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1. Introduction. In 1941, Yu. Linnik proved that every large integer is
a sum of seven non-negative cubes. Here and throughout, all cubes are cubes
of non-negative integers. Linnik’s proof was awfully intricate and G. L. Wat-
son in [15] offered a drastically simpler one. The latter was made effective
simultaneously by K. S. McCurley [4] and R. J. Cook [2] in 1984, and ex-
plicit only in [4]. We follow here a similar path while improving some steps.
Roughly speaking, E. Maillet introduced in 1895 an identity in this context,
but it is arithmetically too rigid to be effective for sums of seven cubes.
Maillet himself proved only that fewer than thirteen cubes were enough.
Linnik succeeded in putting this identity to use by introducing arithmetical
perturbations. A key point of his proof is to find a prime number of size X
in an arithmetic progression to a modulus of size about (log X)9. Watson
follows the same path but relies on much easier perturbations. However his
proof requires a prime in a progression to a modulus of size (log X)12. The
identity (1) below due to E. Bombieri is different (a symmetric version of
Watson’s in fact) and leads to a similar problem but to a modulus of size
(log X)6, which explains most of our improvement on McCurley’s result.
Some further numerical care accounts for the final result:

Theorem 1.1. Every integer ≥ exp(205 000) is a sum of seven non-

negative cubes.

McCurley in [4] had 1 077 334 instead of 205 000.
Concerning the number of representations, let us recall that in 1922

G. H. Hardy and J. E. Littlewood used the circle method to get the number
of distinct representations of an integer as a sum of nine cubes. It is only
in 1986 that by sharpening this method R. C. Vaughan obtained in [11]
the number of representations of a large integer as a sum of eight cubes. In
1989, in [12] and [13], he also showed the number of representations of a large
integer as a sum of seven cubes to be of the expected order of magnitude.
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Though what “large” means in the above results is not known, there is little
doubt that small integers will not be covered by them.

As a consequence of the work [3] of J.-M. Deshouillers, F. Hennecart and
B. Landreau, and a kind of greedy algorithm performed in Lemma 3 from [1]
by F. Bertault, the current author and P. Zimmermann, we now know that
every integer between 455 and 2.50 · 1026 is a sum of seven cubes.

Notes. Most of this paper has been written when I was invited at the
Institute of Advanced Study in 1992. E. Bombieri introduced me to this
problem and proposed me kindly to see if I could make some progress by
using the identity (1) below. I thank him here for his concern. I thought at
the time I could prove every integer ≥ exp(177 000) is a sum of seven cubes,
a fact I claimed in several subsequent talks. There was a numerical mistake
and I have to apologize for this claim, though the theorem proved here is
only marginally weaker.

2. A modified form of G. L. Watson’s lemma. We state and prove
a lemma similar to the one used by Watson. The core identity is however
different, though we still add summands of type (a + x)3 + (a − x)3 with
a fixed a to shift the problem from representations by sums of cubes to
representations by sums of squares. Watson’s lemma as well as ours rely on
the fact that every integer congruent to 3 modulo 8 is a sum of three squares,
while Linnik introduced coefficients in the resulting ternary quadratic form
to encompass all possible residue classes.

Lemma 2.1. Let n, a, u, v and w be positive integers and t a non-negative

integer. Assume that

(1) 1 ≤ u ≤ v ≤ w ≤ (3/4)1/3uv/24,

(2) gcd(uvw, 6n) = 1 and a is odd ,

(3) u, v, w and a are pairwise coprime,

(4) n − t3 ≡ 1 [2],

(5) n − t3 ≡ 0 [3a],

(6)











4(n − t3) ≡ v6w6a3 [u2],

4(n − t3) ≡ u6w6a3 [v2],

4(n − t3) ≡ u6v6a3 [w2].

Set δ = (1 + (w/u)6 + (w/v)6)/4. If

0 ≤ uv

6w

(

n

u6v6a3
− δ − 3

4

)1/3

≤ t

6uvwa
≤ uv

6w

(

n

u6v6a3
− δ

)1/3

then n is a sum of seven non-negative cubes.
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Proof. Our proof is similar to Watson’s but relies on an identity due to
Bombieri. We put N = 8(n − t3). Our hypotheses give us

N = 2(u6v6 + v6w6 + w6u6)a3 + 6au2v2w2c

where c ≡ 3 [8]. Our size condition on t is also equivalent to

0 ≤ c ≤ (u2v2a/w)2.

We can then write c as a sum of three non-negative squares: c = x2+y2+z2.
Next notice that

(u2v2a + wx)3 + (u2v2a − wx)3(1)

+ (u2w2a + vy)3 + (u2w2a − vy)3

+ (v2w2a + uz)3 + (v2w2a − uz)3

= 2(u6v6 + u6w6 + v6w6)a3 + 6au2v2w2(x2 + y2 + z2)

where the cubes involved are non-negative due to the upper bound on c.
This gives an expression of N as six non-negatives cubes, all of them even.
The lemma follows readily.

