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1. Introduction. Let g be multiplicative, and suppose that g(n) ≥ 0
whenever n ≥ 1. In this paper we also suppose g(n) = 0 if n is not squarefree.
For specified κ > 0 define η by the equation

(1.1)
∑

p<v

g(p) log p = κ log v + η(v) if v ≥ 1.

In this paper we shall assume the existence of a constant A such that

(1.2) η(v)− η(u) ≤ A when 1 < u < v.

In particular, (1.2) applies if g(n) is of size “about 1/n”; it could be κω(n)/n,
for example. A convenient convention will be

(1.3) η(v) = 0 if v < 1,

which does not conflict with (1.2).

Multiplicative functions of this type arise, for example, in applications
of Selberg’s sieve method, where the object of interest is the sum

(1.4) Gz(x) =
∑

1≤n<x
p|n⇒p<z

g(n).

In the more straightforward applications of the sieve only the case z = x
need arise, but in the more involved parts of the theory it is necessary to
consider the case when z < x. Thus the sum is over integers which it is
now customary to refer to as “smooth”, or occasionally as “friable”, the
terminology “incomplete” for sums of this type being an older one.

In terms of the function g, (1.2) says
∑

u≤p<v
g(p) log p ≤ κ log

v

u
+A if 1 < u < v.
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In the context of the sieve method, situations arise (cf. §1.3.5 in [3], for
example) in which the readily available information about the function g is
of this form. Theorem 1 below is concerned with the estimation of the sum
Gz(x) in this context.

In work on multiplicative functions it is more usual to make a two-sided
assumption in place of (1.2), for example

(1.5) |η(v)| ≤ 12A when v ≥ 1.

This implies the two-sided version of (1.2), in which the left side is replaced
by its absolute value. The analogous two-sided conclusion appears in Theo-
rem 2, where we also assume that the constant A can be chosen so that

(1.6)
∑

p<z

g2(p) log p ≤ A,

as is straightforward when the series
∑

g2(p) log p converges.

Write x = zs. A result of Song [11] implies that when 0 < ε < 1, and on
the basis of an assumption slightly weaker than (1.5),

(1.7)
Gz(z

s)

Gz(∞)
= σ(s) +O

(

log(s+ 1)

(log z)
1−ε

)

,

for a certain function σ(s) which we describe below. The factor log(s+1)
was promptly removed by Tenenbaum in [13]. Note that the apparent con-
vergence question implied by the symbol ∞ is a trivial one, since the sum
in (1.4) is independent of x as soon as x is large enough. Here, and in (1.8)
below, the O-constant may depend on ε and on the constants A and κ
from (1.1), (1.5) and (1.6). Elsewhere, however, O-constants will depend
only on κ, their dependence on A being made explicit.

Halberstam and Richert had previously obtained a result like the case
ε = 0 of (1.7) in which the increasing factor log(s+ 1) assumed the weaker
form s2κ+1. Song’s paper used additional ideas drawn from a paper of Hilde-
brand [8] on the related but more difficult sum

Ψ(x, z) =
∑

1≤n<x
p|n⇒p<z

1,

for which Hildebrand noted that a corresponding factor log(s + 1) cannot
be improved. Actually Song’s result was obtained in a more general context
than that just described. In particular our assumption that g(pα) = 0 at
prime powers pα when α ≥ 2 can be appreciably relaxed. We do not examine
this situation in this article, but Theorem 1 relaxes the condition (1.5) in
a different respect. Generalisation in other directions is also possible, an
account of which may appear in due course.
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The formula (1.7) is, however, rather weak in its s-aspect. The continuous
expression σ(s) satisfies σ(s) = 1+O(e−s log s), and Lemma 1 (below) implies

(1.8)
Gz(z

s)

Gz(∞)
= 1− e−s log s+O(s).

The comparatively weak nature of the s-dependence of the O-term in (1.7)
is therefore somewhat disappointing.

In this article we describe a method which allows us to combine the
z-dependence in (1.7) with the s-dependence from (1.8).

Our result is enunciated in terms of the following notation. The contin-
uous function σ can be defined by requiring

(1.9) σ(s) = 0 if s < 0,
d

ds

(

σ(s)

sκ

)

+
κσ(s− 1)

sκ+1
= 0 if s 6= 0,

so that σ(s) = Csκ when 0 ≤ s ≤ 1, for some constant C: we specify

(1.10) C = e−γκ/Γ (κ+ 1).

For larger s the function σ(s) is defined on [0, N ] by induction on N , using
successive integrations of (1.9). The choice of C gives (see [1], or §7.1.1 in [3]
for details) σ(s) → 1 as s → ∞. We will say more about the function σ
later. The notation σ is not exactly as in either [6] or [11].

A simple example of this situation is when g(p) = 1/φ(p), φ being Eu-
ler’s totient function. In this case (1.5) holds when κ = 1, and at s = 1
(1.7) reduces to the well known estimate

∑

1≤n<x

|µ(n)|

φ(n)
= log x+O(1).

In the general case, let B be any number for which

(1.11) B ≥ 1, B(z) :=
1

log z

∑

p<z

g(p)

1 + g(p)
log p ≤ B.

We suppose B ≥ 1 for convenience, and because our Lemma 1 is rather
weak for small B. Then define

(1.12) ψB(v) =
\

B<t<v

log
t

B
dt =

{

v log
v

B
− v +B if v > B,

0 otherwise.

If (1.2) or (1.5) holds then (1.11) follows with B = κ + A/log z, and
hence with B = κ + A/log 2. In the treatment of the ensuing theorems we
weaken this statement to B = O(A).

