Primes with preassigned digits

by

Dieter Wolke (Freiburg)

1. Introduction and statement of the results. Let $g \geq 2$ be an integer. For $k \in \mathbb{N}$ every integer $n \in\left[g^{k-1}, g^{k}\right)$ can be uniquely written as

$$
n=\sum_{\nu=0}^{k-1} z_{\nu} g^{\nu} \quad\left(z_{\nu} \in\{0, \ldots, g-1\}, z_{k-1}>0\right)
$$

briefly $n=z_{k-1} \ldots z_{0}$. Sierpiński [6] showed, that for any given $b, b^{\prime} \in$ $\{0, \ldots, g-1\},(b, g)=1$, and $b^{\prime}>0$, there are infinitely many primes p which have b as the last digit z_{0} and b^{\prime} as the first. This is an immediate consequence of Dirichlet's theorem on primes in arithmetic progressions.

The question can be generalized as follows. For $a \in \mathbb{N}$ and $k \geq a$ let $0 \leq l_{1}<\cdots<l_{a} \leq k-1, \vec{l}=\left(l_{1}, \ldots, l_{a}\right)$, and

$$
\begin{align*}
& b_{1}, \ldots, b_{a} \in\{0, \ldots, g-1\} \quad \text { with }\left(b_{1}, g\right)=1 \text { if } l_{1}=0 \\
& b_{a}>0 \quad \text { if } l_{a}=k-1 \tag{1.1}
\end{align*}
$$

Such vectors \vec{l} and $\vec{b}=\left(b_{1}, \ldots, b_{a}\right)$ will be called admissible. Write

$$
\begin{aligned}
\pi_{k, a, \vec{l}, \vec{b}} & =\#\left\{g^{k-1} \leq p<g^{k}: p=z_{k-1} \ldots z_{0}, z_{l_{j}}=b_{j}(j=1, \ldots, a)\right\} \\
f_{1}(l) & = \begin{cases}1 / \varphi(g) & \text { if } l=0, \\
1 / g & \text { if } 1 \leq l<k-1, \\
1 /(g-1) & \text { if } l=k-1,\end{cases}
\end{aligned}
$$

It seems reasonable to expect, for any fixed a and admissible \vec{l} and \vec{b},

$$
\begin{equation*}
\pi_{k, a, \vec{l}, \vec{b}} \sim f(\vec{l})\left(\pi\left(g^{k}\right)-\pi\left(g^{k-1}\right)\right) \quad(k \rightarrow \infty) \tag{C}
\end{equation*}
$$

It will be shown that (C) is true for $a=1$ and $a=2$.
Theorem 1. For $a \in\{1,2\}$ and admissible \vec{l} and \vec{b} of length a we have

$$
\pi_{k, a, \vec{l}, \vec{b}}=f(\vec{l})\left(1-g^{-1}\right) \frac{g^{k}}{\ln g^{k}}+\mathrm{O}\left(\frac{g^{k}}{k^{2}}\right)
$$

The O-constants here and in what follows may depend on g, but not on \vec{l}.

There is some hope that (C) can be proved for $a=3$ or even for bigger values. If one assumes the Riemann hypothesis for the characters mod g^{d} ($d \in \mathbb{N}_{0}$) then much more can be shown.

Theorem 2. Assume the Riemann hypothesis for the L-fuctions with characters mod $g^{d}\left(d \in \mathbb{N}_{0}\right)$. Then, for any $\varepsilon \in(0,1), k \geq k_{0}(\varepsilon)$, and all admissible vectors \vec{l}, \vec{b} of length $a, 1 \leq a \leq(1-\varepsilon) k^{1 / 2}$, we have

$$
\pi_{k, a, \vec{l}, \vec{b}}=f(\vec{l})\left(1-\frac{1}{g}\right) \frac{g^{k}}{\ln g^{k}}+\mathrm{O}\left(g^{k-a} k^{-2}\right)
$$

It is not clear whether any form of the density hypothesis for the L functions $\bmod g^{d}$ will imply a result of similar strength.

