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1. Introduction. The leading term of the n-level correlation of nontriv-
ial zeros of an automorphic L-function L(s, π) for GLm over Q is known to
be independent of π, as long as π is a cuspidal representation of GLm(QA)
(Sarnak [13]). This phenomenon is called the universality for the leading
term of the n-level correlation and was proved for a test function whose
Fourier transform has restricted support. In the case of pair (n = 2) corre-
lation of nontrivial zeros of Dirichlet L-functions L(s, χ1) and L(s, χ2), we
study in this paper behavior of the remainder term of the pair correlation,
for the same test function. Our results indicate that the remainder term
appears to be either independent of χ1 and χ2, or randomly scattered.

We then conjecture that this phenomenon is also true when the sup-
port of the Fourier transform of the test function is enlarged. Under this
conjecture and the generalized Riemann hypothesis (GRH), we prove a
weighted prime number theorem in arithmetic progressions over a short
interval, which in turn implies that the least prime in the arithmetic pro-
gression n ≡ l (mod q), with q being a prime, (l, q) = 1, and l 6≡ ±1 (mod q),
is ≪ q1+ε. In other words, the Linnik constant is equal to 1.

Now let us explain our results in a more detailed way. In 1973, Mont-
gomery [11] studied the pair correlation of the zeros of the Riemann zeta-
function. Later, Rudnick and Sarnak [12] considered the n-level correlation
of nontrivial zeros of principal L-functions L(s, π) attached to an automor-
phic irreducible cuspidal representation π of GLm over Q. To state the result
of [12] in the special case of m = 1 and n = 2, we let χj be a primitive char-
acter modulo q, and L(s, χj) the corresponding Dirichlet L-function, for
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j = 1, 2. For

gj ∈ C∞c (R) with supp(gj) = [−a, a],(1.1)

we set

hj(r) =
\
R

gj(v)e
ivr dv,(1.2)

and h = (h1, h2). Let Φ ∈ C1c (R), and
f(x1, x2) =

\
R

e(−(x1 − x2)v)Φ(v) dv,

where e(t) = e2πit as usual. Consider

F (h, T, Φ;χ1, χ2) =
∑

γ1,γ2

h1

(

γ1
T

)

h2

(

γ2
T

)

f

(

L

2π
γ1,

L

2π
γ2

)

,(1.3)

with L = log T , where ̺j = 1/2+iγj is taken over nontrivial zeros of L(s, χj).
This function measures, as T → ∞, the pair correlation of nontrivial zeros
of L(s, χ) if χ1 = χ2 = χ, and the pair correlation between nontrivial zeros
of L(s, χ1) and L(s, χ2) if χ1 6= χ2.
Rudnick and Sarnak [12] proved that if χ1 = χ2 = χ and supp(Φ) ⊂

(−1, 1), then

F (h, T, Φ;χ, χ) =
κ(h)

2π
TL
(

Φ(0) +
\
R

|v|Φ(v) dv
)

+O(T ),(1.4)

where

κ(h) =
\
R

h1(r)h2(r) dr.(1.5)

Another version of this was proved for the Riemann zeta function in Liu
and Ye [10].

Recently the authors [9] studied the n-level correlation of nontrivial zeros
of distinct L-functions attached to automorphic irreducible cuspidal repre-
sentations of GLm over Q. In the special case of m = 1 and n = 2, our result
asserts that, when χ1 6= χ2,

F (h, T, Φ;χ1, χ2) =
κ(h)

2π
Φ(0)TL+O(T )(1.6)

for any function Φ with support ⊂ (−1, 1). Note that the results (1.4) and
(1.6) do not depend on GRH.

We observe that the main terms in (1.4) and (1.6) are independent of
the character χ and characters χ1 and χ2, respectively. For automorphic
L-functions attached to cuspidal representations of GLm over Q, this was
first discovered by Rudnick and Sarnak [12], and is known as the universality
of the distribution of nontrivial zeros.
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It is believed that the pair correlation and hence the universality of zeros
should have applications in distribution of primes. We realized, however,
that we actually need not only this universality for the leading terms of
F (h, T, Φ;χ1, χ2) in (1.4) and (1.6), but also information on the remainder
terms.

The first purpose of this paper is thus to study nontrivial zeros for the
remainder terms. From now on, χj is a Dirichlet character modulo q not
necessarily primitive.

Theorem 1.1. Assume supp(Φ) = [b1, b2] ⊂ (1/2, 1). For a prime num-
ber q with T 1−b1 ≤ q ≤ T b1−ε, let l 6≡ ±1 (mod q) with (l, q) = 1. Then

∑

χ1,χ2mod q

χ1(l)χ2(l)F (h, T, Φ;χ1, χ2)≪ ϕ(q)TL(1.7)

where the implied constant depends on Φ, b1, b2, g1, and g2 only.

We remark that the mean value estimate in (1.7) cannot be obtained
using the individual bounds in (1.4) and (1.6). Indeed, as we assume that
Φ(0) = 0, the main term in (1.6) and a part of the main term in (1.4) dis-
appear. The remaining part of the main term in (1.4) yields O(ϕ(q)TL).
But the sum of O(T ) over χ1, χ2 mod q would give us a bigger ϕ

2(q)T . In
other words, a factor ϕ(q)/L is saved in (1.7). This saving represents cancel-
lation among the remainder terms multiplied by χ1(l)χ2(l) over χ1 and χ2.
This can be interpreted as a manifestation of either the universality for the
remainder terms, or the fact that the remainder terms might be randomly
scattered. In applications, it is often crucial to consider big q compared
with T . In this case, the above saving becomes crucial.

In Theorem 1.1, we assume q to be a prime with l 6≡ ±1 (mod q); see
Lemmas 3.1 and 3.2. Indeed, when l ≡ 1 (mod q), we have χ1(l)χ2(l) = 1
and cannot control the size of the left side of (1.7). More specifically, Lemma
3.2 is not valid for l ≡ ±1 (mod q).
We believe that Theorem 1.1 is still true without the restriction on the

support of Φ.

