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1. Introduction. Let (bn)
∞
n=1 be a sequence of integers. In the present

paper we study the irrationality of R :=
∑∞
n=1 bn/n! and, more generally, of

R∗ :=

∞
∑

N=1

bN
∏N
n=1(an+ b)

where a and b are given positive integers. In 1761 Lambert [10] proved the
irrationality of e = 1 +

∑∞
n=1 1/n!. In 1873 Hermite [9] established the

transcendence of e, which implies the irrationality of
∑∞
n=1m

n/n! for any
nonzero integer m. In 1869 G. Cantor [2] showed that if 0 ≤ bn < n, then
R is irrational if and only if bn > 0 infinitely often and bn < n− 1 infinitely
often. On the other hand, if bn/(n− 1) is constant for n larger than some n0,
then R ∈ Q. This is an exceptional case in many results.

Oppenheim [12] showed that both the condition of bn > 0 and the con-
dition of bn < n− 1 can be relaxed. For example, it follows from his results
that if |bn| < n for every n, then R is rational if and only if bn/(n− 1) is
ultimately a fixed integer. Thus if |bn| < n − 1 for every n and R ∈ Q,
then bn is ultimately equal to 0. The results of Oppenheim were extended
by the authors [8] who showed that if n ∤ bn for all n, bn = o(n

2) and
lim infn→∞ |bn|/n = 0, then R is irrational. They further proved that R
is irrational if (bn)

∞
n=1 is a monotonic sequence of positive integers such that

bn = O(n
2) and gcd(bn, n − 1) = o(bn). Tijdeman and Yuan [14] extended

another result of Oppenheim by showing that R is irrational if bn = O(n)
and the sequence (bn/n)

∞
n=1 has an irrational limit point. See also Hančl [6]

and [7].

Erdős and Straus [5] started a series of results in which the size of the dif-
ference bn+1−bn is a relevant factor. They used such results to establish the
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irrationality of R in case (bn)
∞
n=1 represents a multiplicative or other arith-

metic function. It follows from their result that if bn > 0 for all n, bn+1−bn =
o(n) and lim infn→∞ n/bn = 0, then R is irrational. The authors [8] showed
that the condition lim infn→∞ n/bn = 0 can be replaced with the necessary
condition that bn/(n− 1) is not ultimately constant. Tijdeman and Yuan
[14] showed that, moreover, the condition bn > 0 for all n can be dropped:
if bn+1 − bn = o(n), then R ∈ Q if and only if bn/(n− 1) is ultimately a
fixed integer. These results generalize Erdős’ result [3] that

∑∞
n=1 pn/n! 6∈ Q,

where {pn}
∞
n=1 is the sequence of consecutive prime numbers.

In fact Erdős claimed the irrationality of
∑∞
n=1 p

k
n/n! 6∈ Q for k =

1, 2, . . ., but unfortunately he proved only the case k = 1. Oppenheim
[12] showed that

∑∞
n=1 εndn/n!,

∑∞
n=1 εnσn/n! and

∑∞
n=1 εnφn/n! are ir-

rational for all choices of εn ∈ {−1, 1}, where d(n), σ(n), φ(n) denote the
number of divisors, the sum of divisors, and the Euler function of n, respec-
tively. A special case was treated by Erdős and Kac [4]. Erdős and Straus
[5] proved that the numbers 1,

∑∞
n=1 σn/n!,

∑∞
n=1 φn/n! and

∑∞
n=1 bn/n!,

where |bn| < n
1/2−ε for all large n and bn 6= 0 infinitely often, are linearly

independent over the rationals. Most of the results mentioned were stated
in greater generality in the original papers than above.
Tijdeman and Yuan [14] started to compare second order differences (cf.

the proof of their Theorem 4.3). In the present paper we pursue this idea by
studyingKth order differences. For doing so we have to impose stronger reg-
ularity conditions on the numbers bn. Nevertheless the results are valid for
a wide class of sequences (bn)

∞
n=1. Corollary 3.1 precisely states for which

polynomials P (x) with integer coefficients
∑∞
n=1 P (n)/n! is rational. Sec-

tion 3 further provides a method to establish the irrationality of a large
class of numbers

∞
∑

N=1

f(N)
∏N
n=1(an+ b)

where f(N) is an integer-valued function satisfying f(N) = (aN + b)F (N)
+ O(1) and F is a smooth function which does not grow faster than a
polynomial. In particular it yields the irrationality of the following numbers:
∞
∑

n=1

[nα]

n!
(α ≥ 0),

∞
∑

n=1

[logβ n]

n!
(β > 0),

∞
∑

n=1

[exp(logγ n)]

n!
(0 < γ < 1).

In Section 4 the linear independence over the rationals of such numbers is
treated. For example, linear independence is shown for the numbers

1, e,

∞
∑

n=1

[nα]

n!
for all α ∈ R+, α 6∈ Z.

The results remind us of the result by Loxton and van der Poorten [11]
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who proved by Mahler’s method that
∑∞
n=1[nα]β

n is transcendental for α
irrational and β algebraic with 0 < |β| < 1.

