
ACTA ARITHMETICA

118.4 (2005)

On sums and products of residues modulo p

by

A. Sárközy (Budapest)

1. Introduction. Throughout the paperwe use the notation e(α)=e2πiα.
Our goal is to show that if A, B, C, D are “large” subsets of Zp, then the

equation

(1) a + b = cd, a ∈ A, b ∈ B, c ∈ C, d ∈ D,

can be solved.

Theorem. If p is a prime, A, B, C, D ⊂ Zp, and the number of solutions

of (1) is denoted by N, then

(2)

∣

∣

∣

∣

N −
|A| |B| |C| |D|

p

∣

∣

∣

∣

≤ (|A| |B| |C| |D|)1/2p1/2.

Corollary 1. If p is a prime, A, B, C, D ⊂ Zp and

(3) |A| |B| |C| |D| > p3,

then (1) can be solved.

Note that Corollary 1 and thus also the Theorem is the best possible
apart from the constant factor in (2), resp. (3). Indeed, taking A = B =
{n : 1 ≤ n < p/2} (here and in what follows we do not distinguish between
integers and residue classes represented by them), C = {1, . . . , p} and D =
{0}, we have

|A| |B| |C| |D| =

(

1

4
+ o(1)

)

p3,

however, (1) has no solution.
Moreover, we remark that these results cannot be extended from prime

moduli to composite moduli, i.e., from Zp to Zm. Indeed, let m = 2k be
an even positive integer, and let A = C = {2, 4, . . . , 2k} ⊂ Zm, B =
{1, 3, . . . , 2k − 1} and D = Zm. Then we have
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|A| |B| |C| |D| = 1

8
m4

so that much more holds than the m-analogue of (3), however, clearly (1)
has no solution. One might like to study the question that in what rings R
(including infinite ones) is it true that if A, B, C, D are “dense” subsets of
R, then (1) must be solvable.

First, in Section 2 we will show that the Theorem and Corollary 1 gener-
alize several earlier theorems, and the proofs of the Theorem and Corollary 1
will be presented in Section 3.

2. Consequences

Corollary 2. If p is a prime number , χ is a (multiplicative) character

modulo p of order d, n ∈ Z, A, B ⊂ Zp and

(4) |A| |B| > d2

(

1 −
1

p

)

−2

p

then there are a ∈ A, b ∈ B with

(5) χ(a + b) = e

(

n

d

)

.

Proof. Writing C = {u : u ∈ Zp, χ(u) = 1} and D =
{

v : v ∈ Zp, χ(v) =

e
(

n
d

)}

, we have

|C| = |D| =
p − 1

d
,

so that, by (4),

|A| |B| |C| |D| > d2 p3

(p − 1)2
(p − 1)2

d2
= p3.

Thus by Corollary 1, (1) can be solved. If a, b, c, d satisfy (1) then we have

χ(a + b) = χ(cd) = χ(c)χ(d) = 1 · e

(

n

d

)

= e

(

n

d

)

so that (5) holds and this completes the proof of Corollary 2.

In particular, if χ(n) =
(

n
p

)

(for (n, p) = 1) is the Legendre symbol in

Corollary 2 so that d = 2, then we have the following consequence:

Corollary 3. If p is an odd prime, A, B ⊂ Zp and

|A| |B| > 4

(

1 −
1

p

)

−2

p,

then there are a, a′ ∈ A, b, b′ ∈ B with
(

a + b

p

)

= 1,

(

a′ + b′

p

)

= −1.
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This sharpens and generalizes a result of Erdős and Sárközy [1]; see also
[2] and [3].

Corollary 4. If p is a prime, k ∈ N, (p−1, k) > 1, A, B ⊂ Zp and for

all a ∈ A, b ∈ B, a + b is a kth power in Zp, i.e., writing E = {xk : x ∈ Zp}
we have A + B ⊂ E, then

(6) |A| |B| ≤ 9

(

1 −
1

p

)

−2

p.

Note that apart from the constant factor in the upper bound in (6), this
is Gyarmati’s Theorem 8(b) in [5].

Proof of Corollary 4. We have to show that if A, B ⊂ Zp and

(7) |A| |B| > 9

(

1 −
1

p

)

−2

p,

then there are a ∈ A, b ∈ B with

(8) a + b /∈ E.

Write D = (p − 1, k) (so that D > 1), let r(n, D) denote the least non-
negative residue of n modulo D, let g be a primitive root modulo p, and
define C, D by C = {gu : 0 ≤ r(u, D) < D/2}, D = {gv : 0 < r(v, D) ≤
D/2} so that, by D > 1,

(9) min{|C|, |D|} ≥

[

D

2

]

p − 1

D
≥

p − 1

3
.

By (7) and (9) we have

|A| |B| |C| |D| > 9

(

1 −
1

p

)

−2

p

(

p − 1

3

)2

= p3

so that, by Corollary 1, (1) can be solved. If a, b, c, d satisfy (1) then a + b
can be written in form

a + b = cd = gu · gv = gu+v

with 0 < r(u + v, D) < D so that D ∤ (u + v). Thus D does not divide the
(base g) index of a + b modulo p whence (8) follows.

Corollary 5. If p is a prime, k ∈ N, A, B ⊂ Zp and , writing D =
(k, p − 1), we have

(10) |A| |B| > D2

(

1 −
1

p

)

−2

p,

then the equation

(11) a + b = xk, a ∈ A, b ∈ B, x ∈ Zp, x 6= 0,

can be solved.
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This is a variant of a special case of Gyarmati’s Theorem 10(b) in [5].
Note that it follows from this corollary that if m, n, k ∈ N are fixed and p is
a prime large enough then the congruence

xm + yn ≡ zk (modp),

and in particular the Fermat congruence

xn + yn ≡ zn (modp)

has non-trivial solution x, y, z; the latter is Schur’s theorem [7].