Conjecture 1.2. Let q and l be as in Theorem 1.1. Then Theorem 1.1
holds for Φ with supp(Φ) = [b1, b2] ⊂ (1/2,∞).
Conjecture 1.2 has applications to classical problems in distribution of

primes, for example Linnik’s constant. In view of Dirichlet’s theorem that
there are infinitely many primes in the arithmetic progression n ≡ l (mod q)
with (q, l) = 1, it is a natural question how big is the least prime, denoted
by P (q, l), in this arithmetic progression. Linnik [7]–[8] proved that there is
an absolute constant ℓ > 0 such that P (q, l)≪ qℓ+ε, and this constant ℓ was
named after him. Since then, a number of authors have established numerical
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values for Linnik’s constant ℓ; the best result known is ℓ = 5.5 by Heath-
Brown [4]. We remark that these results depend on, among other things,
numerical estimates concerning zero-free regions and the Deuring–Heilbronn
phenomenon of Dirichlet L-functions. Under GRH the above bounds can be
improved to

P (q, l)≪ ϕ2(q) log2 q.(1.8)

The second purpose of this paper is to sharpen the estimate in (1.8)
under GRH and Conjecture 1.2.

Theorem 1.3. Assume GRH and Conjecture 1.2. Let q be a prime with
l 6≡ ±1 (mod q) and (l, q) = 1. Then for arbitrary ε > 0,

P (q, l)≪ε q
1+ε.

This bound is the best possible save the ε in the exponent. In fact,
a trivial lower bound for P (q, l) is

max
l
P (q, l) ≥ (1 + o(1))ϕ(q) log q.

Granville and Pomerance [2] proved an improvement to this. Theorem 1.3
will be derived from a weighted prime number theorem (Theorem 7.2).

Assuming GRH and a conjecture on the rate of convergence of the
(1-level) linear density of low-lying zeros of Dirichlet L-functions, Sarnak
[14] proved the same bound for the least prime in an arithmetic progression.
The conjecture he used is indeed a conjecture on the size of the remainder
terms, while our Conjecture 1.2 predicts not the size but mean value of the
remainder terms.

Hughes and Rudnick [5] computed unweighted 1-level statistics of low-
lying zeros of Dirichlet L-functions.

Languasco and Perelli [6] considered sums of the pair correlation of non-
trivial zeros of Dirichlet L-functions with weights of Gauss sums τ(χ) mul-
tiplied by characters

∑

χ1,χ2mod q

χ1(l)χ2(l)τ(χ1)τ(χ2)F (h, T, Φ;χ1, χ2).(1.9)

Using this estimation, they studied the exceptional set in the Goldbach
problem. Without Gauss sums in the weights, our sum in Theorem 1.1 might
have different flexibility in possible applications.

The authors would like to thank Peter Sarnak for helpful, detailed com-
ments, and for showing us his approach in [14] to the problem, and to thank
the referee for helpful suggestions, especially for his simple proof of Lemma
3.2 as is shown in the paper.
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2. L-functions. Let χ∗ mod q∗ be the primitive character inducing the
given character χ mod q, with cond(χ) = q∗. Then (see e.g. [1, Chap. 5, (3)])

L(s, χ) = L(s, χ∗)
∏

p|q
p∤q∗

(

1− χ∗(p)

ps

)

=: L(s, χ∗)M(s, χ),(2.1)

say. The following explicit formula is a generalization of that of Rudnick and
Sarnak; see [12, Proposition 2.1].

Lemma 2.1. Let g, h be defined as in (1.1) and (1.2) respectively. Let
χ mod q be a Dirichlet character induced by χ∗ mod q∗, and ̺ = 1/2+ iγ be
zeros of L(s, χ) within 0 < Re(s) < 1. Then

∑

γ

h(γ) = δχ

{

h

(

− i
2

)

+ h

(

i

2

)}

+
1

2π

\
R

h(r)Ω(r, χ) dr(2.2)

−
∞
∑

n=1

(

Λ(n)χ(n)√
n

g(logn) +
Λ(n)χ(n)√

n
g(− logn)

)

,

where δχ = 1 or 0 according as χ = χ
0 mod q or not , and

Ω(x, χ) = log cond(χ) +
Γ ′R
ΓR

(

1

2
+ µ(χ) + ix

)

(2.3)

+
Γ ′R
ΓR

(

1

2
+ µ(χ)− ix

)

− M ′

M

(

1

2
+ ix, χ

)

− M ′

M

(

1

2
− ix, χ

)

,

with ΓR(s) = π
−s/2Γ (s/2), µ(χ) = 0 if χ(−1) = 1, µ(χ) = 1 if χ(−1) = −1.

Proof. Since χ∗ is primitive, the functional equation of L(s, χ∗) takes
the form

Φ(s, χ∗) = ε(s, χ∗)Φ(1− s, χ∗),(2.4)

where

Φ(s, χ∗) = ΓR(s+ µ(χ
∗))L(s, χ∗).

The ε factor ε(s, χ∗) satisfies ε(s, χ∗) = τ(χ)(q∗)−s.
Let H(s) = h((s− 1/2)/i), and consider the integral

J =
1

2πi

\
Re(s)=2

Φ′

Φ
(s, χ∗)H(s) ds.(2.5)

Since |H(s)| is rapidly decreasing in |Im(s)| and is entire, the integral J
converges absolutely, and all the contour shifts below are legitimate. Obvi-
ously (Φ′/Φ)(s, χ∗) has simple poles at the zeros of Φ(s, χ∗) with residues
the multiplicity of the zero. In the case of Φ(s, χ∗) = ζ(s), (Φ′/Φ)(s, χ∗) has
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a simple pole with residue −1 at the poles s = 0, 1. Shifting the contour in
(2.5) to Re(s) = −1, we have

J = −δχ∗
{

h

(

− i
2

)

+ h

(

i

2

)}

+
∑

γ

h(γ) +
1

2πi

\
Re(s)=−1

Φ′

Φ
(s, χ∗)H(s) ds,

where the sum is over the nontrivial zeros of L(s, χ∗), each counted with its
multiplicity, and δχ∗ = 1 or 0 according as χ

∗ = χ0 mod 1 (i.e. L(s, χ∗) =
ζ(s)) or not. The functional equation (2.4) now gives

Φ′

Φ
(s, χ∗) = − log q∗ − Φ′

Φ
(1− s, χ∗).

Using this and changing variables, we get

J = −δχ∗
{

h

(

− i
2

)

+ h

(

i

2

)}

+
∑

γ

h(γ)− 1
2πi

\
Re(s)=2

H(s) log q∗ ds

− 1
2πi

\
Re(s)=2

Φ′

Φ
(s, χ∗)H(1− s) ds.

Consequently,

∑

γ

h(γ) = δχ∗

{

h

(

− i
2

)

+ h

(

i

2

)}

+
1

2πi

\
Re(s)=2

H(s) log q∗ ds(2.6)

+
1

2πi

\
Re(s)=2

Φ′

Φ
(s, χ∗)H(s) ds

+
1

2πi

\
Re(s)=2

Φ′

Φ
(s, χ∗)H(1− s) ds.