Theorem 1. Suppose that g is multiplicative, that g(n) ≥ 0, and that
g(pα) = 0 when α ≥ 2 and p is prime. Assume that κ > 0 and A ≥ 1
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are such that (1.2) holds when v < z. Then the sum Gz(z
s) defined in (1.4)

satisfies

Gz(z
s)

Gz(∞)
≥ σ(s)−

e−ψB(s)+O(A)

log z
when s ≥ 1,

in which the O-constant depends only upon κ.

The sense of the inequality in Theorem 1 reflects the fact, noted and used
in [9], that the quotient on the left increases if an individual value of g(p) is
decreased.

If we are not concerned with the particular requirements of the sieve
method and its applications then it is more usual to draw a two-sided con-
clusion on the basis of a corresponding two-sided hypothesis. The method
used here leads to the following two-sided analogue of Theorem 1.

Theorem 2. Let g be as in Theorem 1, but suppose that κ > 0 and
A ≥ 1 are such that (1.6) applies and (1.5) holds when v < z. Then the
sum Gz(z

s) defined in (1.4) satisfies
∣

∣

∣

∣

Gz(z
s)

Gz(∞)
− σ(s)

∣

∣

∣

∣

≤
se−ψB(s)+O(A)

log z
when s ≥ 1,

in which the implied constant depends only upon κ, and σ is as in (1.9).

Actually Theorem 2 is rather weak in its upper-bound aspect. Because
Gz(z

s) ≤ Gz(∞), the upper bound for Gz(z
s) implied by Theorem 2 be-

comes trivial when the entry on the right exceeds 1 − σ(s). Actually an
asymptotic analysis shows 1 − σ(s) = e−s log s−s log log s+O(s) (see [7] for a
much stronger result), so this triviality has already arisen when s > log log z,
for example. Recently, developing on further work of Song [12], G. Tenen-
baum and J. Wu [14] have studied the related but harder questions in which,
in essence, the summand g(n) is replaced by ng(n), on the basis of a stronger
assumption about g(p) involving

∑

pg(p) log p rather than
∑

g(p) log p. Af-
ter seeing a preliminary draft of this paper, Tenenbaum pointed out to the
author that a partial summation based on Theorem 2.1 in [14] will lead (on
the basis of the stronger assumption about g(p)) to a version of Theorem 2
in which a factor 1−σ(s) appears on the right instead of the exponential in
Theorems 1 and 2, and which is therefore appreciably stronger for large s.

An attempt at a corresponding inference in connection with Theorem 1
would, however, involve further considerations.

The method adopted in this paper is of a rather different character. In
particular, we make use of an estimate (provided in Lemma 1) depending
only on the rather simple device attributed to R. A. Rankin, in contrast to
the more analytic methods used in [14]. Any weakness in this estimate does,
of course, lead to a corresponding weakness in our Theorems 1 and 2.
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The methods employed in [6], and also those in [8] and [11], used an in-
tegral equation for Gz(x) derived by a procedure that goes back to Cheby-
shev. We use a similar equation (2.4) for the residual quantity Iz(x) =
Gz(∞)−Gz(x). There is an important difference between these equations,
namely that the sum (2.5) is over “large” integers, exceeding x/z2.
The leading term in an approximation to Iz(x) involves the continuous

function i(s) = 1− σ(s), where σ is as in (1.9). The function i has a certain
adjoint r defined in (3.8). The way in which these adjoints have been used in
the previous literature is that the inner product 〈i, r〉(s) (defined in (3.10))
is constant: this is used to transfer information between small values of s
and larger values, normally the limiting case s→∞. This device goes back
to papers of de Bruijn [2]. It can, for example, be used to connect the value
σ(∞) = 1 with the value of C given in (1.10).
In this paper, however, we will consider the inner product of r not with

the continuous approximating function i(s) but with the arithmetic object
iz(s) = Iz(z

s) whose behaviour i(s) will be shown to represent. The inner
product 〈iz, r〉(s) will not be constant, but it will be shown in Lemma 4 to
be expressible in a form which can be shown (as a consequence of Lemma 1)
to be suitably small.
Finally, this estimate for the inner product can be used in a fashion

analogous to that used in the continuous case. As in [6], [8] or [11] we start
with information available at s = 1. We will show how to transfer this
information, using the estimate for the inner product, to larger values of s,
thereby obtaining Theorem 1.
A proof of a weaker version of Theorem 1 was attempted in the au-

thor’s book [3], but the argument given there was incorrect. In particular,
on page 270, it neglected the contribution from the terms with n ≤ x to a
certain Stieltjes integral analogous to (3.14) below. It seems unlikely that
Theorem 1 can be proved by any similar argument that does not operate
on the quantity Iz(x) (introduced in (2.2)) in some fashion, such as that
employed below.
A similar oversight involving a Stieltjes integral appeared on page 58

of [3], in the course of the proof of a theorem fundamental to Theorem 1.
This error (for which the present author takes responsibility) also appeared
in the joint publication [5]. A correction [4] to these items was posted on
the author’s web pages in December 2002, but in respect of Theorem 1
this treatment was confined to providing an independent proof of a weak
corollary to Theorem 1 (relating to the context s = 1), which is all that was
used elsewhere in [3].
Theorem 1 is of independent interest, and this paper establishes the full

version, including an extension to the case when 0 < κ < 1, and (at the cost
of some extra considerations) demonstrates what the current version of the



342 G. Greaves

methods employed leads to in the context of Theorem 2. For completeness,
the necessary material from [4] is included as §7.
The author thanks the referee for his comments on an earlier version of

this paper.