2. Basic lemmas. Let a > 0 and b be integers such that an + b 6= 0
for every positive integer n. Let {bn}

∞
n=1 be a sequence of integers. We in-

vestigate under what conditions

R∗ =

∞
∑

N=1

bN
∏N
n=1(an+ b)

(1)

is irrational. Since all terms are rational, we may neglect the terms with
an+ b < 0 and assume without loss of generality that b ≥ 0.
The following lemma dealing with the sum

R∗N :=

∞
∑

m=N

bm
∏m
n=N (an+ b)

(2)

is crucial. We denote the set of positive integers by N.

Lemma 2.1. If R∗=p/q for some p∈Z, q∈N, then qR∗N ∈Z for all N .

Proof. We have

p

N−1
∏

n=1

(an+ b) = q

N−1
∑

m=1

bm

N−1
∏

n=m+1

(an+ b) + q

∞
∑

m=N

bm
∏∞
n=N (an+ b)

and the first two terms are integers.

Remark. If q divides
∏N−1
n=1 (an+ b), then we need not multiply by q to

obtain integers and can conclude that R∗N itself is an integer. If q is coprime
to a, this is the case for sufficiently large N . In particular, it is the case if
a = 1, hence for sequences

∑∞
n=1 bn/n!.

The following consequence of a theorem of Oppenheim implies that R∗

is irrational if bn = o(n), but not ultimately constant 0.

Lemma 2.2 (Oppenheim [12, Theorem 8]). If |bn| < an + b for all
n > n0 and lim infn→∞ |bn|/n = 0, then R is rational if and only if bn = 0
for all n > n0.

The next lemma displays some well known properties of Stirling numbers
of the second kind.

Lemma 2.3. Let K be a nonnegative integer. Put

S(r,K) =
1

K!

K
∑

j=0

(−1)K−j
(

K

j

)

jr.

Then S(r,K) = 0 if r < K, S(r,K) = 1 if r = K and S(r,K) ∈ N if
r > K > 0.

For a proof see [1, Section III.2].
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The following lemma gives partial fractions of the denominator of R∗.

Lemma 2.4. Let a > 0, b, N and s ≥ 0 be integers such that a(N + i)+b
6= 0 for i = 0, 1, . . . , s. Then

1
∏s
i=0(a(N + i) + b)

=
1

s!as

s
∑

i=0

(−1)i
(

s

i

)

1

a(N + i) + b
.(3)

Proof. We prove the identity by induction on s. For s = 0 identity (3)
is trivial. Suppose that it holds for s = n. Then

1
∏n+1
i=0 (a(N + i) + b)

=
1

(n+ 1)a

(

1
∏n
i=0(a(N + i) + b)

−
1

∏n+1
i=1 (a(N + i) + b)

)

=
1

(n+ 1)!an+1

( n
∑

i=0

(−1)i
(

n

i

)

1

a(N + i) + b

−

n+1
∑

i=1

(−1)i−1
(

n

i− 1

)

1

a(N + i) + b

)

=
1

(n+ 1)!an+1

(

1

aN + b
+

(−1)n+1

a(N + n+ 1) + b

+

n
∑

i=1

(−1)i
((

n

i

)

+

(

n

i− 1

))

1

a(N + i) + b

)

=
1

(n+ 1)!an+1

n+1
∑

i=0

(−1)i
(

n+ 1

i

)

1

a(N + i) + b
.

This completes the induction step.

The last lemma of the section will be used for all theorems except for
Theorem 3.1 and Theorem 3.2. We use the convention that an empty product
equals 1.

Lemma 2.5. Let K≥0, a>0 and b be given integers such that an+ b 6=0
for every n ∈ N. Let H : R → R+ be a K times continuously differentiable
function such that H(x) 6= 0 for x > x0. Suppose we have

(4) H(N + j) =

K
∑

r=0

H(r)(N)

r!
jr +O

(

H(N)

NK+1

)

for j = 0, 1, . . . ,K as N →∞
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and

H(r)(N) = O

(

H(N)

N r

)

for r = 0, 1, . . . ,K as N →∞.(5)

Put

R∗K(N) =

K
∑

j=0

(−1)j
(

K

j

) ∞
∑

s=0

H(N + j + s)
∏N+j+s−1
n=N+j (an+ b)

.

Then

R∗K(N) = (−1)
KH(K)(N) +O(H(N)N−K−1) as N →∞.(6)

Proof. Let N be sufficiently large. Note that for j = 0, 1, . . . ,K, by (4)
and (5),

H(N + j) = O

(

H(N)

K+1
∑

r=0

1

r!

(

j

N

)r)

= O(H(N)ej/N)(7)

= O(H(N)) as N →∞.

Write

R∗K(N) = R
∗
K,1(N) +R

∗
K,2(N) +R

∗
K,3(N)(8)

where

R∗K,1(N) =

K
∑

j=0

(−1)j
(

K

j

)

H(N + j),

R∗K,2(N) =

K
∑

j=0

(−1)j
(

K

j

) K
∑

s=1

H(N + j + s)
∏N+j+s−1
n=N+j (an+ b)

,

R∗K,3(N) =

K
∑

j=0

(−1)j
(

K

j

) ∞
∑

s=K+1

H(N + j + s)
∏N+j+s−1
n=N+j (an+ b)

.