By (2.1) and the definition of Φ(s, χ∗),

1

2πi

\
Re(s)=2

Φ′

Φ
(s, χ∗)H(s) ds

=
1

2πi

\
Re(s)=2

{

Γ ′R
ΓR
(s+ µ(χ∗)) +

L′

L
(s, χ)− M ′

M
(s, χ)

}

H(s) ds.

Now shifting the contour to Re(s) = 1/2,

1

2πi

\
Re(s)=2

{

Γ ′R
ΓR
(s+ µ(χ∗))− M ′

M
(s, χ)

}

H(s) ds

=
1

2π

\
R

{

Γ ′R
ΓR
(s+ µ(χ∗))− M ′

M
(s, χ)

}

h(r) dr,
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where s = 1/2 + ir. For Re(s) > 1, we have

L′

L
(s, χ) = −

∞
∑

n=1

Λ(n)χ(n)

ns
,

and consequently,

1

2πi

\
Re(s)=2

L′

L
(s, χ)H(s) ds = − 1

2π

∞
∑

n=1

Λ(n)χ(n)√
n

\
R

h(r)e−ir logn dr

= −
∞
∑

n=1

Λ(n)χ(n)√
n

g(logn).

We do the same for the integral involving H(1 − s). Collecting all of these
into (2.6), we obtain

∑

γ

h(γ) = δχ∗

{

h

(

− i
2

)

+ h

(

i

2

)}

+
1

2π

\
R

h(r)

{

log q∗

+
Γ ′R
ΓR

(

1

2
+ µ(χ∗) + ir

)

+
Γ ′R
ΓR

(

1

2
+ µ(χ∗)− ir

)

− M ′

M

(

1

2
+ ir, χ

)

− M ′

M

(

1

2
− ir, χ

)}

dr

−
∞
∑

n=1

(

Λ(n)χ(n)√
n

g(logn) +
Λ(n)χ(n)√

n
g(− logn)

)

.

This gives (2.2) on noting that δχ = δχ∗ , µ(χ) = µ(χ∗), and that the non-
trivial zeros of L(s, χ∗) are just those of L(s, χ) within 0 < Re(s) < 1.

With the test functions

HT (r) = h(r/T )e
−iLru, GT (v) = Tg(T (Lu+ v)),

the above explicit formula takes the following form.

Lemma 2.2. Under the same condition of Lemma 2.1, we have

∑

γ

h

(

γ

T

)

e−iLγu = δχP (T, u) + TgT (TLu, χ)(2.7)

+ TS+(T, u, χ) + TS−(T, u, χ)

where

P (T, u) = h

(

− i

2T

)

T−u/2 + h

(

i

2T

)

T u/2,(2.8)

S±(T, u, χ) = −
∞
∑

n=1

Λ(n)χ(n)√
n

g(T (Lu± logn)),(2.9)
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gT (x, χ) =
1

2π

\
R

h(r)Ω(rT, χ)e−irx dr,(2.10)

with Ω(x, χ) as in (2.3).

The above formula will be expressed in a form suitable for our later
applications. To this end, we consider the term

h

(

i

2T

)

T u/2 = T u/2
\
R

g(y)e−y/(2T ) dy

= T u/2
(

TLu\
−∞

+

∞\
TLu

)

g(y)e−y/(2T ) dy.

We change variables to v by y = T (Lu − log v) in the first integral and by
y = T (Lu+ log v) in the second integral for 1 ≤ v <∞. Then

h

(

i

2T

)

T u/2 = T u/2
∞\
1

g(T (Lu− log v))e−(Lu−log v)/2 T dv
v

+ T u/2
∞\
1

g(T (Lu+ log v))e−(Lu+log v)/2
T dv

v

= T

∞\
1

g(T (Lu− log v)) dv√
v
+ T

∞\
1

g(T (Lu+ log v))
dv

v3/2
.

Similarly,

h

(

− i

2T

)

T−u/2 = T

∞\
1

g(T (Lu+ log v))
dv√
v
+ T

∞\
1

g(T (Lu− log v)) dv
v3/2

.

Consequently,

P (T, u) = T

∞\
1

{g(T (Lu− log v)) + g(T (Lu+ log v))}
(

1√
v
+
1

v3/2

)

dv.

Now we split the above integral into two parts using dv = d[v] + d(v − [v]),
and get

P (T, u) = T

∞
∑

n=1

(

1√
n
+
1

n3/2

)

(2.11)

× {g(T (Lu− logn)) + g(T (Lu+ log n))}

+ T

∞\
1

{g(T (Lu− log v)) + g(T (Lu+ log v))}

×
(

1√
v
+
1

v3/2

)

d(v − [v]).
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Let

J±(T, u) =

∞\
1

g(T (Lu± log v))
(

1√
v
+
1

v3/2

)

d(v − [v]).(2.12)

Inserting (2.11) and (2.12) into (2.7), we get the following result.

Lemma 2.3. Under the assumption of Lemma 2.1, we have, for any u,

∑

γ

h

(

γ

T

)

e−iLγu = TgT (TLu, χ) + TZ
+(T, u, χ)(2.13)

+ TZ−(T, u, χ) + δχTJ
+(T, u) + δχTJ

−(T, u),

where J±(T, u) are given as in (2.12), and

Z±(T, u, χ) = −
∞
∑

n=1

w(n, χ)g(T (Lu± logn)),(2.14)

with

w(n, χ) =
Λ(n)χ(n)√

n
− δχ
(

1√
n
+
1

n3/2

)

.(2.15)

3. Mean value of gT (x, χ) over χ. The following mean-value estimate
for gT (x, χ) is crucial in our later argument.

Lemma 3.1. Let q ≥ 5 be a prime and l 6≡ ±1 (mod q). Then
∑

χmod q

χ(l)gT (x, χ)≪ e−σ|x| log q + e−|x|/(2T ),(3.1)

∑

χmod q

χ(l)gT (x, χ)≪ e−σ|x| log q + e−|x|/(2T ),(3.2)

where σ ≥ 1 is any positive number.

The proof of Lemma 3.1 depends on the following lemma.

Lemma 3.2. Let q ≥ 5 and l 6≡ ±1 (mod q). Then
∑

χmod q
χ(−1)=1

χ(l) =
∑

χmod q
χ(−1)=−1

χ(l) = 0.