2. An integral equation. From this point onwards we will streamline
our notation somewhat by setting

(2.1) gz(n) =

{

g(n) if p |n⇒ p < z,

0 otherwise.

This will prevent explicit repetition of the condition on the prime p expressed
in (2.1). For example, (1.4) now reduces to

Gz(x) =
∑

1≤n<x
gz(n).

The ideas in Lemmas 1 and 2 are best expressed in terms not of the sum
defined in (1.4) but of

(2.2) Iz(x) = Gz(∞)−Gz(x) =
∑

n≥x
gz(n),

where gz is as in (2.1).

The following application of Rankin’s device is not new, and can be
found in [10], or in the subsequent account in [3]. It also appeared earlier,
in a somewhat different aspect, in Lemma 4.1 in [6].

Lemma 1. The expression defined in (2.2) satisfies

(2.3) 0 ≤ Iz(z
s) ≤ Gz(∞) exp(−ψB(s)) if s ≥ 1,

where B satisfies (1.11) and ψB is as in (1.12).

Since the proof is rather short, and the notations in the references just
given are slightly different from that of this paper, we give a self-contained
account here. It is clear from (2.2) that Iz(x) ≥ 0, since g(n) ≥ 0. On the
other hand, suppose ε ≥ 0 and observe

Iz(x) ≤
1

xε

∑

n≥x
gz(n)n

ε ≤
1

xε

∏

p<z

(1 + pεg(p)).

Expression of Gz(∞) from (1.4) as a product over primes gives

Iz(x)

Gz(∞)
≤
1

xε

∏

p<z

1 + pεg(p)

1 + g(p)
=
1

xε

∏

p<z

(

1 +
g(p)(pε − 1)

1 + g(p)

)

≤
1

xε
exp
∑

p<z

g(p)(pε − 1)

1 + g(p)
.
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We may write ε = c/log z, provided c ≥ 0. Then when p < z,

pε − 1

c log p/log z
=
ec log p/log z − 1

c log p/log z
≤
ec − 1

c
,

for example because (ex−1)/x increases with x when x ≥ 0, as an inspection
of its Maclaurin series shows. When we write x = zs this gives

Iz(z
s)

Gz(∞)
≤
1

ecs
exp

(

ec − 1

log z

∑

p<z

g(p)

1 + g(p)
log p

)

≤ exp(−cs+B(ec − 1)),

in which (1.11) has been used.

Take c = log s− logB when s ≥ B and c = 0 otherwise, so that c ≥ 0 as
required. Lemma 1, which is trivial when s < B, now follows.

In the integral equation in Lemma 2 it is important that the residual
sum ∆z(s) is expressed as a sum involving gz(n) over values of n that are
large when x/z is large, so that Lemma 1 is, in principle, applicable to these
sums. In other respects the procedure in Lemma 2 is analogous to one used
in [6], [8] and [11].

Lemma 2. The sum Iz(x) defined in (2.2) satisfies

(2.4) Iz(x) log x+

∞\
x

Iz(t)
dt

t
= κ

x\
x/z

Iz(t)
dt

t
+∆z(x),

where, with η defined as in (1.1) and (1.3),

(2.5) ∆z(x)=
∑

x/z≤m
gz(m)(η(z)−η(x/m))−

∑

p<z

g2(p) log p
∑

k≥x/p2
(k,p)=1

gz(k).

In this lemma, questions of convergence are trivial because gz(m) and
Iz(x) vanish when m and x are large enough.

Begin by noting that
∑

p|n log p = logn for squarefree n, whence

∑

n≥x
gz(n) logn =

∑

mp≥x
gz(mp) log p

=
∑

m≥x/z
gz(m)

∑

x/m≤p<z
g(p) log p−

∑

m>x/z

gz(m)
∑

x/m≤p<z
p|m

g(p) log p.

In the last sum, arising because g is supported on squarefrees, substitute
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m = pk. Thus
∑

n≥x
gz(n) logn

=
∑

m≥x/z
gz(m)

∑

x/m≤p<z
g(p) log p−

∑

p<z

g2(p) log p
∑

k≥x/p2
(k,p)=1

gz(k).

The first inner sum on the right can be expressed via (1.1) as

∑

x/m≤p<z
g(p) log p =







κ log
z

x/m
+ η(z)− η(x/m) if x/z ≤ m < x,

κ log z + η(z) if m ≥ x.

The notation is streamlined by the convention (1.3), that η(v) = 0 if
v < 1. This is not in conflict with (1.1), because (1.1) does not apply when
v < 1. Thus we obtain

(2.6)
∑

n≥x
gz(n) logn

= κ
∑

x/z≤m<x
gz(m) log

m

x/z
+ κ
∑

m≥x
gz(m) log z +∆z(x),

with ∆z(x) as in (2.5), in which the entries η(x/m) are null when m ≥ x.

In the notation (2.2) we have

(2.7)
∑

n≥x
gz(n) log

n

x
=
∑

\
x≤t≤n

gz(n)
dt

t
=

∞\
x

Iz(t)
dt

t
.

Hence, when u ≤ v,

v\
u

Iz(t)
dt

t
=
\
∑

u≤t≤v
t≤m

gz(m)
dt

t
(2.8)

=
∑

u≤m<v
gz(m) log

m

u
+
∑

m≥v
gz(m) log

v

u
.

Choose u = x/z, v = x in (2.8). Then with (2.2), (2.6) and (2.7) it gives
the equation (2.4) asserted in Lemma 2.

