vq(λ(λ(n))) log q

+
∑

q>y2

(vq(φ(φ(n))) − vq(λ(λ(n)))) log q.

Since λ(λ(n)) always divides φ(φ(n)), the coefficients of log q in this last
sum are all nonnegative.



Iterated Carmichael λ-function 309

On the other hand, Proposition 5 tells us that for almost all n ≤ x,
whenever vq(φ(φ(n))) > 0 we have vq(λ(λ(n))) > 0 as well. Therefore the
primes q for which vq(φ(φ(n))) ≤ 1 do not contribute to this last sum at all,
that is,

0 ≤
∑

q>y2

(vq(φ(φ(n))) − vq(λ(λ(n)))) log q

=
∑

q>y2

vq(φ(φ(n)))≥2

(vq(φ(φ(n))) − vq(λ(λ(n)))) log q

≤
∑

q>y2

vq(φ(φ(n)))≥2

vq(φ(φ(n))) log q ≪ y2ψ(x)

for almost all n ≤ x by Propositions 5 and 6. Moreover, Proposition 7 tells
us that the second sum on the right-hand side of (5) is O(y2ψ(x)) for almost
all n ≤ x. Therefore equation (5) becomes

log
φ(φ(n))

λ(λ(n))
=

∑

q≤y2

vq(φ(φ(n))) log q +O(y2ψ(x))

for almost all n ≤ x. By Proposition 8, the sum on the right-hand side
can be replaced by h(n) for almost all n ≤ x, the error O(y log y · ψ(x)) in
that proposition being absorbed into the existing error O(y2ψ(x)). Finally,
Proposition 9 tells us that h(n) = y2 log y +O(y2) for almost all n ≤ x. We
conclude that equation (4) is satisfied for almost all n ≤ x, which establishes
the theorem.

Given integers a and n, recall that π(t;n, a) denotes the number of primes
up to t that are congruent to a (modn). The Brun–Titchmarsh inequality
(see [10, Theorem 3.7]) states that

(6) π(t;n, a) ≪ t

φ(n) log(t/n)

for all t > n. We use repeatedly a weak form of this inequality, valid for all
t > ee,

(7)
∑

p≤t
p∈Pn

1

p
≪ log log t

φ(n)
,

which follows from the estimate (6) with a = 1 by partial summation. When
n/φ(n) is bounded, this estimate simplifies to

(8)
∑

p≤t
p∈Pn

1

p
≪ log log t

n
.
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For example, we shall employ this last estimate when n is a prime or a prime
power and when n is the product of two primes or prime powers; in these
cases we have n/φ(n) ≤ 3. We also quote the fact (see Norton [13] or the
paper [14] of the second author) that

(9)
∑

p∈Pn

p≤t

1

p
=

log log t

φ(n)
+O

(

log n

φ(n)

)

.

This readily implies that

(10)
∑

p∈Pn

p≤t

1

p− 1
=

log log t

φ(n)
+O

(

logn

φ(n)

)

as well, since (noting that the smallest possible term in the sum is p = n+1)
the difference equals

∑

p∈Pn

p≤t

1

(p− 1)p
≤

∞
∑

i=1

1

in(in+ 1)
≪ 1

n2
.

We occasionally use the Chebyshev upper bound

(11)
∑

p≤z

log p ≤
∑

n≤z

Λ(n) ≪ z,

where Λ(n) is the von Mangoldt function, as well as the weaker versions

(12)
∑

p≤z

log p

p
≪ log z,

∑

p≤z

log2 p

p
≪ log2 z

and the tail estimates

(13)
∑

p>z

log p

p2
≪ 1

z
,

∑

p>z

1

p2
≪ 1

z log z
,

each of which can be derived from the estimate (11) by partial summation.
We shall also need at one point a weak form of the asymptotic formula of
Mertens,

(14)
∑

p≤z

log p

p
= log z +O(1).

For any polynomial P (x), we also note the series estimate

∞
∑

a=0

P (a)

ma
≪P 1
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uniformly for m ≥ 2, valid since the series
∑∞

a=0 P (a)za converges uniformly
for |z| ≤ 1/2. The estimates

(15)
∑

a∈N

P (a)

ma
≪P

1

m
,

∑

a∈N
ma>z

P (a)

ma
≪P

1

z
,

valid uniformly for any integer m ≥ 2, follow easily by factoring out the first
denominator occurring in each sum.

3. Large primes dividing φ(φ(n)) and λ(λ(n))

Proof of Proposition 5. If q is any prime, then q divides φ(φ(n)) if and
only if at least one of the following criteria holds:

• q3 |n,
• there exists p ∈ Pq2 with p |n,

• there exists p ∈ Pq with p2 |n,
• there exist r ∈ Pq and p ∈ Pr with p |n,
• q2 |n and there exists p ∈ Pq with p |n,
• there exist distinct p1, p2 ∈ Pq with p1p2 |n.

In the first four of these six cases, it is easily checked that q |λ(λ(n)) as well.
(This is not quite true for q = 2, but in this proof we shall only consider
primes q > y2.) Therefore we can estimate the number of integers n ≤ x for
which q divides φ(φ(n)) but not λ(λ(n)) as follows:

∑

n≤x
q|φ(φ(n))
q∤λ(λ(n))

1 ≤
∑

p∈Pq

∑

n≤x
q2p|n

1 +
∑

p1∈Pq

∑

p2∈Pq

p2 6=p1

∑

n≤x
p1p2|n

1 ≤
∑

p∈Pq

x

q2p
+

∑

p1∈Pq

∑

p2∈Pq

x

p1p2
.

Using three applications of the Brun–Titchmarsh inequality (8), we conclude
that for any odd prime q,

∑

n≤x
q|φ(φ(n))
q∤λ(λ(n))

1 ≪ xy

q3
+
xy2

q2
≪ xy2

q2
.

Consequently, by the tail estimate (13) and the condition ψ(x) = o(log y),
∑

q>y2

∑

n≤x
q|φ(φ(n))
q∤λ(λ(n))

1 ≪ xy2
∑

q>y2

1

q2
≪ xy2

y2 log y2
<

x

log y
≪ x

ψ(x)
.

Therefore for almost all n ≤ x, every prime q > y2 dividing φ(φ(n)) also
divides λ(λ(n)), as asserted.
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Lemma 10. Given a real number x ≥ 3 and a prime q > y2, define

Sq = Sq(x) to be the set of all integers n ≤ x for which at least one of the

following criteria holds:

• q2 |n,
• there exists p ∈ Pq2 with p |n,

• there exist distinct p1, p2 ∈ Pq with p1p2 |n,

• there exist r ∈ Pq2 and p ∈ Pr with p |n,

• there exist distinct r1, r2, r3 ∈ Pq and p ∈ Pr1r2r3
with p |n,

• there exist distinct r1, r2, r3, r4 ∈ Pq, p1 ∈ Pr1r2
, and p2 ∈ Pr3r4

with

p1p2 |n.
Then the cardinality of Sq is O(xy2/q2).

Note that if q2 |φ(n), then at least one of the first three of the six con-
ditions in the statement of the lemma must be satisfied.