Proof. We have χ(−1) = 1 if and only if χ is the square of another
character, ψ2 say, and each even character arises exactly twice in this way.
Hence the first sum is

1

2

∑

ψmod q

ψ2(l) =
1

2

∑

ψmod q

ψ(l2) = 0
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since l2 6≡ 1 (mod q). Using l 6≡ 1 (mod q) again, we have

0 =
∑

χmod q

χ(l) =
∑

χmod q
χ(−1)=1

χ(l) +
∑

χmod q
χ(−1)=−1

χ(l).

This proves that the second sum is also zero.

Proof of Lemma 3.1. We will only prove (3.1) since the proof of (3.2) is
exactly the same. Without loss of generality, we can suppose x ≥ 0. Rewrite
(2.10) as

gT (x, χ) =
1

2πi

\
Re(s)=0

h

(

s

i

)

Ω

(

sT

i
, χ

)

e−sx ds

=
1

2πi

\
Re(s)=0

h

(

s

i

)

ω(s, χ)e−sx ds,

where

ω(s, χ) = log cond(χ) +
Γ ′R
ΓR

(

1

2
+ µ(χ) + sT

)

(3.3)

+
Γ ′R
ΓR

(

1

2
+ µ(χ)− sT

)

− M ′

M

(

1

2
+ sT, χ

)

− M ′

M

(

1

2
− sT, χ

)

.

By Stirling’s formula and the definition of M(s, χ), we have

ω(s, χ)≪ log(qT |s|)(3.4)

for any s in a vertical strip |Re(s)| ≤ B with |s| sufficiently large (s is
not necessarily on the line Re(s) = 0). Also |h(s)| is rapidly decreasing as
|Re(s)| → ∞. Therefore we can shift the contour of integration to the line
Re(s) = σ where σ is any positive number. This gives

gT (x, χ) =
1

2πi

\
Re(s)=σ

h

(

s

i

)

ω(s, χ)e−sx ds−R(x, χ)(3.5)

where R(x, χ) is the sum of the residues at the poles passed when shifting
the contour.

We now compute R(x, χ). Since µ(χ) ≥ 0, the first Γ term in (3.3) is
holomorphic in Re(s) ≥ 0. The second Γ term has simple poles at

sk(χ) =
1/2 + µ(χ) + 2k

T
, 0 ≤ k < 1

2

(

σT − 1
2
− µ(χ)

)
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with residues

1

T

∑

0≤k<(σT−1/2−µ(χ))/2

h

(

sk(χ)

i

)

exp(−sk(χ)x).

Since q ≥ 5 is prime, we deduce from (2.1) that L(s, χ) = L(s, χ∗)
for any nonprincipal character χ mod q, and that L(s, χ0) = ζ(s)(1− q−s).
Therefore,

M(s, χ) =

{

1− q−s if χ = χ0 mod q,
1 otherwise.

Hence in (3.3), the M terms appear only when χ is principal, and

M ′

M

(

1

2
± sT, χ0

)

=
log q

q1/2±sT − 1 .

The first M term in (3.3) is holomorphic in Re(s) ≥ 0. The second one has
simple poles at

̟m =
1

2T
+
2πim

log q
, m ∈ Z,

with residues

h

(

̟m

i

)

exp(−̟mx).

Consequently,

R(x, χ) =
1

T

∑

0≤k≤σT/2

h

(

sk(χ)

i

)

exp(−sk(χ)x)(3.6)

+ δχ
∑

m∈Z

h

(

̟m

i

)

exp(−̟mx).

Summing (3.5) over χ, we get

∑

χmod q

χ(l)gT (x, χ) =
1

2πi

\
Re(s)=σ

h

(

s

i

)

(

∑

χmod q

χ(l)ω(s, χ)
)

e−sx ds(3.7)

−
∑

χmod q

χ(l)R(x, χ).

It remains to estimate the two sums over χ on the right-hand side of
(3.7). First we prove that in (3.7),

∑

χmod q

χ(l)ω(s, χ)≪ log q.(3.8)

Note that this is much better than (3.4).
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We have remarked that in (3.3), the M terms arise only for χ0 mod q.
Therefore,

∑

χmod q

χ(l)

{

M ′

M

(

1

2
+ σT + itT, χ

)

+
M ′

M

(

1

2
− σT − itT, χ

)}

=
M ′

M

(

1

2
+ σT + itT, χ0

)

+
M ′

M

(

1

2
− σT − itT, χ0

)

=
log q

q1/2+σT+itT − 1 +
log q

q1/2−σT−itT − 1
≪ log q.

On the other hand,

∑

χmod q

χ(l)

{

Γ ′R
ΓR

(

1

2
+ µ(χ) + sT

)

+
Γ ′R
ΓR

(

1

2
+ µ(χ)− sT

)}

=
{

∑

χmod q
χ(−1)=1

χ(l)
}

{

Γ ′R
ΓR

(

1

2
+ sT

)

+
Γ ′R
ΓR

(

1

2
− sT
)}

+
{

∑

χmod q
χ(−1)=−1

χ(l)
}

{

Γ ′R
ΓR

(

3

2
+ sT

)

+
Γ ′R
ΓR

(

3

2
− sT
)}

= 0,

by Lemma 3.2. Finally, we note that, under the condition of the lemma (i.e.
q is prime), all nonprincipal characters modulo q are primitive. Thus,

∑

χmod q

χ(l) log cond(χ) = χ0(l) log 1 +
∑

χ 6=χ0mod q

χ(l) log q

= (log q)
∑

χ 6=χ0mod q

χ(l)

= − log q.

Collecting all the estimates into the definition of ω(s, χ) in (3.3), we get (3.8).

Secondly we estimate the last sum over χ in (3.7). By (3.6), we have

∑

χmod q

χ(l)R(x, χ) =
1

T

∑

0≤k≤σT/2

∑

χmod q

χ(l)h

(

sk(χ)

i

)

exp(−sk(χ)x)

+
∑

m∈Z

h

(

̟m

i

)

exp(−̟mx).

Lemma 3.2 also gives
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∑

χmod q

χ(l)h

(

sk(χ)

i

)

exp(−sk(χ)x)

=
{

∑

χmod q
χ(−1)=1

χ(l)
}

h

(

1/2 + 2k

T i

)

exp

(

−1/2 + 2k
T

x

)

+
{

∑

χmod q
χ(−1)=−1

χ(l)
}

h

(

3/2 + 2k

T i

)

exp

(

−3/2 + 2k
T

x

)

= 0.