3. Adjoints and inner products. We will proceed by writing down
the integral equation satisfied by a suitable continuous function i(s) ap-
proximating to Iz(z

s)
/

Gz(∞). For this purpose it is better to modify our
notation somewhat, as follows almost at once.



Incomplete sums 345

First, however, note that (1.9) gives

sσ′(s) = κ(σ(s)− σ(s− 1)) if s 6= 0.

For our purposes it is preferable to note the integrated form

(3.1) sσ(s) =

s\
0

σ(u) du+ κ

s\
s−1

σ(u) du for all s.

There is a discussion in [3] of the existence and properties of a standard
solution σ = σκ, introduced in [1], satisfying

(3.2) σ(s) =

{

Csκ if 0 ≤ s ≤ 1,

1 +O(e−s log s) if s > 1,

where C is the constant appearing in (1.10).
In (2.4), set

(3.3) x = zs, t = zu, Iz(x) = iz(s), ∆z(x) = δz(s),

so that s = log x/log z and du = dt/(t log z). Then (2.4) becomes

(3.4) siz(s) +

∞\
s

iz(u) du = κ

s\
s−1

iz(u) du+
δz(s)

log z
.

The corresponding continuous expression appearing in our approxima-
tion to Iz(x) = Gz(∞)−Gz(s) will be

(3.5) i(s) = 1− σ(s),

so that (3.2) shows i(s)→ 0 as s→∞. Then (3.1) gives

−si(s) = κ−

s\
0

i(u) du− κ

s\
s−1

i(u) du.

Because of (3.2), letting s→∞ shows
∞\
0

i(u) du = κ.

Thus

(3.6) si(s) +

∞\
s

i(u) du = κ

s\
s−1

i(u) du,

the equation which would result from ignoring the entry δz(s) in (3.4). Note
that (3.2) and (3.5) give

i(s) = 1− Csκ when 0 ≤ s ≤ 1.

The equation (3.6) has an “adjoint”

(3.7)
d

ds
(sr(s)) = −κr(s) + κr(s+ 1).
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It is straightforward to verify that this equation has a solution in s > 0
expressible as a Laplace transform,

(3.8) r(s) =

∞\
0

exp

(

−sx+ κ

x\
0

1− e−t

t
dt

)

dx,

for which r(s) ∼ 1/s as s → ∞. Observe in passing that integrating (3.7)
therefore gives

(3.9) sr(s)− κ

s\
s−1

r(x+ 1) dx = 1.

Further, define an “inner product”

(3.10) 〈R, r〉(s) = sr(s)R(s)− κ

s\
s−1

r(x+ 1)R(x) dx.

We can verify that 〈σ, r〉(s) (and therefore 〈i, r〉(s), from (3.5) and (3.9)) is
constant, an observation leading to the consistency of the two statements
in (3.2). These matters are discussed at greater length in [3]. The central
idea used here is from [2].

Now write

(3.11) iz(s) = Gz(∞)

(

i(s) +
ξz(s)

log z

)

,

so that Theorem 1 asserts that ξz(s) ≤ e−ψB(s)+O(A). The inner product
〈iz, r〉(s) (and hence 〈ξz, r〉(s)) will not be constant, because (3.4) contains
the entry δz(s) not appearing in (3.6).

We will have more than one occasion in this paper to refer to the follow-
ing lemma. One of them arises in Lemma 4, where we derive an estimate
of 〈ξz, r〉(s) needed for Theorem 1, by expressing it in terms of δz(s) and
appealing to Lemma 1.

For our purposes, the definition of the Stieltjes integrals used in this
paper may be taken as being supplied by integration by parts, as used in
the course of the proof of Lemma 3.

Lemma 3. Suppose that an expression E(t) satisfies

E(v)− E(u) ≤ A whenever 2 ≤ u < v < z,

and that an expression f(t) is positive, monotone and differentiable on an
interval [x, y), where 2 ≤ x < y < z. Then\

x≤t≤y
f(t) dE(t) < Amax{f(x), f(y)}.
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When f decreases we obtain\
x≤t≤y

f(t) dE(t) =
\

x≤t≤y
f(t) d(E(t)− E(x))

= (E(y)− E(x))f(y) +

y\
x

(E(t)− E(x))|f ′(t)| dt

< Af(y) +A(f(x)− f(y)) = Af(x).

When f increases a similar argument applies, invoking d(E(y)−E(t)). This
proves Lemma 3.

Lemma 4. When (1.2) and (1.11) hold the inner product defined by
(3.10), (3.11) and (3.8) satisfies

〈ξz, r〉(s) ≤ Asr(s) exp(−ψB(s)) if s ≥ 1,

where ψB is as in (1.12).

From (3.11), (3.4) and (3.6) we obtain an integral equation for ξz(s),

sξz(s) +

∞\
s

ξz(u) du = κ

s\
s−1

ξz(u) du+
δz(s)

Gz(∞)
.

From this we obtain an equation between Stieltjes integrals,\
s≤u

r(u)
dδz(u)

Gz(∞)
=
\

s≤u
r(u) (udξz(u)− κξz(u)du+ κξz(u− 1)du),

which we consider in two ways.

After integration by parts the first entry on the right becomes, because
of (3.7),\

s≤u
ur(u) dξz(u) = −sr(s)ξz(s)−

∞\
s

ξz(u)(−κr(u) + κr(u+ 1)) du.