By Lemma 2.3 and (4) we have

R∗K,1(N) =

K
∑

j=0

(−1)j
(

K

j

) K
∑

r=0

H(r)(N)

r!
jr +O(H(N)N−K−1)(9)

=

K
∑

r=0

H(r)(N)

r!

K
∑

j=0

(−1)j
(

K

j

)

jr +O(H(N)N−K−1)

= (−1)KH(K)(N) +O(H(N)N−K−1) as N →∞.

We now turn to R∗K,2(N). By Lemma 2.4, (4), (7), Lemma 2.3, and (5),
we have
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R∗K,2(N) =

K
∑

j=0

(−1)j
(

K

j

) K
∑

s=1

H(N + s+ j)

(s− 1)!as−1

×

s−1
∑

i=0

(−1)i
(

s− 1

i

)

1

a(N + i+ j) + b

=

K
∑

j=0

(−1)j
(

K

j

) K
∑

s=1

K
∑

r=0

H(r)(N + s)jr

r!(s− 1)!as−1

×

s−1
∑

i=0

(−1)i
(

s− 1

i

) ∞
∑

m=1

(−1)m−1(aj)m−1

(a(N + i) + b)m
+O

( K
∑

s=1

H(N + s)

(N + s)K+1

)

=

K
∑

s=1

K
∑

r=0

H(r)(N + s)

r!(s− 1)!as−1

s−1
∑

i=0

(−1)i
(

s− 1

i

)

×

∞
∑

m=1

(−a)m−1

(a(N + i) + b)m

K
∑

j=0

(−1)j
(

K

j

)

jr+m−1 +O

( K
∑

s=1

H(N)

NK+1

)

=

K
∑

s=1

K
∑

r=0

H(r)(N + s)

r!(s− 1)!as−1

s−1
∑

i=0

(−1)i
(

s− 1

i

)

×

∞
∑

m=K−r+1

(−a)m−1

(a(N + i) + b)m

K
∑

j=0

(−1)j
(

K

j

)

jr+m−1+O

(

H(N)

NK+1

)

= O

( K
∑

r=0

H(N)

N r

∞
∑

m=K−r+1

(

K

N

)m)

+O

(

H(N)

NK+1

)

.

Thus

R∗K,2(N) = O

(

H(N)

NK+1

)

.(10)

Finally we estimate R∗K,3(N). By (7) there exists a constant c > 1 such
thatH(n+1) < cH(n) for all sufficiently large n. HenceH(N+s) < csH(N)
for every positive integer s. It follows that

R∗K,3(N) = O

( ∞
∑

s=K+1

H(N + s)
∏N+s−1
n=N (an+ b)

)

= O

( ∞
∑

s=K+1

H(N)cs

N s

)

.

Hence

R∗K,3(N) = O

(

H(N)

NK+1

)

as N →∞.(11)

The combination of (8), (9), (10) and (11) yields (6).

Remark. In applications of Lemma 2.5 the integer K is usually chosen
as the smallest nonnegative integer such that H(K)(N)→ 0 as N →∞.
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3. Irrationality. The next lemma implies that
∑∞
n=1 P (n)/n! for P (x)

∈ Q[x] is a linear combination over Q of 1 and e.

Lemma 3.1. Let a > 0 and b be integers such that an+ b 6= 0 for every
n ∈ N. Suppose that P (x) =

∑T
i=0 aix

i is a polynomial with rational coeffi-

cients. Let d be the least common denominator of a0, a1, . . . , aT . Then there
exist rational numbers Q0 and Q1 such that

∞
∑

N=1

P (N)
∏N
n=1(an+ b)

= Q0 +Q1

∞
∑

N=1

1
∏N
n=1(an+ b)

where

(12) aTdQ0

=

T
∑

i=0

ai

i
∑

k=0

i
∑

h=k

(

i

h

)

aT−i+h−k(−b)i−hS(h, k)

k
∑

N=1

k−N−1
∏

n=0

(b− na)

and

aTdQ1 =

T
∑

i=0

ai

i
∑

k=0

i
∑

h=k

(

i

h

)

aT−i+h−k(−b)i−hS(h, k)(13)

are integers.

Proof. We can write

xi =

i
∑

k=0

bi,k

k
∏

m=1

(a(x−m+ 1) + b).(14)

On substituting x = −b/a+ r for r = 0, 1, . . . , i into equation (14) we get

(

−
b

a
+ r

)i

=

i
∑

k=0

bi,k

k
∏

m=1

(

a

(

−
b

a
+ r −m+ 1

)

+ b

)

(15)

=

i
∑

k=0

bi,ka
k r!

(r − k)!
.