Clearly,
∑

m∈Z

h

(

̟m

i

)

exp(−̟mx)≪ e−x/(2T ),

and therefore,
∑

χmod q

χ(l)R(x, χ)≪ e−x/(2T ).(3.9)

Putting (3.8) and (3.9) into (3.7), we get

∑

χmod q

χ(l)gT (x, χ)≪ (log q)
\

Re(s)=σ

∣

∣

∣

∣

h

(

s

i

)
∣

∣

∣

∣

e−σx ds+ e−x/(2T )

≪ e−σx log q + e−x/(2T ),

and this is the required result.

4. Beginning of the proof of Theorem 1.1: Estimates for Ck1,0
and C0,k2. Let h1, g1, h2, g2 be as in Theorem 1.1. Applying Lemma 2.3, for
j = 1, 2 we get

∑

γj

hj

(

γj
T

)

e−iLγuj = TgjT (TLuj , χj)(4.1)

+ TZ+j (T, uj , χj) + TZ
−
j (T, uj , χj)

+ δχjTJ
+
j (T, uj) + δχjTJ

−
j (T, uj).

Inserting the two formulae into the definition of F (h, T, Φ;χ1, χ2) in (1.3),
we get 25 terms. In (4.1), if we enumerate the five terms on the right side
respectively by 0, 1,−1, 2,−2, then each of these 25 terms can be written as
Ck1,k2(h, T, Φ;χ1, χ2) with k1, k2 = 0,±1,±2, which denotes the contribu-
tion from the product of the term k1 of (4.1) for j = 1 and term k2 of (4.1)
for j = 2. For example,

C1,−1(h, T, Φ;χ1, χ2) =
\
R

(TZ+1 (T, u, χ1))(TZ
−
2 (T,−u, χ2))Φ(u) du.
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Thus, we get

F (h, T, Φ;χ1, χ2) =
∑

|k1|,|k2|≤2

Ck1,k2(h, T, Φ;χ1, χ2).(4.2)

We will estimate Ck1,k2(h, T, Φ;χ1, χ2) separately in the following sections.

In this section we give estimates for Ck1,0 and C0,k2 . We have

C0,0 = T
2
\
R

g1T (TLu, χ1)g2T (−TLu, χ2)Φ(u) du.

Actually the above integral is on supp(Φ) = [b1, b2]. By Lemma 3.1,

(4.3)
∑

χ1,χ2mod q

χ1(l)χ2(l)C0,0

= T 2
b2\
b1

∑

χ1mod q

χ1(l)g1T (TLu, χ1)
∑

χ2mod q

χ2(l)g2T (−TLu, χ2)Φ(u) du

≪ T 2
b2\
b1

(e−2TLu log2 q + e−Lu) du≪ log2 q + T 2−b1

L
≪ T 2−b1 ,

where in the last step we have used q ≤ T b2 . However, by T 1−b1 ≤ q, the
above bound is

T 2−b1 ≪ qT ≪ ϕ(q)TL.(4.4)

We will need the weighted Brun–Titchmarsh theorem in our future ar-
gument.

Lemma 4.1. Let x, y be any real numbers and k, l integers satisfying
1 ≤ k < y and (k, l) = 1. Then

∑

y<p≤x
p≡l (mod k)

log p

p
≪ log2 x

ϕ(k) log(y/k)
.

Proof. By partial summation,

∑

y<p≤x
p≡l (mod k)

log p

p
=

x\
y

log t

t
dπ(t, k, l),

where π(t, k, l) denotes the number of primes p ≤ t with p ≡ l (modk).
By the Brun–Titchmarsh theorem (see for example [3, Theorem 3.7]), if
1 ≤ k < t, (k, l) = 1, then

π(t, k, l) <
3t

ϕ(k) log(t/k)
.
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From this and k < y, we deduce that

∑

y<p≤x
p≡l (mod k)

log p

p
≪ log x

ϕ(k) log(x/k)
+

log y

ϕ(k) log(y/k)

+

x\
y

log t

ϕ(k)t log(t/k)
dt

≪ log2 x

ϕ(k) log(y/k)
.

This proves the lemma.

For C0,1 we make the substitution x = T (Lu− logn), to get

C0,1 = −T 2
\
R

g1T (TLu, χ1)
∑

n

w(n, χ2)g2(T (−Lu+ logn))Φ(u) du

= −T
L

a\
−a

g2(−x)
∑

n

w(n, χ2)

× g1T (x+ T logn, χ1)Φ
(

x

TL
+
logn

L

)

dx

since supp(gj) = [−a, a]. Therefore,

(4.5)
∑

χ1,χ2mod q

χ1(l)χ2(l)C0,1

= − T

L

a\
−a

g2(−x)
∑

n

Φ

(

x

TL
+
logn

L

)

∑

χ2mod q

χ2(l)w(n, χ2)

×
∑

χ1mod q

χ1(l)g1T (x+ T logn, χ1) dx.

Now we should have

x

TL
+
logn

L
∈ [b1, b2] = supp(Φ),

but, for large T , this implies

T b1/2 < n ≤ 2T b2(4.6)

since x ∈ [−a, a]. By Lemma 3.1, the sum over χ1 in (4.5) can be estimated as
∑

χ1mod q

χ1(l)g1T (x+ T logn, χ1)≪ e−|x+T logn|/(2T )(4.7)

≪ e(−T logn+a)/(2T ) ≪ n−1/2.
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For the sum over χ2 in (4.5), we use the definition of w(n, χ) in (2.15):

(4.8)
∑

χ2mod q

χ2(l)w(n, χ2)

=
∑

χ2mod q

χ2(l)

(

Λ(n)χ2(n)√
n

− δχ2
(

1√
n
+
1

n3/2

))

=















ϕ(q)
Λ(n)√
n
−
(

1√
n
+
1

n3/2

)

if n ≡ l (mod q),

−
(

1√
n
+
1

n3/2

)

otherwise.

Putting this and (4.7) into (4.5), we get

(4.9)
∑

χ1,χ2mod q

χ1(l)χ2(l)C0,1

≪ T

L

a\
−a

|g2(−x)| dx
∑

n

∣

∣

∣

∑

χ2mod q

χ2(l)w(n, χ2)
∣

∣

∣

×
∣

∣

∣

∑

χ1mod q

χ1(l)g1T (x+ T logn, χ1)
∣

∣

∣

≪ ϕ(q)
T

L

∑

T b1/2<n≤2T b2

n≡l (mod q)

Λ(n)

n
+
T

L

∑

T b1/2<n≤2T b2

1

n
≪ T

by Lemma 4.1 and the assumption q ≤ T b1−ε.
The corresponding estimates for C0,−1, C±1,0 follow the same lines, and

their upper bounds are just the same as in (4.9).