Proof. The number of integers up to x for which any particular one of the
six criteria holds is easily shown to be O(xy2/q2). For the sake of conciseness,
we show the details of this calculation only for the last criterion, which is
the most complicated. The number of integers n up to x for which there
exist distinct r1, r2, r3, r4 ∈ Pq, p1 ∈ Pr1r2

, and p2 ∈ Pr3r4
with p1p2 |n is at

most
∑

r1,r2,r3,r4∈Pq

∑

p1∈Pr1r2
p2∈Pr3r4

∑

n≤x
p1p2|n

1 ≤
∑

r1,r2,r3,r4∈Pq

∑

p1∈Pr1r2
p2∈Pr3r4

x

p1p2
.

Using six applications of the Brun–Titchmarsh estimate (8), we have

∑

r1,r2,r3,r4∈Pq

∑

p1∈Pr1r2
p2∈Pr3r4

x

p1p2
≪

∑

r1,r2,r3,r4∈Pq

xy2

r1r2r3r4
≪ xy6

q4
<
xy2

q2
,

the last inequality being valid due to the hypothesis q > y2.

Proof of Proposition 6. Define S = S(x) to be the union of Sq over all
primes q > y2, where Sq is defined as in the statement of Lemma 10. If we
use #A to denote the cardinality of a set A, Lemma 10 implies that

#S ≤
∑

q>y2

#Sq ≪
∑

q>y2

xy2

q2
≪ xy2

y2 log y2
≪ x

ψ(x)

by the tail estimate (13) and the condition ψ(x) = o(log y). Therefore to
prove that the estimate (2) holds for almost all integers n ≤ x, it suffices to
prove that it holds for almost all integers n ≤ x that are not in the set S.
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This in turn is implied by the upper bound

(16)
∑

n≤x
n/∈S

∑

q>y2

vq(φ(φ(n)))≥2

vq(φ(φ(n))) log q ≪ xy2,

which we proceed now to establish.
Fix a prime q > y2 and an integer a ≥ 2 for the moment. In general,

there are many ways in which qa could divide φ(φ(n)), depending on the
power to which q divides n itself, the power to which q divides numbers of
the form p− 1 with p |n, and so forth. However, for integers n /∈ S, most of
these various possibilities are ruled out by one of the six criteria defining the
sets Sq. In fact, for n /∈ S, there are only two ways for qa to divide φ(φ(n)):

• there are distinct r1, . . . , ra ∈ Pq and distinct p1 ∈ Pr1
, . . . , pa ∈ Pra

with p1 · · · pa |n,
• there are distinct r1, . . . , ra ∈ Pq, distinct p1 ∈ Pr1

, . . . , pa−2 ∈Pra−2
,

and p ∈ Pra−1ra with p1 · · · pa−2p |n.

(We refer to the former case as the “supersquarefree” case.)
Still considering q and a fixed, the number of integers n up to x satisfying

each of these two conditions is at most
∑

r1,...,ra∈Pq

1

a!

∑

p1∈Pr1···
pa∈Pra

∑

n≤x
p1···pa|n

1 ≤
∑

r1,...,ra∈Pq

1

a!

∑

p1∈Pr1···
pa∈Pra

x

p1 · · · pa

and
∑

r1,...,ra∈Pq

1

2!(a− 2)!

∑

p1∈Pr1···
pa−2∈Pra−2

p∈Pra−1ra

∑

n≤x
p1···pa−2p|n

1

≤
∑

r1,...,ra∈Pq

1

(a− 2)!

∑

p1∈Pr1···
pa−2∈Pra−2

p∈Pra−1ra

x

p1 · · · pa−2p
,

respectively, the factors 1/a! and 1/2!(a−2)! coming from the various possi-
ble permutations of the primes ri. Letting c ≥ 1 be the constant implied in
the Brun–Titchmarsh inequality (8) as applied to moduli n that are divisible
by at most two distinct primes, we see that

∑

r1,...,ra∈Pq

1

a!

∑

p1∈Pr1···
pa∈Pra

x

p1 · · · pa
≤

∑

r1,...,ra∈Pq

1

a!
· x(cy)

a

r1 · · · ra
≤ x(cy)2a

a!qa
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and
∑

r1,...,ra∈Pq

1

(a−2)!

∑

p1∈Pr1···
pa−2∈Pra−2

p∈Pra−1ra

x

p1 · · · pa−2p
≤

∑

r1,...,ra∈Pq

1

(a− 2)!
· x(cy)

a−1

r1 · · · ra

≤ x(cy)2a−1

(a− 2)!qa
.

Therefore the number of integers n ≤ x such that n /∈ S and qa |φ(φ(n)) is

(17) ≤ x(cy)2a

a!qa
+
x(cy)2a−1

(a− 2)!qa
<

c2axy4

(a− 2)!q2
,

where we have used the assumption q > y2.
We now establish the estimate (16). Note that

∑

n≤x
n/∈S

∑

q>y2

vq(φ(φ(n)))≥2

vq(φ(φ(n))) log q

≤ 2
∑

n≤x
n/∈S

∑

q>y2

vq(φ(φ(n)))≥2

(vq(φ(φ(n))) − 1) log q = 2
∑

q>y2

log q
∑

a≥2

∑

n≤x
n 6∈S

qa|φ(φ(n))

1.

Therefore, using the bound (17) for each pair q and a,

∑

n≤x
n/∈S

∑

q>y2

vq(φ(φ(n)))≥2

vq(φ(φ(n))) log q ≤ 2
∑

q>y2

log q
∑

a≥2

c2axy4

(a− 2)!q2

= 2c4ec2xy4
∑

q>y2

log q

q2
≪ xy4

y2
= xy2

by the tail estimate (13). This establishes the estimate (16) and hence the
proposition.

4. Small primes and the reduction to h(n)

Lemma 11. For any prime power qa, the number of positive integers

n ≤ x for which qa divides λ(λ(n)) is O(xy2/qa).

Proof. When q is an odd prime, the prime power qa divides λ(λ(n)) if
and only if at least one of the following criteria holds:

• qa+2 |n,
• there exists p ∈ Pqa+1 with p |n,

• there exists p ∈ Pqa with p2 |n,
• there exist r ∈ Pqa and p ∈ Pr with p |n.
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Even when q = 2, at least one of these four conditions must hold for qa to
divide λ(λ(n)), although they are not quite sufficient. In either case, we still
have the upper bound

∑

n≤x
qa|λ(λ(n))

1 ≤
∑

n≤x
qa+2|n

1 +
∑

p∈Pqa+1

∑

n≤x
p|n

1(18)

+
∑

p∈Pqa

∑

n≤x
p2|n

1 +
∑

r∈Pqa

∑

p∈Pr

∑

n≤x
p|n

1

≤ x

qa+2
+

∑

p∈Pqa+1

p≤x

x

p
+

∑

p∈Pqa

p≤√
x

x

p2
+

∑

r∈Pqa

∑

p∈Pr

p≤x

x

p
.

In the second of these three sums, it is sufficient to notice that any p ∈ Pqa

must exceed qa, which leads to the estimate
∑

p∈Pqa

p≤√
x

x

p2
<

∑

m>qa

x

m2
<

x

qa
.