We consider (15) as a system of i + 1 equations with i + 1 unknowns
bi,0, bi,1, . . . , bi,i. Using the fact that r ≤ i we find that the solution of this
system for k = 0, 1, . . . , i is given by

bi,k =
1

k!ak

k
∑

j=0

(−1)j
(

k

j

)(

−
b

a
+ k − j

)i

.(16)

We write
∞
∑

N=1

P (N)
∏N
n=1(an+ b)

=

T
∑

i=0

ai

∞
∑

N=1

N i
∏N
n=1(an+ b)

.
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From this, (14) and (16) we obtain

∞
∑

N=1

P (N)
∏N
n=1(an+ b)

=

T
∑

i=0

ai

i
∑

k=0

bi,k

∞
∑

N=1

∏k
m=1(a(N −m+ 1) + b)
∏N
n=1(an+ b)

=

T
∑

i=0

ai

i
∑

k=0

bi,k

k
∑

N=1

k−N−1
∏

n=0

(b− na) +

T
∑

i=0

ai

i
∑

k=0

bi,k

∞
∑

N=k+1

1
∏N−k
n=1 (an+ b)

=: Q0 +Q1

∞
∑

N=1

1
∏N
n=1(an+ b)

where Q0 and Q1 are rational numbers. We have, by (16) and Lemma 2.3,

bi,k =
1

k!ak

k
∑

j=0

(−1)j
(

k

j

) i
∑

h=0

(

i

h

)(

−
b

a

)i−h

(k − j)h

=
1

k!ak

i
∑

h=0

(

i

h

)(

−
b

a

)i−h k
∑

j=0

(−1)j
(

k

j

)

(k − j)h

=

i
∑

h=k

(

i

h

)

1

ak

(

−
b

a

)i−h

S(h, k)

where S(h, k) is an integer. Note that the exponent of a in (1/ak)(−b/a)i−h

has minimal value −i, viz. if h = k. Hence aibi,k is an integer for i =
0, 1, . . . , k.We deduce that daTQ0 and da

TQ1 are the integers given by (12)
and (13), respectively.

Theorem 3.1. Let a > 0 and b be integers such that an+b 6= 0 for every
n ∈ N. Let P (x) =

∑T
i=0 aix

i ∈ Z[x]. Then

R∗ :=

∞
∑

N=1

P (N)
∏N
n=1(an+ b)

is rational if and only if

Q1 =

T
∑

i=0

ai

i
∑

k=0

1

k!ak

k
∑

j=0

(−1)j
(

k

j

)(

−
b

a
+ k − j

)i

= 0.(17)

Proof. It is obvious that R∗ is absolutely convergent. It follows immedi-
ately from Lemma 3.1 that if (17) holds, then R∗ ∈ Q. On the other hand,
suppose (17) does not hold. By Oppenheim’s theorem (Lemma 2.2) we know
that ∞

∑

N=1

1
∏N
n=1(an+ b)

is irrational. Hence, by Lemma 3.1, R∗ is irrational.
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Corollary 3.1. Let P (x) =
∑T
i=0 aix

i ∈ Z[x]. Then
∑∞
N=1 P (N)/N !

is rational if and only if
∑T
i=0 ai

∑i
k=0 S(i, k) = 0. If aT > 0 and ai ≥ 0 for

i = 0, 1, . . . , T − 1, then
∑∞
N=1 P (N)/N ! 6∈ Q.

Proof. Apply Theorem 3.1 with a = 1, b = 0, and Lemma 2.3.

Remark. We recall that
∑∞
n=1 (n− 1)/n! = 1 ∈ Q. Hence the condition

on the nonnegativity of the coefficients in the second statement cannot be
dropped.

Corollary 3.2. Let a > 0 and b be integers such that an + b 6= 0 for
every n ∈ N. Let P (x) =

∑T
i=0 aix

i ∈ Z[x]. If a ∤ aT (b − 1)
T then R∗ is

irrational.

Proof. Observe that, by (13) and Lemma 2.3, the terms in aTQ1 are
divisible by a unless h = k, i = T . Hence, by Lemma 2.3 again,

aTQ1 ≡ aT

T
∑

k=0

(

T

k

)

(−b)T−kS(k, k) = aT (1− b)
T mod a.

Theorem 3.2. Let a > 0 and b be integers such that an+b 6= 0 for every
n ∈ N. Let P (x) =

∑T
i=0 aix

i ∈ Q[x]. Let f : N→ Z be a sequence such that
f(N) = P (N) + o(N) as N →∞. Suppose

∞
∑

N=1

f(N)
∏N
n=1(an+ b)

∈ Q.

Then
f(N) = P (N)−Q1 for all N

where Q1 is given by (13).

Proof. We have, by Lemma 3.1,
∞
∑

N=1

f(N)
∏N
n=1(an+ b)

=

∞
∑

N=1

P (N)
∏N
n=1(an+ b)

+

∞
∑

N=1

f(N)− P (N)
∏N
n=1(an+ b)

= Q0 +Q1

∞
∑

N=1

1
∏N
n=1(an+ b)

+

∞
∑

N=1

f(N)− P (N)
∏N
n=1(an+ b)

= Q0 +

∞
∑

N=1

Q1 + (f(N)− P (N))
∏N
n=1(an+ b)

.

The numerator of the last fraction is a rational number which is o(N) as
N → ∞ and has a denominator which is independent of N . Hence, by
Lemma 2.2, Q1 + f(N) − P (N) = 0 for N ≥ N0. It follows that f(N) =
P (N)−Q1.