For C0,2, we make the substitution x = T (Lu− log v), to get
∑

χ1mod q

χ1(l)C0,2 = δχ2T
2
\
R

∑

χ1mod q

χ1(l)g1T (TLu, χ1)

{∞\
1

(

1√
v
+
1

v3/2

)

× g2(T (−Lu+ log v)) d(v − [v])
}

Φ(u) du

= δχ2
T

L

\
R

g2(−x)
{∞\
1

(

1√
v
+
1

v3/2

)

Φ

(

x

TL
+
log v

L

)

×
∑

χ1mod q

χ1(l)g1T (x+ T log v, χ1) d(v − [v])
}

dx.

By (4.6) and (4.7), this is
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≪ δχ2
T

L

a\
−a

|g2(−x)|
2T b2\
T b1/2

1

v
d(v − [v]) dx≪ δχ2

T

L
,

and therefore,
∑

χ1,χ2mod q

χ1(l)χ2(l)C0,2 ≪
T

L
.(4.10)

The same bound holds also for the corresponding sums for C0,−2 and C±2,0.

Summarizing the estimates (4.3), (4.4), (4.9), and (4.10), we get
∑

χ1mod q

χ1(l)χ2(l)
∑

k1 or k2=0

Ck1,k2 ≪ ϕ(q)TL.(4.11)

5. Estimates for C±1,±1. We begin with C1,1. Recall that

C1,1 = T
2
\
R

∑

n1,n2

w(n1, χ1)w(n2, χ2)

× g1(T (Lu+ log n1))g2(T (−Lu+ logn2))Φ(u) du

=
T

L

a\
−a

g1(x)
∑

n1,n2

w(n1, χ1)w(n2, χ2)

× g2(−x+ T log(n1n2))Φ
(

x

TL
− logn1

L

)

dx,

where x = T (Lu+ logn1) is our new variable. We need to have −a ≤ x ≤ a
and −a ≤ −x + T log(n1n2) ≤ a in order to have a nonzero integral, but
when T is sufficiently large this is impossible unless n1 = n2 = 1. Thus,

C1,1 = 4δχ1δχ2
T

L

a\
−a

g1(x)g2(−x)Φ
(

x

TL

)

dx.

Since x/(TL) < b1 for large T , we have

C1,1 = 0.(5.1)

The same result is true for C−1,−1.

Letting x = T (Lu− log n1), we have

C−1,1 = T
2
\
R

∑

n1,n2

w(n1, χ1)w(n2, χ2)

× g1(T (Lu− logn1))g2(T (−Lu+ logn2))Φ(u) du

=
T

L

a\
−a

g1(x)
∑

n1,n2

w(n1, χ1)w(n2, χ2)

× g2
(

−x+ T log n2
n1

)

Φ

(

x

TL
+
log n1
L

)

dx.
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Thus, by (4.6),
∑

χ1,χ2mod q

χ1(l)χ2(l)C−1,1

=
T

L

a\
−a

g1(x)
∑

n1

∑

χ1mod q

χ1(l)w(n1, χ1)Φ

(

x

TL
+
log n1
L

)

×
∑

n2

∑

χ2mod q

χ2(l)w(n2, χ2)g2

(

−x+ T log n2
n1

)

dx,

which is

≪ T

L

a\
−a

|g1(x)|
∑

T b1/2<n1≤2T b2

∣

∣

∣

∑

χ1mod q

χ1(l)w(n1, χ1)
∣

∣

∣

×
∣

∣

∣

∣

∑

n2

∑

χ2mod q

χ2(l)w(n2, χ2)g2

(

−x+ T log n2
n1

)
∣

∣

∣

∣

dx.

As before, we should have −a ≤ x ≤ a and −a ≤ −x + T log(n2/n1) ≤ a,
which implies that

n1e
−2a/T ≤ n2 ≤ n1e2a/T ,

and hence by b2 < 1,

|n2 − n1| ≪
n1
T
≪ T b2−1 → 0 as T →∞.

Therefore we must have n2 = n1, and consequently by (2.15) and (4.8),
∑

χ1,χ2mod q

χ1(l)χ2(l)C−1,1

≪ T

L

∑

T b1/2<n≤2T b2

∣

∣

∣

∑

χ1mod q

χ1(l)w(n, χ1)
∣

∣

∣

∣

∣

∣

∑

χ2mod q

χ2(l)w(n, χ2)
∣

∣

∣

×
a\
−a

|g1(x)g2(−x)| dx

≪ ϕ2(q)
T

L

∑

T b1/2<n≤2T b2

n≡l (mod q)

Λ(n)2

n
+
T

L

∑

T b1/2<n≤2T b2

1

n
.

We use again Lemma 4.1 and the assumption q ≤ T b1−ε, to get
∑

χ1,χ2mod q

χ1(l)χ2(l)C−1,1 ≪ ϕ(q)TL.(5.2)

The upper bound for the corresponding mean value for C1,−1 is the same.
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We conclude from (5.1) and (5.2) that
∑

χ1,χ2mod q

χ1(l)χ2(l)
∑

k1=±1
k2=±1

Ck1,k2 ≪ ϕ(q)TL.(5.3)

6. Estimates for the other Ck1,k2. We have

C1,2 = −δχ2T 2
\
R

∑

n

w(n, χ1)g1(T (Lu+ log n))

×
∞\
1

g2(T (−Lu+ log v))
(

1√
v
+
1

v3/2

)

d(v − [v])Φ(u) du

= −δχ2
T

L

a\
−a

g1(x)
∑

n

w(n, χ1)

∞\
1

g2(−x+ T log(nv))

×
(

1√
v
+
1

v3/2

)

d(v − [v])Φ
(

x

TL
− log n

L

)

du,

by changing variables x = T (Lu + log n). For large T , the inequalities
−a ≤ x ≤ a and −a ≤ −x + T log(nv) ≤ a are impossible unless n = 1.
Consequently,

C1,2 = −2δχ2
T

L

a\
−a

g1(x)Φ

(

x

TL

)

×
∞\
1

g2(−x+ T log v)
(

1√
v
+
1

v3/2

)

d(v − [v]) dx.

Since x is bounded and T large, we have x/(TL) < b1, and therefore,

C1,2 = 0.(6.1)

The same result is true for C2,1, C−1,−2, and C−2,−1.