To bound the first and third sums in (18), we invoke the Brun–Titchmarsh
estimate (8) a total of three times:

∑

p∈Pqa+1

p≤x

x

p
≪ xy

qa+1
,

∑

r∈Pqa

∑

p∈Pr

p≤x

x

p
≪

∑

r∈Pqa

r≤x

xy

r
≪ xy2

qa
.

By these three estimates, (18) gives

∑

n≤x
qa|λ(λ(n))

1 ≪ x

qa+2
+

xy

qa+1
+
x

qa
+
xy2

qa
≪ xy2

qa
,

which establishes the lemma.

Proof of Proposition 7. We have
∑

q≤y2

vq(λ(λ(n))) log q =
∑

q≤y2

log q
∑

a∈N
qa|λ(λ(n))

1

≤
∑

q≤y2

log q
∑

a∈N
qa≤y2

1 +
∑

q≤y2

log q
∑

a∈N
qa>y2

qa|λ(λ(n))

1.

Since the first sum is simply
∑

q≤y2

log q
∑

a∈N
qa≤y2

1 =
∑

m≤y2

Λ(m) ≪ y2
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by the Chebyshev estimate (11), we have, uniformly for n ≤ x,

(19)
∑

q≤y2

vq(λ(λ(n))) log q ≪ y2 +
∑

q≤y2

log q
∑

a∈N
qa>y2

qa|λ(λ(n))

1.

To show that this quantity is usually small, we sum this last double sum
over n and apply Lemma 11 to obtain

∑

n≤x

∑

q≤y2

log q
∑

a∈N
qa>y2

qa|λ(λ(n))

1 =
∑

q≤y2

log q
∑

a∈N
qa>y2

∑

n≤x
qa|λ(λ(n))

1 ≪
∑

q≤y2

log q
∑

a∈N
qa>y2

xy2

qa
.

If we use the geometric series sum (15) and the Chebyshev estimate (11),
this becomes

∑

n≤x

∑

q≤y2

log q
∑

a∈N
qa>y2

qa|λ(λ(n))

1 ≪
∑

q≤y2

log q · xy
2

y2
≪ xy2.

Therefore if we sum both sides of (19) over n, we obtain
∑

n≤x

∑

q≤y2

vq(λ(λ(n))) log q ≪ xy2.

This implies that for almost all n ≤ x, we have
∑

q≤y2

vq(λ(λ(n))) log q ≪ y2ψ(x),

as desired.

Proof of Proposition 8. Fix a prime q for the moment. For any positive
integer m, the usual formula for φ(m) readily implies

vq(φ(m)) = max{0, vq(m) − 1} +
∑

p|m
vq(p− 1),

which we use in the form
∑

p|m
vq(p− 1) ≤ vq(φ(m)) ≤

∑

p|m
vq(p− 1) + vq(m).

Using these inequalities twice, first with m = φ(n) and then with m = n,
we see that

∑

p|φ(n)

vq(p− 1) ≤ vq(φ(φ(n))) ≤
∑

p|φ(n)

vq(p− 1) + vq(φ(n))(20)

≤
∑

p|φ(n)

vq(p− 1) +
∑

p|n
vq(p− 1) + vq(n).
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Now a prime r divides φ(n) if and only if either r2 |n or there exists a prime
p |n such that r | p− 1. Therefore
∑

p|n

∑

r|p−1

vq(r − 1) ≤
∑

r|φ(n)

vq(r − 1) ≤
∑

p|n

∑

r|p−1

vq(r − 1) +
∑

r : r2|n
vq(r − 1),

the latter inequality accounting for the possibility that both criteria hold
for some prime r. When we combine these inequalities with those in (20)
and subtract the double sum over p and r throughout, we obtain

0 ≤ vq(φ(φ(n))) −
∑

p|n

∑

r|p−1

vq(r − 1)

≤
∑

r : r2|n
vq(r − 1) +

∑

p|n
vq(p− 1) + vq(n) ≤ 2

∑

p|n
vq(p− 1) + vq(n).

Now we multiply through by log q and sum over all primes q ≤ y2 to conclude
that for any positive integer n,

0 ≤
∑

q≤y2

vq(φ(φ(n))) log q − h(n)

≤ 2
∑

q≤y2

∑

p|n
vq(p− 1) log q +

∑

q≤y2

vq(n) log q.

It remains to show that the right-hand side of this last inequality is
O(y log y · ψ(x)) for almost all n ≤ x, which we accomplish by establishing
the estimate

(21)
∑

n≤x

∑

q≤y2

∑

p|n
vq(p− 1) log q +

∑

n≤x

∑

q≤y2

vq(n) log q ≪ xy log y.

We may rewrite the first term on the left-hand side as
∑

n≤x

∑

q≤y2

∑

p|n
vq(p− 1) log q

=
∑

n≤x

∑

q≤y2

∑

p|n

∑

a∈N
qa|p−1

log q =
∑

q≤y2

log q
∑

a∈N

∑

p∈Pqa

∑

n≤x
p|n

1

≤
∑

q≤y2

log q
∑

a∈N

∑

p∈Pqa

x

p
.

Using the Brun–Titchmarsh inequality (8) and the geometric series esti-
mate (15), we obtain

∑

n≤x

∑

q≤y2

∑

p|n
vq(p− 1) log q ≪ x

∑

q≤y2

log q
∑

a∈N

y

qa
≪ xy

∑

q≤y2

log q

q
≪ xy log y2.
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The second term on the left-hand side of (21) is even simpler: we have
∑

n≤x

∑

q≤y2

vq(n) log q =
∑

q≤y2

log q
∑

a∈N

∑

n≤x
qa|n

1 ≤
∑

q≤y2

log q
∑

a∈N

x

qa
,

and using the geometric series bound (15) and the weak Chebyshev esti-
mate (12) yields

∑

n≤x

∑

q≤y2

vq(n) log q ≪ x
∑

q≤y2

log q

q
≪ x log y2.

The last two estimates therefore establish (21) and hence the proposition.

5. The normal order of h(n). Recall the definition (3): h(n) =
∑

p|n
∑

r|p−1

∑

q≤y2 vq(r − 1) log q. We now calculate the normal order of

the additive function h(n) via the Turán–Kubilius inequality (see [11, Lem-
ma 3.1]). If we define

M1(x) =
∑

p≤x

h(p)

p
, M2(x) =

∑

p≤x

h(p)2

p
,

then the Turán–Kubilius inequality asserts that

(22)
∑

n≤x

(h(n) −M1(x))
2 ≪ xM2(x).

Proposition 12. We have M1(x) = y2 log y +O(y2) for all x > eee
.

Proposition 13. We have M2(x) ≪ y3 log2 y for all x > eee
.

Proof of Proposition 9. Let N denote the number of n ≤ x for which
|h(n) − M1(x)| > y2. The contribution of such n to the sum in (22) is
at least y4N . Thus, Proposition 13 implies that N ≪ x(log y)2/y. Hence,
Proposition 12 implies that h(n) = y2 log y + O(y2) for all n ≤ x but for a
set of size O(x(log y)2/y). This proves Proposition 9.