2. Proof of Theorem 1

2.1. The proof will be given in the more complicated case $a=2$. Let $0 \leq l<l^{\prime} \leq k-1, \vec{l}=\left(l, l^{\prime}\right), b, b^{\prime} \in\{0, \ldots, g-1\},(b, g)=1$ if $l=0, b^{\prime}>0$ if $l^{\prime}=k-1, \vec{b}=\left(b, b^{\prime}\right)$. Instead of π_{k} we will study

$$
\psi_{k}:=\psi_{k, 2, \vec{l}, \vec{b}}=\sum_{\substack{g^{k-1} \leq n<g^{k} \\ z_{l}=b, z_{l^{\prime}}=b^{\prime}}} \Lambda(n)
$$

and show

$$
\begin{equation*}
\psi_{k}=f(\vec{l}) g^{k}\left(1-\frac{1}{g}\right)+\mathrm{O}\left(g^{k} k^{-1}\right) \tag{2.1.1}
\end{equation*}
$$

Let k be sufficiently large and write $x=g^{k}$.
2.2. First case: $l>\frac{1}{5} k$. Every n to be counted in ψ_{k} can be written as

$$
\begin{align*}
& n=n_{2} g^{l+1}+b g^{l}+n_{1}, \quad \text { where } \tag{2.2.1}\\
& 0 \leq n_{1}<g^{l}, \quad g^{k-l-2} \leq n_{2}<g^{k-l-1}
\end{align*}
$$

and n_{2} has the digit b^{\prime} at the place with index $l^{\prime}-l-1$. In $2.2, n_{2}$ will run through these numbers. This gives

$$
\psi_{k}=\sum_{n_{2}}\left(\psi\left(\left(g n_{2}+b+1\right) g^{l}\right)-\psi\left(\left(g n_{2}+b\right) g^{l}\right)\right)+\mathrm{O}\left(x k^{-1}\right)
$$

where

$$
\psi(y)=\sum_{n \leq y} \Lambda(n)
$$

The error term, which of course could be estimated much better, results from the possible contribution of the end points of the intervals.

Let $\varrho=\varrho(\zeta)=\beta+i \gamma$ denote non-trivial zeros of $\zeta(s)$ (and similarly let $\varrho(\chi)$ be zeros of $L(s, \chi))$. Then, for $2 \leq T \leq x$,

$$
\begin{align*}
\psi_{k}= & g^{l} \#\left\{n_{2}\right\}-\sum_{\varrho(\zeta),|\gamma| \leq T} \varrho^{-1} g^{l \varrho} \sum_{n_{2}}\left(\left(g n_{2}+b+1\right)^{\varrho}-\left(g n_{2}+b\right)^{\varrho}\right) \tag{2.2.2}\\
& +\mathrm{O}\left(\frac{x}{T} k^{2} \#\left\{n_{2}\right\}\right)+\mathrm{O}\left(x k^{-1}\right)
\end{align*}
$$

The main term is equal to that in (2.1.1). The contribution of the error terms is $\ll x k^{-1}$ if

$$
\begin{equation*}
T=x g^{-l} k^{3} \tag{2.2.3}
\end{equation*}
$$

For $|\varrho| \leq x g^{-l} k^{-1}=: T_{1}$ the difference in the n_{2}-sum can be expanded to

$$
\varrho\left(g n_{2}+b\right)^{\varrho-1}+\frac{\varrho(\varrho-1)}{2}\left(g n_{2}+b\right)^{\varrho-2}+\cdots
$$

We will treat the first term. The higher terms can be treated in the same manner. Because of the choice of T_{1} they lead to smaller bounds. For $T_{1}<$ $|\varrho| \leq T$ there is no cancellation. It is therefore sufficient to study the following expression:

$$
\begin{align*}
\Sigma_{\varrho}:= & \sum_{\varrho(\zeta),|\gamma| \leq T_{1}} g^{l \beta}\left|\sum_{n_{2}}\left(g n_{2}+b\right)^{\varrho-1}\right| \tag{2.2.4}\\
& +\frac{g^{l} k}{x} \sum_{\varrho(\zeta), T_{1}<|\gamma| \leq T} g^{l \beta}\left|\sum_{n_{2}}\left(g n_{2}+b\right)^{\varrho}\right| .
\end{align*}
$$

For these sums and similar ones in the other cases we will apply zero density bounds and a mean value theorem for Dirichlet polynomials.