To estimate C−1,2, we note that

C−1,2 = −δχ2T 2
\
R

∑

n

w(n, χ1)g1(T (Lu− logn))

×
∞\
1

g2(T (−Lu+ log v))
(

1√
v
+
1

v3/2

)

Φ(u) d(v − [v]) du

= −δχ2
T

L

\
R

g2(x)
∑

n

w(n, χ1)

∞\
1

g1

(

−x+ T log v
n

)

×
(

1√
v
+
1

v3/2

)

d(v − [v])Φ
(

− x

TL
+
logn

L

)

dx,
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which is

≪ δχ2
T

L

a\
−a

2T b2\
T b1/2

∑

n

|w(n, χ1)|
∣

∣

∣

∣

g1

(

−x+ T log v
n

)∣

∣

∣

∣

1√
v
d(v − [v]) dx.

Note that the inequalities −a ≤ x ≤ a and −a ≤ x+ log(v/n) ≤ a imply
ve−2a/T ≤ n ≤ ve2a/T .(6.2)

There is at most one n in the above interval, since the length of the interval is

ve2a/T − ve−2a/T ≪ v

T
≪ T b2−1 → 0 as T →∞.

Therefore,
∑

ve−2a/T≤n≤ve2a/T

|w(n, χ1)|
∣

∣

∣

∣

g1

(

x+T log
v

n

)∣

∣

∣

∣

≪
∑

ve−2a/T≤n≤ve2a/T

log n√
n
≪ log v√

v
,

and consequently,

C−1,2 ≪ δχ2
T

L

a\
−a

2T b2\
T b1/2

log v

v
d(v − [v]) dx≪ δχ2T

1−b1 .

Hence
∑

χ1,χ2mod q

χ1(l)χ2(l)C−1,2 ≪ ϕ(q)T 1−b1.(6.3)

The corresponding sums for C1,−2, C2,−1, and C−2,1 have the same upper
bound estimate.
Now we turn to C2,2:

C2,2 = δχ1δχ2T
2
\
R

Φ(u) du

×
∞\
1

∞\
1

g1(T (Lu+ log v1))g2(T (−Lu+ log v2))

×
(

1√
v1
+
1

v
3/2
1

)(

1√
v2
+
1

v
3/2
2

)

d(v1 − [v1]) d(v2 − [v2]).

On changing variables this is seen to be

= δχ1δχ2
T

L

\
R

g1(x) dx

×
∞\
1

∞\
1

g2(−x+ T log(v1v2))Φ
(

x

TL
− log v1

L

)

×
(

1√
v1
+
1

v
3/2
1

)(

1√
v2
+
1

v
3/2
2

)

d(v1 − [v1]) d(v2 − [v2]).
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We should have T b1/2 ≤ v1 ≤ 2T b2 because of the support of Φ. Therefore,
the two inequalities −a ≤ x ≤ a and −a ≤ −x + T log(v1v2) ≤ a cannot
hold at the same time. Thus,

C2,2 = 0.(6.4)

Similarly C−2,−2 = 0.

Using the method for C−1,1 we have

C−2,2 = δχ1δχ2T
2
\
R

Φ(u) du

×
∞\
1

∞\
1

g1(T (Lu− log v1))g2(T (−Lu+ log v2))

×
(

1√
v1
+
1

v
3/2
1

)(

1√
v2
+
1

v
3/2
2

)

d(v1 − [v1]) d(v2 − [v2])

= δχ1δχ2
T

L

\
R

g1(x) dx

×
∞\
1

∞\
1

g2

(

−x+ T log v2
v1

)

Φ

(

x

TL
+
log v1
L

)

×
(

1√
v1
+
1

v
3/2
1

)(

1√
v2
+
1

v
3/2
2

)

d(v1 − [v1]) d(v2 − [v2])

≪ δχ1δχ2
T

L

2T b2\
T b1/2

∞\
1

d(v1 − [v1]) d(v2 − [v2])
v
1/2
1 v

1/2
2

×
a\
−a

∣

∣

∣

∣

g1(x)g2

(

−x+ T log v2
v1

)∣

∣

∣

∣

dx.

Appealing to (6.2), we get

C−2,2 ≪ δχ1δχ2
T

L

2T b2\
T b1/2

d(v1 − [v1])
v
1/2
1

v1e2a/T\
v1e−2a/T

d(v2 − [v2])
v
1/2
2

≪ δχ1δχ2
T

L

2T b2\
T b1/2

d(v1 − [v1])
v1

≪ δχ1δχ2
T

L
.

Therefore,
∑

χ1,χ2mod q

χ1(l)χ2(l)C−2,2 ≪
T

L
.(6.5)

The same upper bound holds for the corresponding sum for C2,−2.
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Summarizing the estimates (6.1), and (6.3)–(6.5), we get

∑

χ1,χ2mod q

χ1(l)χ2(l)
∑

k1,k2=±1 or±2

Ck1,k2 ≪
T

L
.(6.6)

Now we can complete the proof of Theorem 1.1 by inserting the estimates
from (4.11), (5.3), and (6.6) into (4.2).

7. Distribution of primes in arithmetic progressions. Now we
study the distribution of primes in arithmetic progressions. Let ξ > 1, whose
value will be specified later. Let g(x) be a function satisfying

supp(g) = [−1, 1], g(x) > 0 for x ∈ (−1, 1)(7.1)

in addition to (1.1), and let h(r) be as in (1.2). Now we define

Ψ(T, ξ; q, l) = T

∞
∑

n=1
n≡l (mod q)

Λ(n)√
n
g(T (Lξ − logn)).(7.2)

In (7.2), the n has to satisfy −1 ≤ TLξ − T logn ≤ 1, that is,

T ξe−1/T ≤ n ≤ T ξe1/T .(7.3)

The length of the interval (7.3) is

T ξ(e1/T − e−1/T ) ∼ 2T ξ−1,(7.4)

and therefore Ψ(T, ξ; q, l) is a weighted function counting primes in the arith-
metic progression n ≡ l (mod q) and in the interval (7.3) with the short
length (7.4).

Introducing the Dirichlet characters, we have

Ψ(T, ξ; q, l) = − 1
ϕ(q)

∑

χmod q

χ(l)TS−(T, ξ, χ),(7.5)

where S−(T, ξ, χ) is defined as in (2.9).

Let 1/2 + iγ go over the zeros of L(s, χ) within 0 < Re(s) < 1. Now we
apply the explicit formula (2.7). For large T , the inequality −1 ≤ TLξ +
logn ≤ 1 is impossible, hence TS+(T, ξ, χ) = 0, and consequently,

−TS−(T, ξ, χ) = δχP (T, ξ)−
∑

γ

h

(

γ

T

)

e−iLγξ + TgT (TLξ, χ).