3. Reduction to finding a prime in an arithmetic progression.

To use Lemma 2.1, let u, v and w be prime numbers ≡ 5 [6] and prime
to n. Let ℓ be a residue class modulo u2v2w2 such that ℓ3 is congruent
to 4n/(v6w6) modulo u2, to 4n/(u6w6) modulo v2, and to 4n/(u6v6) mod-
ulo w2. This is possible because u, v and w being primes ≡ 5 [6], every
invertible residue class modulo u2v2w2 is indeed a cube. Select a prime
number a ≡ 5 [6] with a ≡ ℓ [u2v2w2]. Finally, select t ≡ 0 [uvw] so that
t3 ≡ n − 1 [2] and t3 ≡ n [6a], which can again be achieved because a is a
prime ≡ 5 [6]. It is possible to choose t in the stated interval if it contains
more than 6auvw integers, which is certainly true if its length is larger than
6auvw + 1. This means

(2)

(

n

u6v6a3
− δ

)1/3

−
(

n

u6v6a3
− δ − 3

4

)1/3

≥ 6w

uv
(1 + ̺)

with ̺ = 1/(6auvw). Before continuing, let us mention that we shall seek u,
v and w to be as small as possible, and since they are to be coprime to n,
the best we can do is to take them of size log n. This means that δ will be
about constant in size and ̺ will be very small. Since

(3) x1/3 − (x − 3/4)1/3 ≥ 1/(4x2/3) for x ≥ 3/4

it is enough to require u6v6a3 ≤ n/(δ + 3/4) and

(4) 1 ≥ 24(1 + ̺)
w

uv

(

n

u6v6a3
− δ

)2/3

,
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which reads

(5) n1/3/(3/4 + δ)1/3 ≥ au2v2 ≥ n1/3
/

((

uv

24(1 + ̺)w

)3/2

+ δ

)1/3

.

The lower bound being much smaller than the upper bound, the problem is
really to find a prime a in the proper arithmetical progression and of size
about and less than n1/3/(3/4+ δ)1/3. Note that in (5), we can replace ̺ by
any lower bound.

4. Creating a non-exceptional modulus. To apply the prime num-
ber theorem modulo k = 6u2v2w2 to get a prime of size n1/3, we need this
modulus to be non-exceptional (see below). We could avoid this condition
by invoking Linnik’s theorem, but this would ruin any hope for reasonable
bounds. Instead, we use the fact that exceptional moduli are rare: we are
going to create two moduli, and one of them will be non-exceptional. Using
this trick in this context is due to McCurley.

The main result we shall use is the following one.

Lemma 4.1 (McCurley). If χ1 and χ2 are two distinct real primitive

characters modulo k1 and k2 respectively and if β1 (resp. β2) is a real zero

of L(s, χ1) (resp. L(s, χ2)), then

min(β1, β2) ≤ 1 − 1/(R1 log max(13, k1k2/17)),

where R1 = (5 −
√

5)/(15 − 10
√

2).

Definition 4.1. An integer k ≥ 2 is said to be exceptional in the sense

of McCurley if there exists a (not necessarily primitive) character mod-
ulo k such that the associated L-function has a real zero β satisfying β >
1 − 1/(R log k) where R = 9.645908801.

Such a character if it exists is real-valued by McCurley (see [6]). This
definition is different from the one that is often used and whose definition
reads as above except the lower bound is β > 1− 1/(R log f) where f is the
conductor of χ. Our definition is adapted to studying the error term in the
prime number theorem, which is indeed our aim. We shall drop the “in the
sense of McCurley” part, as is customary, but the reader should remember
this definition depends on R.

We can bound exceptional k’s from below:

Lemma 4.2. No L-function attached to a real character to a modulus

k ≤ 1 000 has a real zero in the strip 0 < ℜs < 1.

These computations were carried out by J. B. Rosser in [9] and [10]. Note
that M. Watkins in [14] shows that we can even take k ≤ 300 000 000 if we
restrict our attention to odd characters.
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Lemma 4.3. Let B ≥ A ≥ 1 be two real numbers. There are more than

M ≥ 1 prime numbers in [A, B] prime to the integer n and congruent to b
modulo q if

ϑ(B; q, b) − ϑ(A; q, b) ≥ log n + M log B.

Proof. The product P of primes p ≡ b [q] in ]A, B] and dividing n satisfies

log P ≤ log n.

The condition thus ensures the existence of at least M other primes in the
above interval.

We shall only need the case q = 6, b = 5 and y = x of the following
lemma due to the current author and R. Rumely in [8], but it is no more
effort to state it in general.