Proof of Corollary 5. Writing F = {xk : x ∈ Zp, x 6= 0}, we clearly have

|F | =
p − 1

D
.

Thus taking C = D = F, by (10) we have

|A| |B| |C| |D| = |A| |B|

(

p − 1

D

)2

> p3

so that by Corollary 1 (1) can be solved. For a, b, c, d satisfying (1) we have

a + b = cd ∈ CD = F · F = F

which proves the solvability of (11).

Corollary 6. If p is a prime, S, T are integers with 1 ≤ T ≤ p,
C, D ⊂ Zp and

(12) |C| |D| >
4

T 2
p3,

then

(13) cd ≡ n (mod p), c ∈ C, d ∈ D, S < n ≤ S + T,

can be solved.

This is a slight sharpening of the Corollary in [6]; the connection with the
problem of the least quadratic non-residue was analyzed there. See also [4].

Proof of Corollary 6. Define A, B by A = {a : S ≤ a ≤ S + [T/2]},
B = {b : 0 < b ≤ T − [T/2]} so that

(14) min{|A|, |B|} ≥ T −

[

T

2

]

≥
T

2
.

It follows from (12) and (14) that

|A| |B| |C| |D| >

(

T

2

)2 4

T 2
p3 = p3

so that, by Corollary 1, there are a, b, c, d satisfying (1):

(15) a + b = cd.
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By the definition of A and B, here we have

(16) S < a + b ≤ S + T

and (13) follows from (15) and (16).

3. The proofs

Proof of the Theorem. For every a, b, c, d ∈ Zp we have

1

p

p−1
∑

k=0

e

(

(a + b − cd)
k

p

)

=

{

1 if a + b = cd,

0 if a + b 6= cd,

so that

N =
1

p

∑

a∈A

∑

b∈B

∑

c∈C

∑

d∈D

p−1
∑

k=0

e

(

(a + b − cd)
k

p

)

.

Separating the term with k = 0 we obtain

N =
|A| |B| |C| |D|

p
+

1

p

p−1
∑

k=1

∑

a∈A

∑

b∈B

∑

c∈C

∑

d∈D

e

(

(a + b − cd)
k

p

)

=
|A| |B| |C| |D|

p
+

1

p

p−1
∑

k=1

(

∑

a∈A

e

(

a
k

p

))(

∑

b∈B

e

(

b
k

p

))(

∑

c∈C

∑

d∈D

e

(

−cd
k

p

))

whence, writing F (α) =
∑

a∈A e(aα) and G(α) =
∑

b∈B e(bβ),

(17)

∣

∣

∣

∣

|N | −
|A| |B| |C| |D|

p

∣

∣

∣

∣

=
1

p

∣

∣

∣

∣

p−1
∑

k=1

F

(

k

p

)

G

(

k

p

)(

∑

c∈C

∑

d∈D

e

(

−cd
k

p

))∣

∣

∣

∣

≤
1

p

p−1
∑

k=1

∣

∣

∣

∣

F

(

k

p

)
∣

∣

∣

∣

∣

∣

∣

∣

G

(

k

p

)
∣

∣

∣

∣

∣

∣

∣

∣

∑

c∈C

∑

d∈D

e

(

−cd
k

p

)
∣

∣

∣

∣

.

Now we need Vinogradov’s lemma [8, p. 29]:

Lemma 7. Let (a, q) = 1, q > 1. Let

S =

q−1
∑

x=0

q−1
∑

y=0

ζ(x)η(y)e

(

xy
a

q

)

and suppose that

q−1
∑

x=0

|ζ(x)|2 = X0,

q−1
∑

y=0

|η(y)|2 = Y0.
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Then

|S| ≤ (X0Y0q)
1/2.

We use this lemma with a = −k, q = p,

ζ(x) =

{

1 if x ∈ C,

0 if x /∈ C,
η(x) =

{

1 if d ∈ D,

0 if d /∈ D,

so that X0 = |C| and Y0 = |D|. We obtain

(18)

∣

∣

∣

∣

∑

c∈C

∑

d∈D

e

(

−cd
k

p

)∣

∣

∣

∣

≤ (|C| |D|p)1/2 for (k, p) = 1.

By using Cauchy’s inequality and a Parseval formula type identity, it follows
from (17) and (18) that
∣

∣

∣

∣

N −
|A| |B| |C| |D|

p

∣

∣

∣

∣

≤
1

p

p−1
∑

k=1

∣

∣

∣

∣

F

(

k

p

)
∣

∣

∣

∣

∣

∣

∣

∣

G

(

k

p

)
∣

∣

∣

∣

(|C| |D|p)1/2

≤
(|C| |D|)1/2

p1/2

p−1
∑

k=0

∣

∣

∣

∣

F

(

k

p

)
∣

∣

∣

∣

∣

∣

∣

∣

G

(

k

p

)
∣

∣

∣

∣

≤

(

|C| |D|

p

)1/2( p−1
∑

k=0

∣

∣

∣

∣

F

(

k

p

)
∣

∣

∣

∣

2)1/2( p−1
∑

k=0

∣

∣

∣

∣

G

(

k

p

)
∣

∣

∣

∣

2)1/2

=

(

|C| |D|

p

)1/2

(|A|p)1/2(|B|p)1/2

= (|A| |B| |C| |D|)1/2p1/2

which completes the proof of the Theorem.

Proof of Corollary 1. By our Theorem, it follows from (3) that

N ≥
|A| |B| |C| |D|

p
− (|A| |B| |C| |D|)1/2p1/2

=
|A| |B| |C| |D|1/2

p
((|A| |B| |C| |D|)1/2 − p3/2) > 0.
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