By Lemma 3.1,
∑

χmod q

χ(l)gT (TLξ, χ)≪ e−TLξ log q + e−Lξ/2 ≪ T−ξ/2,
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if we assume log q ≤ T δ for some positive δ. This together with (7.5) gives

Ψ(T, ξ; q, l) =
1

ϕ(q)
P (T, ξ)− 1

ϕ(q)

∑

χmod q

χ(l)
∑

γ

h

(

γ

T

)

e−iLγξ(7.6)

+O

(

T 1−ξ/2

ϕ(q)

)

.

Let

Σ(v) = Σ(v;h, T, ξ) =
∑

χmod q

χ(l)
∑

γ

h

(

γ

T

)

e−iγL(ξ−v).

Obviously Σ(0) is the sum over γ in (7.6); it will be bounded via GRH and
Conjecture 1.2.

Lemma 7.1. Let h, g satisfy (1.1), (1.2), and (7.1). Then for q < T ξ−1−ε,

Σ(0)≪ ϕ(q)1/2TL1/2.

Proof. The Sobolev–Gallagher inequality states that if f(u) has a con-
tinuous derivative on [−1/2, 1/2], then

|f(0)| ≪
1/2\
−1/2

|f ′(u)| du+
1/2\
−1/2

|f(u)| du.

Suppose φ ∈ C1c (R) with supp(φ) = [−1, 1]. Then

Σ(0)2 ≪
1/2\
−1/2

|Σ(v)| |Σ′(v)| dv +
1/2\
−1/2

|Σ(v)|2 dv(7.7)

≪
(\

R

|Σ(v)|2φ(v) dv
)1/2(\

R

|Σ′(v)|2φ(v) dv
)1/2

+
\
R

|Σ(v)|2φ(v) dv.

We need to estimate the integrals on the right hand side of (7.7). First,\
R

|Σ(v)|2φ(v) dv =
∑

χ1,χ2mod q

χ1χ2(l)
∑

γ1,γ2

h

(

γ1
T

)

h

(

γ2
T

)

×
\
R

e−i(γ1−γ2)L(ξ−v)φ(v) dv

=
∑

χ1,χ2mod q

χ1χ2(l)
∑

γ1,γ2

h

(

γ1
T

)

h

(

γ2
T

)

×
\
R

e−i(γ1−γ2)Lwφ(ξ + w) dw.
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Letting Φ(v) = φ(ξ + v), we get Φ ∈ C1c (R) with supp(Φ) = [ξ − 1, ξ + 1],
and therefore the last integral above equals f(Lγ1/(2π), Lγ2/(2π)) by §1.
By GRH, all the γ above are real, and so by (1.2) we have h(r) = h(−r).
Let h(r) = (h(r), h(−r)). Then by (1.3),\

R

|Σ(v)|2φ(v) dv =
∑

χ1,χ2mod q

χ1χ2(l)F (h, T, Φ;χ1, χ2).(7.8)

Since q ≤ T ξ−1−ε, we can apply Conjecture 1.2 to (7.8), to get\
R

|Σ(v)|2φ(v) dv ≪ ϕ(q)TL.(7.9)

To estimate the other integral on the right-hand side of (7.7), we note
that \

R

|Σ′(v)|2φ(v) dv(7.10)

=
\
R

∣

∣

∣

∣

∑

χmod q

χ(l)
∑

γ

h

(

γ

T

)

γe−iγL(ξ−v)
∣

∣

∣

∣

2

φ(v) dv

=
∑

χ1,χ2mod q

χ1χ2(l)
∑

γ1,γ2

h

(

γ1
T

)

h

(

γ2
T

)

γ1γ2f

(

L

2π
γ1,

L

2π
γ2

)

.

By (1.1) and (1.2),

g(x) =
\
R

h(r)eixr dr,

and consequently

g′(x) =
\
R

ih(r)reixr dr.

Let H(r) = ih(r)r. Then

H(r) =
\
R

g′(x)e−irx dx,

and so ih(r)r = ih(−r)r = −H(−r), where we have used GRH and h(r) =
h(−r) as before. Now let H = (H(r),−H(−r)). Then the right-hand side of
(7.10) becomes

−T 2
∑

χ1,χ2mod q

χ1χ2(l)F (H, T, Φ;χ1, χ2),

to which Conjecture 1.2 also applies. Thus, by an argument similar to that
leading to (7.9), \

R

|Σ′(v)|2φ(v) dv ≪ ϕ(q)T 3L.
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Inserting this and (7.9) into (7.7), we get Σ(0)2 ≪ ϕ(q)T 2L. This proves
the lemma.

From (7.6) and Lemma 7.1, we conclude the following weighted prime
number theorem in arithmetic progressions in short intervals.

Theorem 7.2. Assume GRH and Conjecture 1.2. Let q be prime and
(l, q) = 1 with l 6≡ ±1 (mod q). Let h and g satisfy (1.1), (1.2), and (7.1).
Then, uniformly for ξ > 1,

Ψ(T, ξ; q, l) =
P (T, ξ)

ϕ(q)
+O

(

TL1/2

ϕ(q)1/2
+
T 1−ξ/2

ϕ(q)

)

.(7.11)

Theorem 1.3 is a corollary of Theorem 7.2.

Proof of Theorem 1.3. The main term in Theorem 7.2 is

P (T, ξ)

ϕ(q)
∼ h(0) T

ξ/2

ϕ(q)
,

where

h(0) =
\
R

g(x) dx > 0

by (1.2) and (7.1). Let ξ > 2 be arbitrary, and q large. Then one can always
find T such that

2C

(

TL1/2

ϕ1/2(q)
+
T 1−ξ/2

ϕ(q)

)

≤ h(0) T
ξ/2

ϕ(q)
(7.12)

≤ 3C
(

TL1/2

ϕ1/2(q)
+
T 1−ξ/2

ϕ(q)

)

,

where C is the constant implied in the error term in Theorem 7.2. For this T ,
Theorem 7.2 and the first inequality in (7.12) assert that Ψ(T, ξ; q, l) > 0,
that is, there is a prime p0 ≡ l (mod q) lying in the interval (7.3). From this
and the second inequality in (7.12), we conclude that

p0 ≤ T ξe1/T ≪ ϕ(q)ξ/(ξ−2) log q.

The desired result now follows from choosing a suitable ξ.
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