This gives an equation involving the inner product defined in (3.10),

(3.12)
\

s≤u
r(u)

dδz(u)

Gz(∞)

= −sr(s)ξz(s) + κ

s\
s−1

r(u+ 1)ξz(u) du = −〈ξz, r〉(s).

Secondly, the substitution (3.3) and the expression (2.5) for ∆z give

(3.13)
\

s≤u
r(u) dδz(u) =

\
x≤t

r

(

log t

log z

)

d∆z(t) = I1 − I2,
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where

I1 =
\
x≤t

r

(

log t

log z

)

d
(

∑

t/z≤m
gz(m)(η(z)− η(t/m))

)

,(3.14)

I2 =
\
x≤t

r

(

log t

log z

)

d
(

∑

p<z

g2(p) log p
∑

k≥t/p2
(k,p)=1

gz(k)
)

.(3.15)

Note that (3.12) and (3.13) give Gz(∞)〈ξz, r〉(s) = −I1 + I2.
Invert the order of summation and integration in (3.14), to obtain

I1 =
∑

x/z≤m
gz(m)

\
x≤t≤mz

r

(

log t

log z

)

d(η(z)− η(t/m)).

This step can also be checked using integration by parts, as invoked in
Lemma 9 below. Here, η(z) is independent of t, whence

−I1 =
∑

x/z≤m
gz(m)

\
x≤t≤mz

r

(

log t

log z

)

dη(t/m).

Since r decreases, (1.2) and Lemma 3 now give

(3.16) −I1 ≤ A
∑

x/z≤m
gz(m)r

(

log x

log z

)

.

For the entry in (3.15) we need only observe I2 ≤ 0, as follows since the
d expression in (3.15) is negative, the sum over k decreasing as t increases.
(An alternative treatment of this fact appears in the proof of Lemma 9.)
Now (3.12) and (3.13) lead to

Gz(∞)〈ξz, r〉(s) = −I1 + I2 ≤ Ar

(

log x

log z

)

∑

x/z≤m
g(m) = Ar(s)Iz(z

s−1).

An application of Lemma 1 gives

〈ξz, r〉(s) ≤ Ar(s) exp(−ψB(s− 1)).

But (1.12) shows

ψB(s)− ψB(s− 1) =
\

s−1<t<s
B<t

log
t

B
dt ≤ log

s

B
≤ log s,

in view of our decision in (1.11) to take B ≥ 1. Also sr(s) ≤ r(1), since (3.7)
and (3.8) show that sr(s) decreases as s increases. Lemma 4 follows.

4. The inductive argument. The proofs of our theorems involve
a passage from the property of the inner product 〈ξz, r〉(s) obtained in
Lemma 4 to the properties required of ξz itself. The argument is of a type
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used in §7 of [3], but for some of the results now stated more general versions
are required. The structure of the argument is described by Lemma 6 below.
In the applications of the following lemmas the functions Q(s) and U(s)

will differ only by continuous functions from positive or negative sums of
the type

∑

n<zs f(n), so they will have only jump discontinuities, occurring
where zs is an integer. The case of Lemma 5 in which c 6= 0 is not needed
when κ ≥ 1, but having proved it we will use it freely. A simpler version of
Lemma 5 appeared in [3], in an easier context where c = 0 and the functionQ
could not increase at its discontinuities, this being the case relevant to the
case κ ≥ 1 of our Theorem 1.

Lemma 5. Assume that Q(s) is continuous in s > 0 apart from simple
jump discontinuities. Suppose that c ≥ 0, Q(s) < csκ−1 when 0 < s ≤ 1 and
〈Q, r〉(s) < 0 when s ≥ 1. Then Q(s) < csκ−1 for all s > 0.

Initially we derive the case c = 0 of Lemma 5. If this were false, then
Q(s) ≥ 0 for some s ≥ 1. Let s1 be the infimum of all such s. Then s1 ≥ 1
and Q(s1+) ≥ 0, the symbol + indicating passage to the limit as s → s1
through values exceeding s1.
Note, after reference to (3.10), that the assumption on 〈Q, r〉 gives

(4.1) sr(s)Q(s) < κ

s\
s−1

r(x+ 1)Q(x) dx when s ≥ 1.

If Q is continuous at s1 then taking s = s1 gives Q(s1) < 0, a contradiction.
If Q is discontinuous at s1 then passage to the limit gives

(4.2) s1r(s1)Q(s1+) ≤ κ

s1\
s1−1

r(x+ 1)Q(x) dx ≤ 0.

Hence Q(s1+) ≤ 0, so that in fact Q(s1+) = 0, since Q(s1+) ≥ 0 as already
noted. Now (4.2) implies Q(x) = 0 whenever s1 − 1 < x < s1, contrary to
the definition of s1, so that the suggested discontinuity at s1 cannot arise.
This establishes the case c = 0 of Lemma 5.
To deal with the case where c > 0 note first that when s > 1,

c

s\
s−1

r(x+ 1) · κxκ−1 dx < cr(s)

s\
s−1

κxκ−1 dx < cr(s)sκ,

since r decreases. With (4.1) this shows

sr(s)(Q(s)− csκ−1) < κ

s\
s−1

r(x+ 1)(Q(x)− cxκ−1) dx.