To calculate M1(x) and M2(x) we shall first calculate
∑

p≤t h(p) and
∑

p≤t h(p)
2 and then account for the weights 1/p using partial summation.

We begin the evaluation of
∑

p≤t h(p) with a lemma.

Lemma 14. Let b be a positive integer and t > ee a real number.

(a) If b > t1/4 then
∑

r∈Pb

π(t; r, 1) ≪ t log t

b
.
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(b) If b ≤ t1/4 then

∑

r∈Pb

r>t1/3

π(t; r, 1) ≪ bt

φ(b)2 log t
,

∑

r∈Pb

π(t; r, 1) ≪ t log log t

φ(b) log t
.

Remark. The exponents 1/4 and 1/3 are rather arbitrary and chosen
only for simplicity; any two exponents 0 < α < β < 1/2 would do equally
well.

Proof. Notice that in all three sums, the only contributing terms are
those with r > b and r < t. If b > t1/4, then the trivial bound π(t; r, 1) ≤ t/r
gives

∑

r∈Pb

π(t; r, 1) ≤
∑

r∈Pb

t1/4<r≤t

t

r
≤

∑

m≡1 (mod b)

t1/4<m≤t

t

m
≪ t log t

b
,

proving part (a) of the lemma.

We now assume b ≤ t1/4. We have
∑

r∈Pb

r>t1/3

π(t; r, 1) = #{(m, r) : r ≡ 1 (mod b), r > t1/3, mr + 1 ≤ t,

mr + 1 and r both prime}
≤

∑

m<t2/3

#{r < t/m : r ≡ 1 (mod b),

mr + 1 and r both prime}

≪
∑

m<t2/3

bt

φ(mb)φ(b) log2(t/mb)

by Brun’s sieve method (see [10, Corollary 2.4.1]). Further, t/mb ≥ t1/12

and so log(t/mb) ≫ log t. We also have φ(mb) ≥ φ(m)φ(b) and the standard
estimate

(23)
∑

m≤z

1

φ(m)
≪ log z.

Therefore
∑

r∈Pb

r>t1/3

π(t; r, 1) ≪
∑

m<t2/3

bt

φ(m)φ(b)2 log2 t
≪ bt log t2/3

φ(b)2 log2 t
≤ bt

φ(b)2 log t
,

establishing the first estimate in part (b). Finally, by the Brun–Titchmarsh
inequalities (6) and (8),

∑

r∈Pb

r≤t1/3

π(t; r, 1) ≪
∑

r∈Pb

r≤t1/3

t

φ(r) log(t/r)
≪

∑

r∈Pb

r≤t1/3

t

r log t
≪ t log log t

φ(b) log t
.
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Combining this estimate with the first half of part (b) and the standard
estimate b/φ(b) ≪ log log b establishes the second half.

Lemma 15. For all real numbers x > eee
and t > ee, we have

∑

p≤t

h(p) =
2t log log t log y

log t
+O

(

t log log t

log t
+
t log2 y

log t
+ t3/4 log t · y2

)

.

Remark. In particular, we have
∑

p≤x

h(p) ≪ x log log x log y/log x = xy log y/log x.

Proof. We may rewrite
∑

p≤t

h(p) =
∑

p≤t

∑

r|p−1

∑

q≤y2

vq(r − 1) log q =
∑

p≤t

∑

r|p−1

∑

q≤y2

∑

a∈N
qa|r−1

log q(24)

=
∑

q≤y2

log q
∑

a∈N

∑

r : qa|r−1

∑

p≤t
r|p−1

1 =
∑

q≤y2

log q
∑

a∈N

∑

r∈Pqa

π(t; r, 1).

The main contribution to this triple sum comes from the terms with qa ≤ t1/4

and r ≤ t1/3. In fact, using Lemma 14(a) we can bound the contribution
from the terms with qa large by
∑

q≤y2

log q
∑

a∈N
qa>t1/4

∑

r∈Pqa

π(t; r, 1) ≪
∑

q≤y2

log q
∑

a∈N
qa>t1/4

t log t

qa
≪ t log t

∑

q≤y2

log q

t1/4

≪ t3/4 log t · y2,

where the last two estimates are due to the geometric series bound (15) and
the Chebyshev bound (11). Similarly, using the first half of Lemma 14(b)
we can bound the contribution from the terms with qa small and r large by
∑

q≤y2

log q
∑

a∈N
qa≤t1/4

∑

r∈Pqa

r>t1/3

π(t; r, 1) ≪
∑

q≤y2

log q
∑

a∈N
qa≤t1/4

t

qa log t
≪ t

log t

∑

q≤y2

log q

q

≪ t log y

log t
,

where again the last two estimates are due to the geometric series bound
(15) and the weak Chebyshev bound (12). In light of these two estimates,
equation (24) becomes

(25)
∑

p≤t

h(p) =
∑

q≤y2

log q
∑

a∈N
qa≤t1/4

∑

r∈Pqa

r≤t1/3

π(t; r, 1)+O

(

t3/4 log t·y2+
t log y

log t

)

.
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Define E(t; r, 1) = π(t; r, 1) − li(t)/(r − 1). We have

(26)
∑

q≤y2

log q
∑

a∈N
qa≤t1/4

∑

r∈Pqa

r≤t1/3

π(t; r, 1)

=
∑

q≤y2

log q
∑

a∈N
qa≤t1/4

∑

r∈Pqa

r≤t1/3

(

li(t)

r − 1
+ E(t; r, 1)

)

=
∑

q≤y2

log q
∑

a∈N
qa≤t1/4

∑

r∈Pqa

r≤t1/3

li(t)

r − 1
+O

(

∑

q≤y2

log q
∑

a∈N
qa≤t1/4

∑

r∈Pqa

r≤t1/3

|E(t; r, 1)|
)

.

Let Ω(m) denote the number of divisors of m that are primes or prime
powers. Using the estimate Ω(m) ≪ logm, we quickly dispose of

∑

q≤y2

log q
∑

a∈N
qa≤t1/4

∑

r∈Pqa

r≤t1/3

|E(t; r, 1)| ≤ log(y2)
∑

r≤t1/3

|E(t; r, 1)|
∑

q≤y2

∑

a∈N
qa|r−1

1

≤ 2 log y
∑

r≤t1/3

|E(t; r, 1)|Ω(r − 1)

≪ log y log t
∑

r≤t1/3

|E(t; r, 1)| ≪ t log y

log t

by the Bombieri–Vinogradov theorem (we could equally well put any power
of log t in the denominator of the final expression if we needed). Inserting
this estimate into (26), we see that equation (25) becomes

(27)
∑

p≤t

h(p) = li(t)
∑

q≤y2

log q
∑

a∈N

∑

r∈Pqa

r≤t1/3

1

r − 1

+O

(

t3/4 log t · y2 +
t log y

log t

)

.