Write as usual, for $q \geq 1, \chi \bmod q, 1 / 2 \leq \sigma \leq 1, T \geq 2$,

$$
N(\sigma, T, \chi)=\#\{\varrho=\beta+i \gamma: L(\varrho, \chi)=0, \beta \geq \sigma,|\gamma| \leq T\}
$$

Then we have

$$
\begin{align*}
& \sum_{\chi \bmod q} N(\sigma, T, \chi) \ll \varepsilon \varepsilon \begin{cases}(q T)^{3(1-\sigma) /(2-\sigma)} \ln ^{9}(q T) & \text { if } 1 / 2 \leq \sigma \leq 3 / 4 \\
(q T)^{3(1-\sigma) /(3 \sigma-1)+\varepsilon} & \text { if } 3 / 4 \leq \sigma \leq 4 / 5 \\
(q T)^{(2+\varepsilon)(1-\sigma)} & \text { if } 4 / 5 \leq \sigma \leq 1\end{cases} \tag{2.2.5}\\
&<_{\varepsilon}(q T)^{(12 / 5+\varepsilon)(1-\sigma)} \tag{2.2.6}
\end{align*}
$$

(see Montgomery [4, Theorem 12.1], Huxley [1], Jutila [3]).
Let $a_{n} \in \mathbb{C}$ for $1 \leq n \leq N$, and set $D(s)=\sum_{n \leq N} a_{n} n^{-s}$. Let \mathcal{A} be a set of complex numbers $s=\sigma+i \tau$ where $\sigma \geq \sigma_{0},\left|\tau-\tau^{\prime}\right| \geq \delta$ for $s \neq s^{\prime} \in \mathcal{A}$,
and $T_{0}-\delta / 2 \leq \tau \leq T_{0}+T+\delta / 2$. Then

$$
\begin{equation*}
\sum_{s \in \mathcal{A}}|D(s)|^{2} \ll \ln \ln N \cdot\left(\delta^{-1}+\ln N\right) \cdot(T+N) \sum_{n \leq N}\left|a_{n}\right|^{2} n^{-2 \sigma_{0}} \tag{2.2.7}
\end{equation*}
$$

(Montgomery [4, Theorem 7.5]).
Put

$$
\sigma_{0}=\sigma_{0}(\zeta)=1-k^{-3 / 4}=: 1-\delta_{0}
$$

The Vinogradov-Korobov zero free region (see Ivić [2, Theorem 6.1]) ensures

$$
\zeta(s) \neq 0 \quad \text { for }|\operatorname{Im} s| \leq x, \operatorname{Re} s \geq \sigma_{0}
$$

We have

$$
\begin{aligned}
\Sigma_{\varrho} \ll k & \max _{1 / 2 \leq \sigma \leq \sigma_{0}} g^{l \sigma}\left\{\left(N\left(\sigma, T_{1}\right)\right)^{1 / 2}\left(\sum_{\substack{\varrho,|\gamma| \leq T_{1} \\
\sigma \leq \beta \leq \sigma+k^{-1}}}\left|\sum_{n_{2}}\left(g n_{2}+b\right)^{\varrho-1}\right|^{2}\right)^{1 / 2}\right. \\
& \left.+\frac{g^{l} k}{x}(N(\sigma, T))^{1 / 2}\left(\sum_{\substack{\varrho,|\gamma| \leq T_{1} \\
\sigma \leq \beta \leq \sigma+k^{-1}}}\left|\sum_{n_{2}}\left(g n_{2}+b\right)^{\varrho}\right|^{2}\right)^{1 / 2}\right\}
\end{aligned}
$$

We split up the set of zeros into $\ll k$ classes \mathcal{A} which fulfill the conditions of (2.2.7) with $\delta=1$. Hence, by (2.2.7) and (2.2.6)

$$
\begin{aligned}
& \Sigma_{\varrho} \ll \varepsilon k^{3} \max _{1 / 2 \leq \sigma \leq \sigma_{0}} g^{l \sigma} T^{(6 / 5+\varepsilon)(1-\sigma)}\left(\frac{x}{g^{l}} k^{3}\right)^{1 / 2} \\
& \times\left\{\left(\frac{x}{g^{l}}\right)^{(2 \sigma-1) / 2}+\frac{g^{l} k}{x}\left(\frac{x}{g^{l}} k^{3}\right)^{(2 \sigma+1) / 2}\right\} \\
& \ll k^{10} \max _{1 / 2 \leq \sigma \leq \sigma_{0}} x^{\sigma}\left(x g^{-l}\right)^{(6 / 5+\varepsilon)(1-\sigma)} \\
& \lll k^{10}\left(x^{1 / 2+3 / 5+\varepsilon} g^{-3 l / 5}+x^{\sigma_{0}+(6 / 5+\varepsilon) \delta_{0}} g^{-6 l \delta_{0} / 5}\right) .
\end{aligned}
$$