Define Q∗(t) = Q(t)−ctκ−1. Then Q∗ satisfies the hypotheses previously
expressed for Q in the case c = 0. The corresponding conclusion now gives
Q(s)− csκ−1 < 0 whenever s > 0. This establishes Lemma 5.
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Lemma 6. Suppose that Uz(s) is continuous in s > 0 apart from simple
jump discontinuities, and that there is a constant c > 0 such that Uz(s) ≤
csκ−1 when 0 < s ≤ 1. Assume that B ≥ 1 as in (1.11) and

(4.3) 〈Uz, r〉(s) < sr(s)f(s)e−ψB(s) when s ≥ 1,

where ψB(s) is as in (1.12), r satisfies (3.7), f(s) ≥ 1, and f(s) increases
as s increases. Then

Uz(s) ≤ f(s)e
−ψB(s)+O(B) when s ≥ 1.

Our proof of Lemma 6 invokes Lemmas 7 and 8. Lemma 7 is a variant of
Lemma 4.2.8 from [3]. We give a self-contained proof as it is short. The au-
thor found the argument somewhere (possibly unpublished) in the writings
of H. Iwaniec, but is currently unable to specify exactly where.
For Theorem 1, only the case f(s) = 1 of Lemma 6 is relevant.

Lemma 7. Suppose U+(s) ≥ 0, and that U+ is bounded and integrable
on s ≥ 1. Define u(x) = U+(x)eφ(x), where φ(x) = x log x − Dx for some
constant D > 0. Then

κ

s

s\
s−1

U+(x) dx <
1

2
e−φ(s) sup

s−1≤x≤s
u(x),

if s/eD exceeds a suitable constant depending on κ.

Use the fact that φ′(x) = log x + 1 −D increases with x. Consequently
φ(s)−φ(x) ≤ (s−x)φ′(s) if s−1 ≤ x ≤ s. Here u(x) ≥ 0, and the expression
to be estimated in Lemma 7 does not exceed

κ

s
e−φ(s)

s\
s−1

eφ(s)−φ(x)u(x) dx ≤
κ

s
e−φ(s)

s\
s−1

e(s−x)φ
′(s) dx sup

s−1≤x≤s
u(x)

≤
κeφ

′(s)

sφ′(s)
e−φ(s) sup

s−1≤x≤s
u(x),

provided s > eD−1, so that φ′(s) > 0. But

κeφ
′(s)

sφ′(s)
≤

κe1−D

log s+ 1−D
<
1

2

if log s−D is large enough, so Lemma 7 follows.

Lemma 8. Suppose that h(s) is bounded above on each interval (0, S).
If

h(s) < 1 + 12 sup
0<x≤s

h(x) when s > 0,

then h(s) is bounded above on s > 0.

Let h∗(s) = sup0<x<s h(t). Then h
∗(s) ≤ 1 + 12h

∗(s). This says that
h∗(s) ≤ 2, so Lemma 8 follows.
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We now prove Lemma 6. We may suppose s > c0B, with a suitable
constant c0 depending on κ. For when 1 ≤ s ≤ c0B we find from (1.12) that
ψB(s) = O(B). Thus it suffices to show that Uz(s0) ≤ f(s0)e

O(B) when
s0 ≤ c0B, uniformly in B. Define Q(s) = Uz(s)− c1f(s0) when 0 < s ≤ s0,
and take Q(s) = 0 if s > s0. Then, referring to (3.9) and (3.10) for the
calculation of the inner product, we see that by choice of c1 with c1 = e

O(B)

we can ensure that for 1 < s < s0,

〈Q, r〉(s) = 〈Uz, r〉(s)− c1f(s0) < sr(s)f(s0)e
O(B) − c1f(s0) < 0,

since sr(s) is bounded. For 0 < s < 1 we use only Q(s) < csκ−1. Then
Lemma 5 gives Q(s0) < csκ−10 , so that

Uz(s0) < csκ−10 + c1f(s0) = f(s0)e
O(B),

as was required when 1 ≤ s0 ≤ c0B.

Define U+(x) = max{Uz(x), 0}, so that U
+(x) ≥ 0. When s > c0B we

may argue as follows. Because of (3.10) the hypothesis of Lemma 6 gives

sr(s)Uz(s) < κ

s\
s−1

U+(x)r(x+ 1) dx+ sr(s)f(s)e−ψB(s).

In the integral, use r(x+ 1) ≤ r(s), to obtain

(4.4) sUz(s) ≤ κ

s\
s−1

U+(x) dx+ sf(s)e−ψB(s).

We will take D = 1 + logB in Lemma 7. Then φ(s) + B = ψB(s)
when s > B and ψB is as in (1.12). Now (4.4) gives

(4.5)
Uz(s)

e−B
<
κ

s

s\
s−1

U+(x)

e−B
dx+ f(s)e−φ(s) when s > B.

Define h by U+(s)/e−B = h(s)e−φ(s)f(s), so that h(s) ≥ 0. Then
u(x)/e−B = h(x)f(x) in Lemma 7, which with (4.5) gives

h(s)f(s)e−φ(s) < e−φ(s)
(

f(s) + 12 sup
s−1≤x≤s

h(x)f(x)
)

,

provided s > c2e
D, for a suitable constant c2 = c2(κ). But f(x) increases

with x, so this gives

h(s) < 1 + 12 sup
s−1≤x≤s

h(x),

when s> c2eB, as we have shown may be supposed in dealing with Lemma 6.

With Lemma 8, this gives U+(s) ≪ eB−φ(s)f(s) when s > c0B. Since
Uz(s) ≤ U

+(s), this completes the proof of Lemma 6.
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5. The proof of Theorem 1. As previously indicated, the proof is of
an inductive type. It begins by using the fact that the case s = 1 of the
theorem is already known. We discuss the proof of this special case in the
Appendix.
The use of Lemma 6 when s is close to 1 requires knowledge of the

situation in which 0 < s ≤ 1. Note from (1.4) that Gz(w) = Gw(w) when
w < z. We will write w = zs later. These considerations lead to

(5.1)
Gz(w)

Gw(∞)
=

Gw(w)

Gw(∞)
≥ C

(

1−O

(

A

logw

))

if 2 ≤ w ≤ z.