We have, by equation (10),

∑

q≤y2

log q
∑

a∈N

∑

r∈Pqa

r≤t1/3

1

r − 1
=

∑

q≤y2

log q
∑

a∈N

(

log log t1/3

φ(qa)
+O

(

log qa

qa

))

= (log log t+O(1))
∑

q≤y2

log q
∑

a∈N

(

1

qa
+O

(

1

qa+1

))

+O

(

∑

q≤y2

log2 q
∑

a∈N

a

qa

)

= (log log t+O(1))
∑

q≤y2

(

log q

q
+O

(

log q

q2

))

+O

(

∑

q≤y2

log2 q

q

)

,



322 G. Martin and C. Pomerance

using the geometric series estimate (15). Using the Mertens formula (14) to
evaluate the main term and the weak Chebyshev estimates (12) to bound
the error terms, we see that

∑

q≤y2

log q
∑

a∈N

∑

r∈Pqa

r≤t1/3

1

r − 1
= log log t log y2 +O(log y + log log t+ log2 y).

We conclude from equation (27) and the fact that li(t) = t/log t+O(t/log2 t)
that

∑

p≤t

h(p) = li(t)(log log t log y2 +O(log y + log log t+ log2 y))

+O

(

t3/4 log t · y2 +
t log y

log t

)

=
2t log log t log y

log t
+O

(

t log log t

log t
+
t log2 y

log t
+ t3/4 log t · y2

)

,

as asserted.

Proof of Proposition 12. In an explicit example of the technique of par-
tial summation, we write

M1(x) =
∑

p≤x

h(p)

p
=

∑

p≤ee

h(p)

p
+

∑

ee<p≤x

h(p)

(

1

x
+

x\
p

dt

t2

)

= O(1) +
1

x

∑

ee<p≤x

h(p) +

x\
ee

dt

t2

∑

ee<p≤t

h(p).

The quantity
∑

p≤t h(p) has been evaluated asymptotically in Lemma 15,

and the quantity
∑

ee<p≤t h(p) differs by only O(1). Therefore we may use
Lemma 15 and the remark following its statement to write

M1(x) =O(1) +
1

x
O

(

xy log y

log x

)

+

x\
ee

dt

t2

(

2t log log t log y

log t
+O

(

t log log t

log t
+
t log2 y

log t
+ t3/4 log t · y2

))

=O

(

y log y

log x

)

+ log y

x\
ee

2 log log t

t log t
dt

+O

( x\
ee

log log t

t log t
dt+ log2 y

x\
ee

dt

t log t
+ y2

x\
ee

dt

t5/4

)

.
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Each of these integrals can be explicitly evaluated, which results in the
asymptotic formula

M1(x) = log y((log log x)2 − 1)

+O

(

y log y

log x
+ (log log x)2 + log2 y · log log x+ y2

)

= y2 log y +O(y2),

as claimed.

Now we turn our attention to M2(x), beginning with some preliminary
lemmas.

Lemma 16. For all real numbers x > eee
and t > ee, we have

∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N

∑

r∈P
q
a1
1

∩P
q
a2
2

∑

p≤t
p≡1 (mod r)

1

≪ t7/8 log t · y2 log y +
t log log t · log2 y

log t
.

Proof. Since the exact form of Pq
a1
1

∩ Pq
a2
2

depends on whether or not

q1 = q2, we split the expression in question into two separate sums:

(28)
∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N

∑

r∈P
q
a1
1

∩P
q
a2
2

∑

p≤t
p≡1 (mod r)

1

=
∑

q≤y2

log2 q
∑

a1,a2∈N

∑

r∈P
qmax{a1,a2}

π(t; r, 1)

+
∑

q1,q2≤y2

q1 6=q2

log q1 log q2
∑

a1,a2∈N

∑

r∈P
q
a1
1

q
a2
2

π(t; r, 1).

Noting that there are exactly 2a − 1 ordered pairs (a1, a2) for which
max{a1, a2} = a, we have
∑

q≤y2

log2 q
∑

a1,a2∈N

∑

r∈P
qmax{a1,a2}

π(t; r, 1) =
∑

q≤y2

log2 q
∑

a∈N

(2a− 1)
∑

r∈Pqa

π(t; r, 1)

≪
∑

q≤y2

log2 q
∑

a∈N
qa>t1/4

at log t

qa
+

∑

q≤y2

log2 q
∑

a∈N
qa≤t1/4

at log log t

qa log t

by Lemma 14. Since
∑

q≤y2

log2 q
∑

a∈N
qa>t1/4

at log t

qa
≪ t log t log y2

∑

q≤y2

log q

t1/4
≪ t3/4 log t · y2 log y
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by the Chebyshev bound (11), and

∑

q≤y2

log2 q
∑

a∈N
qa≤t1/4

at log log t

qa log t
≪ t log log t

log t

∑

q≤y2

log2 q

q
≪ t log log t · log2 y

log t

by (11) and its weaker version (12), the first term on the right-hand side
of (28) is bounded by the estimate asserted in the statement of the lemma.

It remains to satisfactorily bound the second term on the right-hand side
of (28). Again dividing the sum so that Lemma 14 can be applied, we have

∑

q1,q2≤y2

q1 6=q2

log q1 log q2
∑

a1,a2∈N

∑

r∈P
q
a1
1

q
a2
2

π(t; r, 1)

≪
∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N
q

a1
1

q
a2
2

>t1/4

t log t

qa1

1 q
a2

2

+
∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N
q

a1
1

q
a2
2

≤t1/4

t log log t

qa1

1 q
a2

2 log t
.

In the first of these two terms, at least one of the qai
i must exceed t1/8, and

so using the estimates (15), (11), and (12) we see that
∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N

q
a1
1

q
a2
2

>t1/4

t log t

qa1

1 q
a2

2

≤ 2t log t
∑

q1≤y2

log q1
∑

a1∈N
q

a1
1

>t1/8

1

qa1

1

∑

q2≤y2

log q2
∑

a2∈N

1

qa2

2

≪ t log t
∑

q1≤y2

log q1

t1/8

∑

q2≤y2

log q2
q2

≪ t7/8 log t · y2 log y.

In the second, we simply ignore the restriction qa1

1 q
a2

2 ≤ t1/4 and use the
estimates (15) and (12), obtaining

∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N

t log log t

qa1

1 q
a2

2 log t
=
t log log t

log t

(

∑

q≤y2

log q
∑

a∈N

1

qa

)2

≪ t log log t

log t

(

∑

q≤y2

log q

q

)2

≪ t log log t · log2 y

log t
.

This concludes the proof of the lemma.

The following lemma is similar in spirit to Lemma 14 but is a bit more
complicated to state and prove.
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Lemma 17. Let b1 and b2 be positive integers and t > ee a real number.

(a) If b1 > t1/8 or b2 > t1/8 then
∑

r1∈Pb1

∑

r2∈Pb2

π(t; r1r2, 1) ≪ t log2 t

b1b2
.

(b) If neither b1 nor b2 exceeds t1/8 then
∑

r1∈Pb1

∑

r2∈Pb2

r1r2>t1/3

π(t; r1r2, 1) ≪ b2t log log t

φ(b1)φ(b2)2 log t
,

∑

r1∈Pb1

∑

r2∈Pb2

π(t; r1r2, 1) ≪ t(log log t)2

φ(b1)φ(b2) log t
.

Remark. Again, the values 1/8 and 1/3 for the exponents are rather
arbitrary.