This is $\ll x k^{-1}$ for $g^{l}>x^{1 / 5}$ if $\varepsilon>0$ is chosen sufficiently small. Hence Theorem 1 is true in this case.
2.3. Second case: $l \leq \frac{1}{5} k, l^{\prime}>\frac{4}{5} k$. The numbers n to be counted here can be written as

$$
\begin{align*}
& n=n_{2} g^{l^{\prime}+1}+b^{\prime} g^{l^{\prime}}+\sum_{\nu=l+1}^{l^{\prime}-1} z_{\nu} g^{\nu}+b g^{l}+n_{1} \quad \text { where } \tag{2.3.1}\\
& 1 \leq n_{1} \leq g^{l}-1, \quad\left(n_{1}, g\right)=1, \quad g^{k-l^{\prime}-2} \leq n_{2}<g^{k-l^{\prime}-1}-g^{l^{\prime}+1}
\end{align*}
$$

In this part n_{1} and n_{2} will denote these numbers. We get

$$
\begin{align*}
& \text { 3.2) } \psi_{k}=\sum_{n_{1}, n_{2}}\left(\psi\left(n_{2} g^{l^{\prime}+1}+\left(b^{\prime}+1\right) g^{l^{\prime}}, g^{l+1}, b g^{l}+n_{1}\right)\right. \tag{2.3.2}\\
& \left.\quad-\psi\left(n_{2} g^{l^{\prime}+1}+b^{\prime} g^{l^{\prime}}, g^{l+1}, b g^{l}+n_{1}\right)\right)+\mathrm{O}(x / k) \\
& =\sum_{n_{1}, n_{2}} \frac{g^{l^{\prime}}}{\varphi\left(g^{l+1}\right)}-\frac{1}{\varphi\left(g^{l+1}\right)} \sum_{\chi \bmod g^{l+1}} \sum_{n_{1}} \bar{\chi}\left(n_{1}+b g^{l}\right) \\
& \quad \times \sum_{n_{2}}\left(\sum_{\varrho(\chi),|\gamma| \leq T} \frac{g^{l^{\prime} \varrho}}{\varrho}\left(\left(n_{2} g+b^{\prime}+1\right)^{\varrho}-\left(n_{2} g+b^{\prime}\right)^{\varrho}\right)+\mathrm{O}\left(\frac{x}{T} k^{2}\right)\right) \\
& \quad+\mathrm{O}\left(x k^{-1}\right) \quad(2 \leq T \leq x)
\end{align*}
$$

Again the main term gives the expected value. By the Pólya-Vinogradov inequality we have

$$
\sum_{n_{1}} \chi\left(n_{1}+b g^{l}\right) \ll \begin{cases}g^{l} & \text { if } \chi=\chi_{0} \tag{2.3.3}\\ g^{l / 2} k & \text { if } \chi \neq \chi_{0}\end{cases}
$$

Therefore the contribution of the error term $\mathrm{O}\left(x T^{-1} k^{2}\right)$ in (2.3.2)—which does not depend on n_{1}-is $\ll \#\left\{n_{2}\right\} g^{l / 2} k x T^{-1} k^{2}$. This is $\ll x k^{-1}$ for

$$
\begin{equation*}
T=x g^{l / 2-l^{\prime}} k^{4} \tag{2.3.4}
\end{equation*}
$$

Note that $T<x$ for k sufficiently large.
Let Σ_{ϱ} be the ϱ-sum in (2.3.2). For $\varrho=\beta+i \gamma$ with $|\gamma| \leq x g^{-l^{\prime}} k^{-1}=: T_{1}$ we have

$$
\varrho^{-1}\left(\left(n_{2} g+b^{\prime}+1\right)^{\varrho}-\left(n_{2} g+b^{\prime}\right)^{\varrho}\right) \ll\left(x g^{-l^{\prime}}\right)^{\beta-1}
$$

Put

$$
\sigma_{0}(l)= \begin{cases}1-k^{-3 / 4} & \text { if } g^{l} \leq k^{30} \\ 1 & \text { otherwise }\end{cases}
$$