Here C = σ(1) is as described in (1.10).
We will need the relation between Gw(∞) and Gz(∞). In fact, since

w ≤ z, we may use

(5.2)
Gz(∞)

Gw(∞)
=
∏

w≤p<z
(1 + g(p)) = exp

∑

w≤p<z
log(1 + g(p)).

When (1.2) holds we may apply Lemma 3 with E(t) = η(t), to obtain

∑

w≤p<z
g(p) =

\
w≤t<z

1

log t
d(κ log t+ η(t)) ≤ κ log

(

log z

logw

)

+
A

logw
.

Now (5.2) gives

Gz(∞)

Gw(∞)
≤ exp

∑

w≤p<z
g(p) ≤

(

log z

logw

)κ

exp

(

O

(

A

logw

))

.

If w ≥ ecA with c sufficiently large this gives

Gw(∞)

Gz(∞)
≥

(

logw

log z

)κ(

1−O

(

A

logw

))

.

If w < ecA then this inequality follows trivially since Gw(∞)/Gz(∞) ≥ 0.
With (5.1) this gives, when we write w = zs, so that 0 < s ≤ 1,

Gz(z
s)

Gz(∞)
≥ Csκ

(

1−O

(

A

s log z

))

≥ σ(s)−O

(

Asκ−1

log z

)

.

Thus iz(s) ≤ i(s)+cAs
κ−1/log z for some constant c. This says that ξz(s) ≤

cAsκ−1 when 0 < s ≤ 1. The A-dependence here is quite good, but this
feature fades at the next step.
Apply Lemma 6 with Uz(s) = ξz(s)/A. Lemma 4 shows that (4.3) applies

with f(s) = 1, so that Lemma 6 gives

ξz(s) ≤ e
−ψB(s)+O(B) when s ≥ 1.

But B = O(A) in the context of Theorem 1, ξz is as in (3.11) and i(s) is as
in (3.5), so Theorem 1 follows.
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6. The proof of Theorem 2. The two-sided nature of this theorem is
perhaps more familiar, but its proof involves some additional complications.
In the first place we replace Lemma 4 by the following analogue.

Lemma 9. When (1.5) and (1.11) hold the inner product defined by
(3.10), (3.11) and (3.8) satisfies

|〈ξz, r〉(s)| ≤ 2As
2r(s) exp(−ψB(s)) if s ≥ 1,

where ψB is as in (1.12).

The two-sided version of Lemma 3, which can be deduced by also apply-
ing it to −E, is that under the additional hypothesis

|E(v)− E(u)| ≤ A whenever 2 ≤ u < v < z

we find
∣

∣

∣

\
x≤t≤y

f(t) dE(t)
∣

∣

∣
< Amax{f(x), f(y)}.

Proceed as in Lemma 4 as far as (3.16). Then (1.11) implies that in this way
we obtain

|I1| ≤ A
∑

x/z≤m
gz(m)r

(

log x

log z

)

.

To estimate I2 integrate (3.15) by parts, to obtain

I2 =
∑

p<z

g2(p) log p

{

−r

(

log x

log z

)

∑

k≥x/p2
(k,p)=1

gz(k)

+
\
x≤t

∑

k≥t/p2
(k,p)=1

gz(k)

∣

∣

∣

∣

dr

(

log t

log z

)∣

∣

∣

∣

}

.

Here, the integral (arising with a positive coefficient because r decreases)
lies between 0 and

∑

k≥x/p2
(k,p)=1

gz(k)
\
x≤t

∣

∣

∣

∣

dr

(

log t

log z

)
∣

∣

∣

∣

,

in which we replaced the sum over k by its maximum value. Thus

0 ≥ I2 ≥ −
∑

p<z

g2(p) log p
∑

k≥x/p2
(k,p)=1

gz(k)r

(

log x

log z

)

.

Now (1.6) gives

|I2| ≤ Ar

(

log x

log z

)

∑

k≥x/z2
gz(k).
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We complete the proof of Lemma 9 by arguing as with Lemma 4.

Continue by quoting the fact that the case s = 1 of Theorem 2 was,
in essence, established as Lemma 5.4 of [6]. Actually the argument in [6]
started from a formulation slightly different from (1.1), but the effect of
starting from (1.1) is to make the inference slightly simpler. Also, in [6] the
assumption corresponding to (1.5) was of the form −L < η(v) − η(u) < A
when 1 < u < v, and only the L-dependence of the O-constants was made
explicit. It is easy to check that the argument from [6] leads to the second
of the two statements in (6.1). A somewhat different presentation along the
lines of the appendix to this paper is also possible.
In place of (5.1) we now infer

(6.1)
Gz(w)

Gw(∞)
=

Gw(w)

Gw(∞)
= C

(

1 +O

(

A

logw

))

if 2 ≤ w ≤ z.

For the relation between Gw(∞) and Gz(∞), use

Gz(∞)

Gw(∞)
=
∏

w≤p<z
(1 + g(p)) = exp

∑

w≤p<z
log(1 + g(p))(6.2)

= exp
∑

w≤p<z
(g(p) +O(g2(p))).

A partial summation from (1.1) and (1.5) gives

∑

w≤p<z
g(p) =

\
w<t≤z

1

log t
d(κ log t+O(A)) = κ log

(

log z

logw

)

+O

(

A

logw

)

.