Proof. The bound in part (a) follows from the trivial estimate π(t; r1r2, 1)
≪ t/r1r2, just as in the proof of Lemma 14(a). For the first estimate in
part (b), we my assume that r1 ≤ r2 by symmetry. We use Brun’s method
again:
∑

r1∈Pb1

∑

r2∈Pb2
r1≤r2

r1r2>t1/3

π(t; r1r2, 1)

= #{(m, r1, r2) : r1 ≡ 1 (mod b1), r2 ≡ 1 (mod b2), r1 ≤ r2, r1r2 > t1/3,

mr1r2 + 1 ≤ t, and r1, r2, and mr1r2 + 1 are all prime}

≤
∑

m<t2/3

∑

r1<
√

t/m
r1∈Pb1

∑

r2<t/mr1

r2∈Pb2
mr1r2+1prime

1

≪
∑

m<t2/3

∑

r1<
√

t/m
r1∈Pb1

mr1b2
φ(b2)φ(mr1b2)

· t/mr1

log2(t/mr1b2)
.

Notice that t/mr1b2 > (
√

t/m)/b2 > t1/6/t1/8 = t1/24, and so
∑

r1∈Pb1

∑

r2∈Pb2
r1≤r2

r1r2>t1/3

π(t; r1r2, 1) ≪ t

log2 t

∑

m<t2/3

∑

r1<
√

t/m
r1∈Pb1

b2
φ(b2)2φ(m)φ(r1)

≪ b2t log log t

φ(b1)φ(b2)2 log2 t

∑

m<t2/3

1

φ(m)
≪ b2t log log t

φ(b1)φ(b2)2 log t
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by the estimates (7) and (23), as desired. The second estimate of part (b)
is a consequence of the first estimate and

∑

r1∈Pb1

∑

r2∈Pb2

r1r2≤t1/3

π(t; r1r2, 1) ≪ t(log log t)2

φ(b1)φ(b2) log t
,

which follows from the Brun–Titchmarsh inequality just as in the proof of
Lemma 14(b).

Proof of Proposition 13. We may rewrite
∑

p≤t

h(p)2 =
∑

p≤t

(

∑

r|p−1

∑

q≤y2

∑

a∈N
qa|r−1

log q
)2

=
∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N

∑

r1∈Pq
a1
1

r2∈Pq
a2
2

∑

p≤t
p≡1 (mod r1)
p≡1 (mod r2)

1

=
∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N

∑

r1∈Pq
a1
1

r2∈Pq
a2
2

r1 6=r2

∑

p≤t
p≡1 (mod r1)
p≡1 (mod r2)

1

+O

(

t7/8 log t · y2 log y +
t log log t · log2 y

log t

)

,

the last step due to Lemma 16. Since r1 and r2 are distinct primes, the
innermost sum is simply π(t; r1r2, 1), and thus

∑

p≤t

h(p)2 ≤
∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N

∑

r1∈Pq
a1
1

r2∈Pq
a2
2

π(t; r1r2, 1)(29)

+O

(

t7/8 log t · y2 log y +
t log log t · log2 y

log t

)

.

The contribution to the sum on the right-hand side of (29) from those

terms for which qa1

1 > t1/8 is
∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N
q

a1
1

>t1/8

∑

r1∈Pq
a1
1

r2∈Pq
a2
2

π(t; r1r2, 1)

≪
∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N
q

a1
1

>t1/8

t log2 t

qa1

1 q
a2

2
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≪ t log2 t
∑

q1≤y2

∑

a1∈N
q

a1
1

>t1/8

log q1
qa1

1

∑

q2≤y2

∑

a2∈N

log q2
qa2

2

≪ t log2 t
∑

q1≤y2

log q1

t1/8

∑

q2≤y2

log q2
q2

≪ t7/8 log2 t · y2 log y

by Lemma 17(a) and the estimates (15), (11), and (12); the contribution

from the terms for which qa2

2 > t1/8 is bounded likewise. The remaining
contribution is

∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N
q

a1
1

,q
a2
2

≤t1/8

∑

r1∈Pq
a1
1

r2∈Pq
a2
2

π(t; r1r2, 1)

≪
∑

q1,q2≤y2

log q1 log q2
∑

a1,a2∈N
q

a1
1

,q
a2
2

≤t1/8

t(log log t)2

qa1

1 q
a2

2 log t

≪ t(log log t)2

log t

(

∑

q≤y2

∑

a∈N

log q

qa

)2

≪ t(log log t)2 log2 y

log t

by Lemma 17(b) and the estimates (15) and (12). Using both these bounds
in equation (29), we conclude that

∑

p≤t

h(p)2 ≪ t7/8 log t · y2 log y +
t(log log t)2 log2 y

log t
.

We now evaluate M2(x) using partial summation. We have

M2(x) =
∑

p≤x

h(p)2

p
=

∑

p≤ee

h(p)2

p
+

1

x

∑

ee<p≤x

h(p)2 +

x\
ee

dt

t2

∑

ee<p≤t

h(p)2

≪ 1 +
1

x
· x(log log x)2 log y

log x

+

x\
ee

dt

t2

(

t7/8 log t · y2 log y +
t(log log t)2 log2 y

log t

)

≪ y2 log y

log x
+ y2 log y

x\
ee

log t

t9/8
dt+ log2 y

x\
ee

(log log t)2

t log t
dt.

Evaluating these two integrals explicitly, we obtain

M2(x) ≪
y2 log y

log x
+ y2 log y + log2 y · (log log x)3 ≪ y3 log2 y

as claimed.
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6. Normal number of cycles for the power generator. If (u, n) = 1,
then the sequence ui (modn) for i = 1, 2, . . . is purely periodic. We de-
note the length of the period by ord(u, n), which of course is the multi-
plicative order of u in (Z/nZ)×. Even when (u, n) > 1, the sequence ui

(modn) is eventually periodic, and we denote the length of the eventual

cycle by ord*(u, n). So, letting n(u) denote the largest divisor of n coprime

to u, we have ord*(u, n) = ord(u, n(u)). For example, let u = 2, n = 24.

The sequence ui (modn) is 2, 4, 8, 16, 8, 16, . . . with cycle length 2, and so

ord*(2, 24) = ord(2, 3) = 2.
When iterating the lth power map modulo n, the length of the eventual

cycle starting with x = u is given by ord*(l, ord*(u, n)). We would like to
have a criterion for when a residue is part of some cycle, that is, for when a
residue is eventually sent back to itself when iterating x 7→ xl (modn).

Lemma 18. A residue u is part of some cycle under iteration of the map

x 7→ xl (modn) if and only if (l, ord*(u, n)) = 1 and , with d = (u, n), we

have (d, n/d) = 1.

Proof. If (u, n) = d, then high powers of u will be ≡ 0 (modn/n(d)).
Thus, for u to be in a cycle it is necessary that n/n(d) = d, that is,

(d, n/d) = 1. Further, it is necessary that (l, ord*(u, n)) = 1. Indeed, if
σ = ord*(u, n), we would need li (modσ) to be purely periodic, which is
equivalent to (l, σ) = 1. This proves the necessity of the condition. For the
sufficiency, we have just noted that (l, σ) = 1 implies that li (modσ) is

purely periodic. This implies in turn that the sequence uli (modn(u)) is
purely periodic. But the condition (d, n/d) = 1 implies that n(u) = n/d, and

as each uli ≡ 0 (modd), we see that uli (modn) is purely periodic.