Corollary 3.3. Under the conditions of Theorem 3.2 we have P (N) ≡
Q1 mod 1 for all N and therefore dQ1 ∈ Z.
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Theorem 3.3. Let a > 0 and b be integers such that an+b 6= 0 for every
n ∈ N. Let P (x) =

∑T
i=0 aix

i ∈ R[x]. Let f : N→ Z be a sequence such that
f(N) = (aN + b)P (N) +O(1) as N →∞. Suppose

∞
∑

N=1

f(N)
∏N
n=1(an+ b)

∈ Q.

Then aT , aT−1, . . . , a1, a0 ∈ Q.

Proof. Suppose
∞
∑

N=1

f(N)
∏N
n=1(an+ b)

=
p

q

where p and q > 0 are coprime integers. Let U be the largest index i with
ai 6∈ Q. Let d be a common denominator of aU+1, . . . , aT . Put P1(x) =
∑U
i=0 aix

i and P2(x) = (ax+ b)
∑T
i=U+1 aix

i. Then we have, by Lemma 3.1,

aTdp = aTdq

∞
∑

N=1

f(N)
∏N
n=1(an+ b)

= q

∞
∑

N=1

aTd(f(N)− P2(N) + P2(N))
∏N
n=1(an+ b)

= qaTdQ2,0 + q

∞
∑

N=1

aTd(f(N)− P2(N)) + a
TdQ2,1

∏N
n=1(an+ b)

where Q2,0 and Q2,1 are rational numbers corresponding to P2 according to
Lemma 3.1. From this and Lemma 2.1 we deduce that for every positive
integer N the number

R∗N := qa
Td

∞
∑

s=0

f(N + s)− P2(N + s) +Q2,1
∏N+s
n=N (an+ b)

is an integer. From the definition of P1, P2 and the assumption on f it follows
that

R∗N = qa
Td

∞
∑

s=0

P1(N + s)
∏N+s−1
n=N (an+ b)

+O

(

1

N

)

.

This combined with Lemma 2.5 applied to H(X) = qaTdP1(X + j) implies
that the number

R∗U (N) :=

U
∑

j=0

(−1)j
(

U

j

)

R∗N+j

= (−1)UqaTdP
(U)
1 (N) +O

(

1

N

)

= (−1)UqaTU !daU +O

(

1

N

)

is an integer. This is a contradiction for a sufficiently large number N .

Corollary 3.4. Let P (x) =
∑T
i=0 aix

i ∈ R[x] with nonnegative coeffi-
cients and aT > 0. If

∑∞
N=1 [P (N)]/N ! ∈ Q, then T = 0 and [a0] = 0.
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Proof. Suppose
∑∞
N=1 [P (N)]/N ! ∈ Q. It follows from Theorem 3.3 with

[P (N)] = N(
∑T
i=1 aiN

i−1) + (a0 +O(1)) that aT , aT−1, . . . , a1 are rational.
Therefore we may assume without loss of generality that a0 ∈ Q. Let d
be the common denominator of aT , aT−1, . . . , a0. By Theorem 3.2 applied
with f(N) = [P (N)] we obtain P (N) − [P (N)] = Q1 for all N where Q1
is a rational number. Hence Q1 equals a0 − [a0]. It follows that [P (x)] =
∑T
i=1 aix

i + [a0] ∈ Q[x]. Since [P (x)] has nonnegative rational coefficients

and aT > 0, we deduce by applying Corollary 3.1 to d[P (x)] =
∑T
i=1 daix

i+
d[a0] ∈ Z[x] that T = 0 and [a0] = 0.

Remark. The corollary implies that for any positive integer K the sum
∑∞
n=1 [βn

K ]/n! is a strictly increasing function of β > 0 which does not take
rational values. This phenomenon will be met several times later on.

Theorem 3.4. Let K ≥ 0, a > 0 and b be given integers such that
an+ b 6= 0 for every n ∈ N. Let F : R+ → R+ be a K+1 times continuously
differentiable function such that

(18) F (N + j) =

K
∑

r=0

F (r)(N)

r!
jr +O

(

F (N)

NK+1

)

for j = 0, 1, . . . ,K as N →∞,

F (r)(N) = O

(

F (N)

N r

)

for r = 0, 1, . . . ,K as N →∞,(19)

lim
N→∞

F (K)(N) = 0, lim
N→∞

NK+1|F (K)(N)|

F (N)
=∞,(20)

lim sup
N→∞

N |F (K)(N)| =∞.(21)

Let f : N→ Z be a sequence such that

R∗ :=

∞
∑

N=1

f(N)
∏N
n=1(an+ b)

is absolutely convergent and f(N) = (aN+b)F (N)+O(1) as N →∞. Then
R∗ is irrational.

Proof. Let N be sufficiently large. Suppose R∗ = p/q where p and q > 0
are coprime integers. Put

R∗K(N) =

K
∑

j=0

(−1)j
(

K

j

) ∞
∑

s=0

f(N + j + s)
∏N+j+s
n=N+j(an+ b)

.
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By Lemma 2.1, qR∗K(N) is an integer for every positive integer N . We have,
by Lemma 2.5,

R∗K(N) =

K
∑

j=0

(−1)j
(

K

j

) ∞
∑

s=0

F (N + j + s)
∏N+j+s−1
n=N+j (an+ b)

+O

(

1

N

)

= (−1)KF (K)(N) +O

(

F (N)

NK+1
+
1

N

)

= (−1)KF (K)(N)

(

1 +O

(

F (N)

NK+1|F (K)(N)|

))

+O

(

1

N

)

.