Proceeding from (1.6) we can infer
∑

w≤p<z
g2(p) ≤

1

logw

∑

w≤p<z
g2(p) log p ≤

A

logw
.

Define α = ceA with c sufficiently large. Suppose first that w ≥ α. Then
the use of (6.2) gives, when z > w,

Gz(∞)

Gw(∞)
=

(

log z

logw

)κ

exp

(

O

(

A

logw

))

.

This implies the case in which z > w ≥ α of

(6.3)
Gw(∞)

Gz(∞)
=

(

logw

log z

)κ(

1 +O

(

eO(A)

logw

))

when 2 ≤ w < z,

the outer O-symbols allowing the terms in question to have either sign. To
obtain (6.3) when 2 ≤ w < α, use a first-order version of (6.2) to find

(6.4)
Gw(∞)

Gα(∞)
= exp

∑

w≤p<α
O(g(p)) =

(

logα

log z

)O(1)

eO(A) = eO(A).
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With the case w = α of (6.3) this gives

Gw(∞)/Gz(∞) = e
O(A)/logκ z when 2 ≤ w < α.

Hence (6.3) is valid whenever 2 ≤ w < z, since if z < α it follows after
replacing α by z in (6.4).

Now write w = zs and use (6.1) and (6.3). This gives, for 0 < s ≤ 1,

Gz(z
s)

Gz(∞)
= Csκ

(

1 +O

(

eO(A)

s log z

))

= σ(s) +O

(

eO(A)sκ−1

log z

)

.

The A-dependence, arising from considerations relating to small values
of w which appear in this argument, is not very good, but it is not worse
than those arising elsewhere from our use of Lemmas 7 and 6.

In the notation of (2.2) and (3.3), this gives

iz(s)

Gz(∞)
= i(s) +O

(

eO(A)sκ−1

log z

)

when 0 < s ≤ 1,

with i(s) = 1−σ(s) as in (3.5). Thus, in the notation (3.11), we have found
there is a constant c1 such that |ξz(s)| ≤ e

c1Asκ−1 when 0 < s ≤ 1.

Now apply Lemma 6, twice, with Uz(s) = ±ξz(s)/e
c1A. Lemma 4 shows

that (4.3) holds with f(s) = s, because r(s) = O(1/s). Thus in either
case the conditions of Lemma 6 are satisfied. This process yields the two-
sided inequality |ξz(s)| ≤ se−ψB(s)+O(A+B). Via (3.11) this leads to Theo-
rem 2.

7. Appendix. The preceding treatment required separate proofs of
Theorems 1 and 2 at the point s = 1. In principle, these were provided in [9]
and [6] respectively, in the former case making use of the result from [6]
and stating a result slightly weaker than that used in this paper. For this,
one may use the more direct method given in [5], also described in [3], save
that these accounts are incomplete. They can be corrected as follows. We
need to assume (1.2), which is stronger than the hypothesis stated in [3]
and [5].

The text in [5] refers to

En(y) =
∑

p<y

g(p) log p−
∑

p<
√
y

(p,n)=1

g2(p) log p− κ log y

= η(y)−
∑

p<
√
y

(p,n)=1

g2(p) log p,
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in which (1.1) has been used. The identity

(7.1) G(x) log x− (κ+ 1)

x\
1

G(t)
dt

t
= δ(x) =

∑

n<x

g(n)En

(

x

n

)

,

is obtained as in [6] (or see [5] or [3]), by the process used to derive Lemma 2
in this paper.

When u ≤ v the hypothesis (1.2) gives

(7.2) En(v)− En(u) = η(v)− η(u)−
∑

√
u≤p<√v
p∤n

g2(p) log p ≤ A.

Consequently Lemma 3 may be used with E(t) = En(t/n).

The corresponding discussion in [3] was more involved because it initially
referred to Gz(x) rather than to G(x) = Gx(x), the specialisation to the case
z = x not having been made at that stage.

In [3] and [5] the procedure is to work with H(x) = G(x)/logκ x, and to
aim to establish an inequality related to Cauchy’s convergence criterion,

(7.3) H(y)−H(x) ≤
cA

log x
sup
x≤t<y

H(t),

for some absolute constant c. The case s = 1 of Theorem 1 would then follow
as in [3] or [5].

Because (7.1) gives

x\
2

dδ(t)

logκ+1 t
=

x\
2

1

logκ+1 t

(

log t dG(t)− κ
G(t)

t
dt

)

=

x\
2

d
G(t)

logκ t
,

the equation (7.1) integrates to

H(y)−H(x) =

y\
x

dδ(t)

logκ+1 t
=

y\
x

1

logκ+1 t
d
∑

1≤n<t
g(n)En

(

t

n

)

.

The argument in [3] and [5] ignored the contribution to H(y) − H(x)
arising from those g(n) with n < x. Since g(n) is independent of t, this
contribution is\
x≤t<y

1

logκ+1 t
d
∑

1≤n<x
g(n)En

(

t

n

)

=
∑

1≤n<x
g(n)

\
x≤t<y

1

logκ+1 t
dEn

(

t

n

)

≤
∑

1≤n<x
g(n)

A

logκ+1 x
=
AH(x)

log x
,

by (7.2) and Lemma 3. In conjunction with the treatment in [3] or [5] of the
terms with n > x this gives the required estimate (7.3).
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It is possible to give a treatment of the case s = 1 of Theorem 2 along
similar lines, in which the passage from the identity (7.1) to the required
result is somewhat different from that in [6].
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