(in particular, $\left.\sigma_{0}(\zeta)=\sigma_{0}(0)\right)$. Then $\sigma_{0}(l)$ describes a zero free region of $L(s, \chi), \chi \bmod g^{l}($ see Prachar [5, §6, Satz 6.2]). Hence

$$
\begin{aligned}
\Sigma_{\varrho} \ll & k^{3} \max _{1 / 2 \leq \sigma \leq \sigma_{0}(\zeta)}\left(x^{\sigma} N\left(\sigma, T_{1}\right)+x g^{-l^{\prime}} \max _{T_{1}<U \leq T} U^{-1} x^{\sigma} N(\sigma, U)\right) \\
& +k^{4} g^{-l / 2} \max _{1 / 2 \leq \sigma \leq \sigma_{0}(l)}\left(x^{\sigma} \sum_{\chi \bmod g^{l+1}} N\left(\sigma, T_{1}, \chi_{1}\right)\right. \\
& \left.+x g^{-l^{\prime}} \max _{T_{1}<U \leq T} U^{-1} x^{\sigma} \sum_{\chi \bmod g^{l+1}} N(\sigma, U, \chi)\right) .
\end{aligned}
$$

It is easy to see that (2.2.6), combined with the zero free regions, is sufficient to show that the last quantity is $\ll x k^{-1}$ in the case $g^{l}, x g^{-l^{\prime}} \leq x^{1 / 5}$.
2.4. Third case: $g^{l^{\prime}} \leq x^{4 / 5}, g^{l} \leq x^{1 / 5}$. Assume, for simplicity, $0<l<l^{\prime}$. The other cases can be treated in the same manner with minor modifications.

Here we write the numbers n to be counted as

$$
n=\sum_{\nu=l^{\prime}+1}^{k-1} z_{\nu} g^{\nu}+b^{\prime} g^{l^{\prime}}+n_{2} g^{l+1}+b g^{l}+n_{1}
$$

where

$$
1 \leq n_{1}<g^{l}, \quad\left(n_{1}, g\right)=1, \quad 0 \leq n_{2}<g^{l^{\prime}-(l+1)} .
$$

Therefore

$$
\begin{align*}
\psi_{k, 2, \vec{l}, \vec{b}}= & \sum_{n_{1}, n_{2}}\left(\psi\left(x, g^{l^{\prime}+1}, b^{\prime} g^{l^{\prime}}+n_{2} g^{l+1}+b g^{l}+n_{1}\right)\right. \tag{2.4.1}\\
& \left.-\psi\left(x g^{-1}, g^{l^{\prime}+1}, b^{\prime} g^{l^{\prime}}+n_{2} g^{l+1}+b g^{l}+n_{1}\right)\right)+\mathrm{O}\left(x k^{-1}\right) \\
= & x\left(1-\frac{1}{g}\right) \frac{1}{\varphi(g)} g^{-l^{\prime}} \#\left\{n_{1}\right\} \cdot \#\left\{n_{2}\right\} \\
& -\frac{1}{\varphi(g) g^{l^{\prime}}} \sum_{\chi \bmod g^{l^{\prime}+1}} \sum_{n_{1}, n_{2}} \bar{\chi}\left(b^{\prime} g^{l^{\prime}}+n_{2} g^{l+1}+b g^{l}+n_{1}\right) \\
& \times\left(\sum_{\varrho(\chi),|\gamma| \leq T} \frac{1}{\varrho} x^{\varrho}\left(1-g^{-\varrho}\right)+\mathrm{O}\left(\frac{x}{T} k^{2}\right)\right)+\mathrm{O}\left(x k^{-1}\right)
\end{align*}
$$

The contribution of the error terms is, by the orthogonality relation for characters, $<g^{-l^{\prime}} g^{3 l^{\prime} / 2}(x / T) k^{2}+x k^{-1}$. This is $\ll x k^{-1}$ if one chooses

$$
\begin{equation*}
T=g^{l^{\prime} / 2} k^{3} . \tag{2.4.2}
\end{equation*}
$$

For $\chi \bmod g^{l^{\prime}+1}, \chi \neq \chi_{0}$, we consider the sum

$$
\begin{equation*}
\Sigma_{\chi}:=\sum_{n_{1}, n_{2}} \chi\left(b^{\prime} g^{l^{\prime}}+n_{2} g^{l+1}+b g^{l}+n_{1}\right) . \tag{2.4.3}
\end{equation*}
$$

Σ_{χ} results from summation over $\ll g^{l^{\prime}-l}$ intervals of length $\ll g^{l}$. By PólyaVinogradov the sum over every such interval is $<g^{l^{\prime} / 2} k$, hence

$$
\begin{equation*}
\Sigma_{\chi} \ll g^{3 l^{\prime \prime} / 2-l} k . \tag{2.4.4}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\Sigma_{\chi} & =\sum_{n_{1}} \sum_{\substack{n \leq g^{\prime^{\prime}} \\
n \equiv n_{1}+b g^{\prime}\left(g^{l+1}\right)}} \chi\left(n+b^{\prime} g^{l^{\prime}}\right) \\
& =\frac{1}{\varphi(g) g^{l}} \sum_{n_{1}} \sum_{\chi_{1} \bmod g^{l+1}} \sum_{n \leq g^{l^{\prime}}} \chi\left(n+b^{\prime} g^{l^{\prime}}\right) \bar{\chi}_{1}\left(n_{1}+b g^{l}\right) .
\end{aligned}
$$