For d |n with (d, n/d) = 1, let Cd(l, n) denote the number of cycles in
the lth power map mod n that involve residues u with (u, n) = d. For the
lower bound in Theorem 2 we shall deal only with C1(l, n), that is, cycles
involving numbers coprime to n.

Lemma 19. We have C1(l, n) ≥ φ(n)(l)/λ(λ(n)).

Proof. It is easy to see that the subgroup of (Z/nZ)× of residues u with
(l, ord(u, n)) = 1 has size φ(n)(l). (In fact, this is true for any finite abelian
group G: the size of the subgroup of elements with order coprime to l is
|G|(l).) As the length of any cycle in the lth power map is bounded above
by λ(λ(n)), the lemma follows immediately.

To investigate the normal size of φ(n)(l), we introduce the function

fl(n) =
∑

p|l
vp(φ(n)) log p.
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We also make use of the notation qa ‖n, which means that qa is the exact
power of q dividing n, that is, qa divides n but qa+1 does not.

Proposition 20. For any fixed l, we have fl(n) ≤ (log logn)2 for almost

all n, in fact for all but Ol(x/log log x) integers n ≤ x.

Proof. We have

∑

n≤x

fl(n) =
∑

p|l

∑

n≤x

∑

qa‖n
vp(φ(qa)) log p ≤ x

∑

p|l
log p

∑

qa≤x

vp(φ(qa))

qa

≤ x
∑

p|l
log p

∑

pa≤x

a− 1

pa
+ x

∑

p|l
log p

∑

q≤x

vp(q − 1)

q
.

Now

x
∑

p|l
log p

∑

pa≤x

a− 1

pa
≪l x

and, by (8),

x
∑

p|l
log p

∑

q≤x

vp(q − 1)

q
= x

∑

p|l
log p

∑

a≥1

∑

q∈Ppa , q≤x

1

q

≪ x
∑

p|l
log p

∑

a≥1

log log x

pa
≪l x log log x.

Hence,
∑

n≤x

fl(n) ≪l x log log x,

so that the number of n ≤ x with fl(n) > (log logn)2 is Ol(x/log log x).

It is interesting that one can prove an Erdős–Kac theorem for fl(n) using
as a tool the criterion of Kubilius–Shapiro (see [11], [16]).

Proof of the lower bound in Theorem 2. Noting that φ(n)(l) =φ(n)/efl(n),

we have φ(n)(l) ≥ φ(n)/exp((log logn)2) for almost all n by Proposition 20.
Of course, n ≥ φ(n) ≫ n/log logn for all n ≥ 3. Therefore, using Lemma 19
and Theorem 2, we have

C(l, n) ≥ C1(l, n) ≥
φ(n)(l)

λ(λ(n))
≥ φ(n)

exp((log log n)2)λ(λ(n))

=
φ(n)/n

exp((log log n)2)
· n

λ(λ(n))

= exp((1 + o(1))(log log n)2 log log logn)

for almost all n. This completes the proof of the lower bound in Theorem 2.
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We now consider the upper bounds in Theorem 2, first establishing a
lemma.

Lemma 21. Suppose m is a positive integer and (d,m) = 1. For any

integer j |λ(m), the number of integers u ∈ [1,m] with (u,m) = 1 and

ord(du,m) |λ(m)/j is at most φ(m)/j.

Proof. In fact, we prove a more general statement for any finite abelian
group G: let λ(G) denote the exponent of G, that is, the order of the largest
cyclic subgroup ofG, or equivalently, the least common multiple of the orders
of the elements of G. Then for any d ∈ G and any j |λ(G), the number of
elements u ∈ G for which the order of du divides λ(G)/j is at most #G/j.
It is clear that the lemma follows immediately from this statement upon
taking G to be (Z/mZ)×. It is also clear that in this statement, the element
d plays no role whatsoever except to shuffle the elements of G around, and
so we assume without loss of generality that d is the identity of G.

Let p be any prime dividing λ(G), and choose a ≤ b so that pa ‖ j and
pb ‖λ(G). When we write G canonically as isomorphic to the direct product
of cyclic groups of prime-power order, at least one of the factors must be
isomorphic to Z/pb

Z. In every such factor, only one out of every pa elements
has order dividing λ(G)/j, since all but pb−a elements of the factor have
order divisible by pb−a+1. Since there is at least one such factor for every
pa ‖ j, we conclude that at most one out of every j elements of G has order
dividing λ(G)/j, as claimed.

Note that this result in the case d = 1 is Lemma 1 in [9]. The above
proof, while similar in spirit to the proof in [9], is simpler.

Let τ(m) denote the number of positive divisors of m.

Proposition 22. For any integers l, n ≥ 2 we have

C(l, n) ≤ nτ(λ(n))τ(n)/ord*(l, λ(n)).

Proof. It is sufficient to show that for each l, n ≥ 2 and each d |n with
(d, n/d) = 1, we have

(30) Cd(l, n) ≤ nτ(λ(n))

ord*(l, λ(n))
.

Let d |n with (d, n/d) = 1. We have seen in Lemma 18 that for a residue
u (modn) with (u, n) = d to be involved in a cycle, it is necessary and
sufficient that (l, ord(u, n/d)) = 1. For each integer j |λ(n/d), let Cd,j(l, n)
denote the number of cycles corresponding to residues u with (u, n) = d
and ord(u, n/d) = λ(n/d)/j. Writing such a residue u as du1, we have
u1 ∈ [1, n/d] and (u1, n/d) = 1. Thus, by Lemma 21, the number of such



Iterated Carmichael λ-function 331

residues u is at most φ(n/d)/j ≤ n/dj. Hence we have

Cd,j(l, n) ≤ n/dj

ord(l, λ(n/d)/j)
.

Now λ(n/d) = λ(n)/d1 for some integer d1 ≤ d. It is shown in (15) of [12]

that for k |m we have ord*(a,m/k) ≥ ord*(a,m)/k for any nonzero integer a.
Hence

ord(l, λ(n/d)/j) = ord(l, λ(n)/d1j) ≥ ord*(l, λ(n))/d1j,

so that

Cd,j(l, n) ≤ n/dj

ord*(l, λ(n))/d1j
≤ n

ord*(l, λ(n))
.

Letting j range over all divisors of λ(n/d), we get

Cd(l, n) ≤ nτ(λ(n/d))

ord*(l, λ(n))
,

which immediately gives (30).