Lemma 4.4. For 1 ≤ x ≤ 1010, any integer q ≤ 72 and any b prime to q,
we have

max
1≤y≤x

∣

∣

∣

∣

ϑ(y; q, b) − y

φ(q)

∣

∣

∣

∣

≤ 2.072
√

x.

Lemma 4.5. There are more than 24 prime numbers coprime to n and

congruent to 5 modulo 6 lying in the interval [0.161 log n, 2.18 log n] if log n
is larger than 50 000.

The constants 0.161 and 2.18 are chosen to minimize the lower bound
for log n reached in Lemma 5.3. The difference could not be taken smaller
than 2 = φ(6).

Proof. We have to verify the hypothesis of Lemma 4.3 with q = 6 and
b = 5. We need to check that

B − A

2
− 2.072(

√
A +

√
B) ≥ log n + 24 log B,

which is readily done.

Lemma 4.6. Let α = (2.18/0.161)1/4. There exists an interval [A, αA]
with A in [0.161 log n, (2.18/α) log n] which contains more than six primes

coprime to n and congruent to 5 modulo 6 if log n is larger than 50 000.

Proof. Set A0 = 0.161 log n. Among the four intervals [αjA0, α
j+1A0]

with j ∈ {0, 1, 2, 3}, one contains more than six primes in the proper con-
gruence class by Lemma 4.5. The lemma follows readily.

Let u1 < v1 < w1 < u2 < v2 < w2 be the six primes satisfying the
hypothesis of Lemma 4.6. Let k1 be one of {3(u1v1w1)

2, 3(u2v2w2)
2} and k2

be the other one. We show that k1 or k2 is non-exceptional.
Let χ1 (resp. χ2) be a real character of conductor f1 | k1 (resp. f2 | k2)

whose Dirichlet L-function admits a real zero β1 (resp. β2), if two such char-
acters exist. If not, we are done. Note these two characters are necessarily
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distinct since otherwise one would have f1 = f2 = 3, an impossibility ac-
cording to Lemma 4.5. Assume β1 is smaller than β2. By Lemma 4.1, we
have

(6) β1 ≤ 1 − 1/(R1 log(k2k1/17))

and this is ≤ 1 − 1/(R log k1) because

(7) k
R/R1−1

1
≥ k2/17,

an inequality that is true if log n ≥ 100 (3 would even be enough!).

5. Finding a prime in a progression with a large modulus. Set

Y = n1/3/(3/4 + δ)1/3, κ3 =

(

uv

24(1 + ̺)w

)3/2

+ δ

3/4 + δ
,

and

k = 3(uvw)2 ≥ 3.22 · 1027 (log n ≥ 200 000).

We have to find a prime congruent to a given invertible residue class modulo
k and in the interval [Y/κ, Y ]. Note first that

̺ ≤ 1/(6(0.16 log n)3) ≤ 10−7 (log n ≥ 1 000).

We can replace ̺ by this upper bound in κ3. The resulting expression is
non-increasing in u and v and non-decreasing in w, as a quotient of such
functions and because uv/(24(1 + ̺)w) ≥ (3/4)2/3. We also use the bound
w/u ≤ α. This time the resulting expression is non-decreasing in log n, and
this warrants

κ ≥ 9 (log n ≥ 203 000).

Since κ is sufficiently large, the next lemma is enough to treat the condition
a ≥ Y/κ. It is a direct consequence of a theorem of H. Montgomery and
R. C. Vaughan in [7].

Lemma 5.1. For 1 ≤ q < X, and b an invertible residue class modulo q,
we have

ϑ(X; q, b) ≤ 2X

φ(q)

log X

log(X/q)
.

Let us recall a theorem of McCurley from [5]:

Lemma 5.2. If q ≥ 1025 and b is an invertible residue class modulo q
where q is non-exceptional and log X ≥ 10.88 log2 q, then

|ϑ(X; q, b) − X/φ(q)| ≤ X/(2φ(q)).
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Lemma 5.3. Assume log n ≥ 205 000. For any invertible residue class ℓ
modulo k there is a prime in [Y/9, Y ] congruent to ℓ modulo k.

Proof. We first verify the inequality

1

3
log n − 1

3
log(1 + 2α6/4) − 4 log(2.18 log n)

≥ 10.88 (log 3 + 6 log(2.18 log n))2 ,

and this is readily done for log n ≥ 205 000. By Lemma 5.2, we infer

ϑ(Y ; k, ℓ) ≥ Y/(2φ(k))

and using Lemma 5.1, we get

ϑ(Y ; k, ℓ) − ϑ(Y/9; k, ℓ) ≥ Y

φ(k)

(

1

2
− 2 log(Y/9)

9 log(Y/(9k))

)

.

We need 9 log k < 5 log(Y/9) for the right hand side to be positive, a condi-
tion that is easily verified to hold true.
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