By (20) the right-hand side tends to 0 as N → ∞. Since qR∗K(N) is an
integer, we infer that R∗K(N) = 0 for N ≥ N0. It follows that

0 = (1 + o(1))NF (K)(N) +O(1) for N ≥ N0,

which contradicts (21).

Corollary 3.5. Let α ∈ R≥0, γ ∈ R≥0. If
∑∞
N=1 [γN

α]/N ! ∈ Q, then
α = 0 and [γ] = 0.

Proof. If α 6∈ Z, then apply Theorem 3.4 with a = 1, b = 0, K = [α],
f(N) = [γNα], F (N) = γNα−1. If α ∈ Z, then apply Corollary 3.4 with
T = α.

Remark. It is remarkable that Corollary 3.5 holds for all α ≥ 0 and
γ > 0 so that

∑∞
N=1 [γN

α]/N ! is a strictly monotonic function of α and γ
missing all rational values.

Corollary 3.6. Let α ∈ R≥0 \ Z, γ ∈ R+. Then
∞
∑

N=1

[γNα logN ]/N ! 6∈ Q.

Proof. Apply Theorem 3.4 with a = 1, b = 0, K = [α], f(N) =
[γNα logN ], F (N) = γNα−1 logN .

Theorem 3.4 is not strong enough to prove that
∑∞
N=1 [N logN ]/N ! is

irrational. For such series we provide a variant of Theorem 3.4 where con-
dition (21) becomes weaker, but conditions (18) and (19) become stronger.

Theorem 3.5. Let K ≥ 1, a > 0 and b be given integers such that
an+ b 6= 0 for every n ∈ N. Let F : R+ → R+ be a function such that

F (N + x) =

∞
∑

r=0

F (r)(N)

r!
xr for x = o(N) as N →∞,(22)

F (r)(N) = O

(

r!
F (N)

N r

)

uniformly for r = 0, 1, . . . as N →∞,(23)
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lim
x→∞
F (K)(x) = 0, lim

x→∞

xK+1|F (K)(x)|

F (x)
=∞,(24)

lim
x→∞
x2|F (K)(x)| =∞.(25)

Let f : N→ Z be a sequence such that

R∗ :=

∞
∑

N=1

f(N)
∏N
n=1(an+ b)

is absolutely convergent and f(N) = (aN+b)F (N)+O(1) as N →∞. Then
R∗ is irrational.

Proof. Let N be sufficiently large. Suppose R∗ = p/q where p and q > 0
are coprime integers. Conditions (22) and (23) imply conditions (18) and
(19). Hence, by Theorem 3.4, we may assume without loss of generality that

NF (K)(N) = O(1).(26)

Observe that by (23) and (22), for x = o(N),

(27) F (N + x) ≤

∞
∑

r=0

|F (r)(N)|
xr

r!
= O

(

F (N)

∞
∑

r=0

(

x

N

)r)

= O(F (N)).

Put

R∗K−1(N) =

K−1
∑

j=0

(−1)j
(

K − 1

j

) ∞
∑

s=0

f(N + j + s)
∏N+j+s
n=N+j(an+ b)

.

By Lemma 2.1, qR∗K−1(N) is an integer for every positive integer N . We
have, by Lemma 2.5,

R∗K−1(N) =

K−1
∑

j=0

(−1)j
(

K − 1

j

) ∞
∑

s=0

F (N + j + s)
∏N+j+s−1
n=N+j (an+ b)

+O

(

1

N

)

(28)

= (−1)K−1F (K−1)(N) +O

(

F (N)

NK
+
1

N

)

.

Put

(29) t = 1 +

[

N

minx∈[N,2N ](x2|F (K)(x)|)1/2

+
N

minx∈[N,2N ](xK+1|F (K)(x)|/F (x))1/2

]

.

It follows from (25) and (24) that t = o(N) as N → ∞. Hence, by (27),
similarly to (28),

qR∗K−1(N + t) = (−1)
K−1qF (K−1)(N + t) +O

(

F (N)

NK
+
1

N

)

(30)

is an integer.
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We apply the Mean Value Theorem to (30) and (28). Hence there exists
a real number τ with 0 < τ < t such that

M(N) := qR∗K−1(N + t)− qR
∗
K−1(N)

= (−1)K−1qtF (K)(N + τ) +O

(

F (N)

NK
+
1

N

)

is an integer. It follows from (29), (27) and (24) that, for some positive
constant c,

tNK |F (K)(N + τ)|

F (N)
≥

NK+1|F (K)(N + τ)|

F (N)minx∈[N,2N ](xK+1|F (K)(x)|/F (x))1/2

≥ c

(

(N + τ)K+1|F (K)(N + τ)|

F (N + τ)

)1/2

→∞ as N →∞.