Proof of the upper bounds in Theorem 2. Note that from [6, Theorem 4.1],
we have τ(λ(n)) < exp((log logn)2) for almost all n. Furthermore, letting
Ω(n) denote the number of prime factors of n counted with multiplicity,
we know that the normal order of Ω(n) is log logn; in particular, we have
Ω(n) < log logn/log 2 for almost all n. Since the inequality τ(n) ≤ 2Ω(n)

is elementary, this implies that τ(n) < logn for almost all n. We conclude
from Proposition 22 that

C(l, n) < n exp(2(log log n)2)/ord*(l, λ(n))

for almost all n.
The three upper bounds in Theorem 2 therefore follow respectively from

three results in the new paper of Kurlberg and the second author [12]:
Theorem 4(1), which states that for any function ε(n) → 0, we have

ord*(l, λ(n)) ≥ n1/2+ε(n) almost always; Theorem 22, which states that a
positive proportion of integers n have ord*(l, λ(n)) ≥ n.592; and Theorem 28,
which states that if the GRH is true, then

ord*(l, λ(n)) = n/exp((1 + o(1))(log log n)2 log log logn)

on a set of asymptotic density 1. (Note that the proof of this result uses
Theorem 1 of the current paper.)

7. Higher iterates. Here we sketch what we believe to be a viable
strategy for establishing an analogue of Theorem 1 for the higher iterates
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λk where k ≥ 3. As in the case of k = 2, we generally have

n

λk(n)
=

n

φk(n)
· φk(n)

λk(n)
.

We always have n/φk(n) ≤ (c log logn)k, which is already a good enough
estimate for our purposes. Even better, however, it is known [5] that for each
fixed k, we have n/φk(n) ≪ (log log logn)k for almost all n. The problem
therefore reduces to comparing λk(n) to φk(n). Probably it is not hard
to get analogs of Propositions 5 and 6, where we replace y2 with yk. The
problem comes in with the proliferation of cases needed to deal with small
prime factors. As with the second iterate, we expect the main contribution
to come from the “supersquarefree” case. In particular, let

hk(n) =
∑

p1|n

∑

p2|p1−1

. . .
∑

pk|pk−1−1

∑

q≤yk

vq(pk − 1) log q.

We expect hk(n) to be the dominant contribution to log(φk(n)/λk(n)) al-
most always. But it seems hard not only to prove this in general but also to
establish the normal order of hk(n).

It would seem useful in this endeavor to have a uniform estimate of the
shape

(31)
∑

p∈Pm, p≤x

1

p
∼ log log x− log logm

φ(m)
for x ≥ m1+ε.

Even under the assumption of the Riemann Hypothesis for Dirichlet
L-functions, (31) seems difficult, and maybe it is false. It implies with x = m2

that the sum is ≪ 1/φ(m), when all we seem to be able to prove, via sieve
methods, is that it is ≪ (log logm)/φ(m).

Assuming uniformity in (31), it seems that on average

hk(n) ∼ 1

(k − 1)!
(log logn)k log log logn,

supporting Conjecture 3. It would be a worthwhile enterprise to try to verify
or disprove the conjecture in the case k = 3, which may be tractable.

Going out even further on a limb, it may be instructive to think of
what Conjecture 3 has to say about the normal order of L(n), the minimum
value of k with λk(n) = 1. The expression (1/(k−1)!)(log log n)k log log log n
reaches its maximum value when k ≈ log logn. Is this formula then trying
to tell us that we have L(n) ≪ log logn almost always? Perhaps so.

There is a second argument supporting the thought that L(n) ≪ log log n
almost always. Let P (n) denote the largest prime factor of an integer n > 1,
and let l(n) = P (n) − 1 for n > 1, l(1) = 1. Clearly, l(n) |λ(n) for all n, so
that if L0(n) is the least k with lk(n) = 1, then L0(n) ≤ L(n). It may be
that the difference L(n)− L0(n) is usually not large. In any event, it seems
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safe to conjecture that L0(n) is usually of order of magnitude log logn,
due to the following argument. For an odd prime p, consider the quantity
log l(p)/log p ≈ logP (p− 1)/log(p− 1). It may be that this quantity is dis-
tributed as p varies through the primes in the same way that logP (n)/logn
is distributed as n varies through the integers, namely the Dickman distri-
bution. Such a conjecture has been made in various papers. If so, it may be
that the sequence

log l(p)

log p
,
log l2(p)

log l(p)
, . . .

behaves like a sequence of independent random variables, each with the
Dickman distribution. And if so, it may then be reasonable to assume that
almost always we get down to small numbers and terminate in about log log n
steps. A similar probabilistic model is considered in [1], but for the simpler
experiment of finding the joint distribution of logarithmic sizes of the various
prime factors of a given number n.

At the very least, we can prove that L(n) ≪ log logn infinitely often.

Proof of Theorem 4. Notice that the definition of λ(n) as a least common
multiple, together with the fact that λ(pa) |λ(pa+1) always, implies that

λ(lcm{m1, . . . ,mj}) = lcm{λ(m1), . . . , λ(mj)}
for any positive integers m1, . . . ,mj . A trivial induction then shows that

λk(lcm{m1, . . . ,mj}) = lcm{λk(m1), . . . , λk(mj)}
for any k ≥ 0. Since the least common multiple of a set of numbers equals 1
precisely when each number in the set equals 1, we deduce that

L(lcm{m1, . . . ,mj}) = max{L(m1), . . . , L(mj)}.
We apply this identity with mi = i. Let nj = lcm{1, . . . , j}. We have

lognj =
∑

i≤j Λ(i), which is asymptotic to j by the prime number theorem.

On the other hand, it is trivial that for any number n we have L(n) ≤
1 + (1/log 2) logn, as λi+1(n) ≤ (1/2)λi(n) for 1 ≤ i < L(n). Therefore

L(nj) = max{L(1), . . . , L(j)} ≤ 1 + max

{

log 1

log 2
, . . . ,

log j

log 2

}

= 1 +
log j

log 2
=

(

1

log 2
+ o(1)

)

log lognj .

We can improve on the estimate in Theorem 4, but not by much. Say
we let Nj be the product of all primes p ≤ j3.29 with p−1 |nj , with nj as in
the above proof. It follows from Friedlander [8] that a positive proportion of
the primes p ≤ j3.29 have the required property. Thus, Nj > exp(cj3.29) for
some positive constant c and all sufficiently large values of j. But λ(Nj) |nj ,
so that L(Nj) ≤ 2 + j/log 2. Hence L(Nj) < .439 log logNj for j sufficiently
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large. (This result can be improved by a very small margin using a more
recent result of Baker and Harman [2], but the argument is a bit more dif-
ficult, since they do not get a positive proportion of the primes with the
required property.) It is likely that L(n) ≪ log log log n infinitely often, pos-
sibly even that L(n) ≪k logk n infinitely often for arbitrary k-fold-iterated
logarithms.

One may also study the maximal order of L(n). The analogous problem
for the iterated φ-function is relatively trivial, but not so for λ. If there
can exist very long “Sophie Germain chains”, that is, sequences of primes
p1, . . . , pk where each pi = 2pi−1 + 1 for i > 1, then we might have L(pk) ∼
(1/log 2) log pk. We might even perturb such a chain by a small amount and
keep the asymptotic relation, say by occasionally having pi = 4pi−1 + 1. It
seems hard to prove that long enough chains to get the asymptotic relation
for L(pk) do not exist, but probably they do not on probabilistic grounds.
We can at least say that L(n) ≥ 1+(1/log 3) logn infinitely often, since this
inequality is attained when n is a power of 3.
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