Hence, by (26) and t = o(N),

M(N) = (−1)K−1(1 + o(1))qtF (K)(N + τ) +O(1/N)→ 0.(31)

Thus, since M(N) represents an integer, M(N) = 0 for N ≥ N1. It follows
from (31), (29) and (27) that

0 = Nt|F (K)(N + τ)|+O(1)

≥
N2|F (K)(N + τ)|

minx∈[N,2N ](x2|F (K)(x)|)1/2
+O(1)

≥ ((N + τ)2|F (K)(N + τ)|)1/2 +O(1),

which contradicts (25).

Corollary 3.7. Let α ∈ R≥0, β ∈ R, β 6= 0, γ ∈ R+. Suppose β > 0
whenever α = 0. Then

∞
∑

N=1

[γNα logβ N ]

N !
6∈ Q.

Proof. Apply Theorem 3.5 with a = 1, b = 0, K = [α] if α 6∈ Z or β > 0,
and K = α− 1 otherwise, f(N) = [γNα logβ N ], F (N) = γNα−1 logβ N .

Corollary 3.8. Let α ∈ R≥0, 0 < β < 1, γ ∈ R+. Then

∞
∑

N=1

[γNα exp(logβ N)]

N !
6∈ Q.

Proof. Apply Theorem 3.5 with a = 1, b = 0, K = [α], f(N) =
[γNα exp(logβ N)], F (N) = γNα−1 exp(logβ N).
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4. Linear independence. The method from the previous section en-
ables us to prove the linear independence of the considered sums. Recall
that Theorem 3.1 precisely states when

∞
∑

N=1

P (N)
∏N
n=1(an+ b)

for P (x) ∈ Z[x] is rational.

Theorem 4.1. Let a > 0 and b be integers such that an+b 6= 0 for every
n ∈ N. Suppose that P (x) =

∑T
i=0 aix

i ∈ Z[x] and that

∞
∑

N=1

P (N)
∏N
n=1(an+ b)

is irrational. Let W be a set of functions F : R+ → R+ which have the
following properties:

(i)

F (N + x) =

∞
∑

r=0

F (r)(N)

r!
xr for x = o(N) as N →∞,(32)

(ii)

(33) F (r)(N) = O(r!F (N)/N r) uniformly for r = 0, 1, . . . as n→∞,

(iii) either there exists a positive integer K such that

F (K)(x) = o(1),
F (x)

xK+1
= o(|F (K)(x)|), lim

x→∞
x2|F (K)(x)| =∞(34)

or

K = 0, lim
x→∞
F (x) = 0, lim

x→∞
xF (x) =∞,(35)

(iv) for every pair of functions F,G ∈ W with corresponding integers
K > L one has limx→∞G

(k)(x)/F (k)(x) = 0 for k = 0, 1, . . . ,K; for
every pair of functions F,G ∈ W with F 6= G and corresponding
integers K = L one has either limx→∞G

(k)(x)/F (k)(x) = 0 for
k = 0, 1, . . . ,K or limx→∞ F

(k)(x)/G(k)(x) = 0 for k = 0, 1, . . . ,K.

Suppose that for every function F ∈ W there exists a function f : N → Z
such that

∞
∑

N=1

f(N)
∏N
n=1(an+ b)

is absolutely convergent and

f(N) = (aN + b)F (N) +O(1) as N →∞.
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Then the numbers

∞
∑

N=1

f(N)
∏N
n=1(an+ b)

(F ∈W ),

∞
∑

N=1

P (N)
∏N
n=1(an+ b)

, 1

are linearly independent over the rationals.

Proof. Suppose that there exist functions f0 := P, f1, f2, . . . , fM ∈ W
such that the numbers

∞
∑

N=1

fi(N)
∏N
n=1(an+ b)

(i = 0, 1, . . . ,M) and the number 1 are linearly dependent over the rationals.
Then there exist integers A0, A1, . . . , AM , p and q > 0, not all zero, such that

p

q
=

M
∑

m=0

Am

∞
∑

N=1

fm(N)
∏N
n=1(an+ b)

.(36)

It is excluded that A1 = · · · = AM = 0. Without loss of generality we
may assume that A1, . . . , AM are all nonzero and M > 0. Lemma 3.1 and
equation (36) imply

p

q
= A0

∞
∑

N=1

P (N)
∏N
n=1(an+ b)

+

M
∑

m=1

Am

∞
∑

N=1

fm(N)
∏N
n=1(an+ b)

=
p1
q1
+
p2
q2

∞
∑

N=1

1
∏N
n=1(an+ b)

+

∞
∑

N=1

∑M
m=1Amfm(N)
∏N
n=1(an+ b)

where p1, p2, q1 > 0 and q2 > 0 are suitable integers which do not depend
on N . Thus

A := q1q2q

(

p

q
−
p1
q1

)

= q1q

∞
∑

N=1

p2 + q2
∑M
m=1Amfm(N)

∏N
n=1(an+ b)

is an integer.

By Lemma 2.1, for every positive integer N the number

SN := q1q

∞
∑

s=0

p2 + q2
∑M
m=1Amfm(N + s)

∏N+s
n=N (an+ b)

is an integer. Moreover

SN = q1q2q

∞
∑

s=0

∑M
m=1AmFm(N + s)
∏N+s−1
n=N (an+ b)

+O

(

1

N

)

.(37)
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Without loss of generality we may assume by (iv) and (iii) that if K is the
integer corresponding to FM , then

lim
x→∞

F
(k)
m (x)

F
(k)
M (x)

= 0 for k = 0, 1, . . . ,K and m = 0, 1, . . . ,M − 1.(38)

Let L be a nonnegative integer with L ≤ K. We deduce from (37) that

R∗L(N) :=

L
∑

j=0

(−1)j
(

L

j

)

SN+j

= q1q2q

L
∑

j=0

(−1)j
(

L

j

) ∞
∑

s=0

(∑M
m=1AmFm(N + s+ j)
∏N+s+j−1
n=N (an+ b)

)

+O

(

1

N

)

is an integer as well. From Lemma 2.5, (32), and (33) we deduce that

R∗L(N) = (−1)
Lq1q2q

M
∑

m=1

AmF
(L)
m (N) +

M
∑

m=1

O(Fm(N)N
−L−1) +O

(

1

N

)

.

Hence, by (38),

(39) R∗L(N) = (−1)
Lq1q2q

M
∑

m=1

AmF
(L)
m (N)+O(FM (N)N

−L−1)+O(1/N).

We distinguish two cases.

(a) Suppose lim supN→∞N |F
(K)
M (N)| = ∞. Then we put L = K and

find by (38) that

R∗K(N) = (−1)
Kq1q2qAMF

(K)
M (N)(1+o(1))+O(FM(N)N

−K−1)+O

(

1

N

)

.

Hence we derive a contradiction in the same way as we did in the last lines
of the proof of Theorem 3.4.

(b) Suppose lim supN→∞N |F
(K)
M (N)| < ∞, i.e. F

(K)
M (N) = O(1/N) as

N → ∞. Note that K ≥ 1 in view of (35). By (27) and (38) we see, for
m = 1, . . . ,M and x = o(N), that Fm(N + x) = O(Fm(N)) = O(FM (N)).
Put L = K − 1 in (39). Hence

R∗K−1(N) = (−1)
K−1q1q2q

M
∑

m=1

AmF
(K−1)
m (N)+O(FM (N)N

−K)+O

(

1

N

)

.

Define t as in (29). We apply the Mean Value Theorem to the integer
M(N) := R∗K−1(N + t)−R

∗
K(N). We obtain

M(N) = (−1)K−1q1q2qt

M
∑

m=1

AmF
(K)
m (N + τ) +O(FM (N)N

−K) +O

(

1

N

)
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for some τ with 0 < τ < t. By (38) we have

M(N) = (−1)K−1q1q2qt(1 + o(1))AMF
(K)
M (N + τ) +O

(

FM (N)

NK
+
1

N

)

.

The further proof proceeds as that of Theorem 3.5 from the introduction of
M(N) on.

Remark. It follows from a repeated use of de l’Hôpital’s rule that con-
dition (iv) can be relaxed. If

lim
x→∞

F (K)(x)

G(K)(x)
= 0 and lim

x→∞
G(K−1)(x) =∞,

then limx→∞ F
(k)(x)/G(k)(x) = 0 for k = 0, 1, . . . ,K. (See Theorem 5.13 in

[13], with A = 0 and a =∞.)

Corollary 4.1. The numbers 1, e and
∑∞
n=1 [n

α]/n! (α ∈ R+, α 6∈ Z)
are linearly independent over the rationals.

Corollary 4.2. Let α1, . . . , αM be positive real numbers and let

P1, . . . , PM be nonzero polynomials with integer coefficients such that the
numbers αm degPm are distinct and nonintegral. Then the numbers 1, e
and
∑∞
N=1 [N

αmPm(N)]/N ! (m = 1, . . . ,M) are linearly independent over
the rationals.

Proof. Apply Theorem 4.1 with P (x) = 1 and Fm(X) = x
αm−1Pm(x)

for m = 1, . . . ,M.

Corollary 4.3. The numbers 1 and
∑∞
n=1 [n(logn)

α]/n! (α ∈ R) are
linearly independent over the rationals.

Remark. Conditions (i), (ii) and (iii) of Theorem 4.1 are satisfied by a
large class of functions comprising

γxα (α > −1, α 6∈ Z, γ ∈ R+) with K = [α] + 1,

γeβ(log x)
α
(0 < α < 1, β ∈ R+, γ ∈ R+) with K = 1,

γ(log x)α (α 6= 0, γ ∈ R+) with K = 1 if α > 0, K = 0 if α < 0,

γ(log log x)α (α 6= 0, γ ∈ R+) with K = 1 if α > 0, K = 0 if α < 0.

It is therefore possible to apply Theorem 4.1 to sums and products of such
functions and polynomials provided that condition (iv) is satisfied.

Example 4.1. The numbers

1,

∞
∑

n=1

[(logn)1/2]

n!
,

∞
∑

n=1

[e(logn)
1/2
]

n!

are linearly independent over the rationals.
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