The sum over n_{1} is $\ll g^{l / 2} k$ if $\chi_{1} \neq \chi_{0}$, but $\sum_{n} \chi() \ll g^{l^{\prime} / 2} k$. Therefore

$$
\Sigma_{\chi} \ll g^{l^{\prime} / 2} k g^{-l}\left(g^{l}+g^{l} \cdot g^{l / 2} k\right) \ll g^{\left(l+l^{\prime}\right) / 2} k^{2} .
$$

Combined with (2.4.4) this implies

$$
\begin{equation*}
\Sigma_{\chi} \ll k^{2} \min \left(g^{3 l^{\prime} / 2-l}, g^{\left(l+l^{\prime}\right) / 2}\right) \ll k^{2} g^{5 l^{\prime} / 6} \tag{2.4.5}
\end{equation*}
$$

The contribution of the ϱ-sum to (2.4.1) is

$$
\begin{equation*}
\ll \sum_{\varrho(\zeta),|\gamma| \leq T} \frac{x^{\beta}}{|\gamma|}+g^{-l^{\prime}} \sum_{\chi \bmod g^{l^{\prime+1}, \chi \neq \chi_{0}}}\left|\Sigma_{\chi}\right| \sum_{\varrho(\chi),|\gamma| \leq T} \frac{x^{\beta}}{|\gamma|} \tag{2.4.6}
\end{equation*}
$$

For $g^{l^{\prime}} \leq k^{30}$ we use, similarly to the second case, $\sigma_{0}\left(l^{\prime}\right)=1-k^{-3 / 4}$. Now (2.2.6) and the last inequality in (2.4.5) show that (2.4.6) is $\ll x k^{-1}$.

In the case $k^{30}<g^{l^{\prime}} \leq x^{1 / 3}$ we argue in the same manner with $\sigma_{0}\left(l^{\prime}\right)=1$. For $x^{1 / 3}<g^{l^{\prime}} \leq x^{19 / 45}$ one uses $\Sigma_{\chi} \ll k^{2} g^{\left(l+l^{\prime}\right) / 2}$. In the case

$$
\begin{equation*}
x^{19 / 45}<g^{l^{\prime}} \leq x^{4 / 5} \tag{2.4.7}
\end{equation*}
$$

the ζ-part in (2.4.6) can be bounded by (2.2.6) with $\sigma_{0}(\zeta)=1-k^{-3 / 4}$. The χ-part $\Sigma_{\varrho, \chi}$ requires a bit more care. (2.2.5) gives

$$
\begin{aligned}
\Sigma_{\varrho, \chi} \ll \varepsilon & k^{11} g^{\left(l-l^{\prime}\right) / 2} \max _{U \leq T}\left(\max _{1 / 2 \leq \sigma \leq 3 / 4} U^{-1}\left(U g^{l^{\prime}}\right)^{3(1-\sigma) /(2-\sigma)} x^{\sigma}\right. \\
& +\max _{3 / 4 \leq \sigma \leq 4 / 5} U^{-1}\left(U g^{l^{\prime}}\right)^{3(1-\sigma) /(3 \sigma-1)-\varepsilon} x^{\sigma} \\
& \left.+\max _{4 / 5 \leq \sigma \leq 1} U^{-1}\left(U g^{l^{\prime}}\right)^{(2+\varepsilon)(1-\sigma)} x^{\sigma}\right)
\end{aligned}
$$

The contribution of the part with $4 / 5 \leq \sigma \leq 1$ is $\ll x k^{-1}$ for the whole interval. The exponent of U is ≤ 0 for $1 / 2 \leq \sigma \leq 4 / 5$. Write $g^{l^{\prime}}=x^{\xi}$, $19 / 45 \leq \xi \leq 4 / 5$. Then we have, using $g^{l} \leq x^{1 / 5}$,

$$
\begin{align*}
\Sigma_{\varrho, \chi} \ll & k^{11} x^{1 / 10}\left(\max _{1 / 2 \leq \sigma \leq 3 / 4} x^{\sigma+\xi\left(\frac{3(1-\sigma)}{2-\sigma}-\frac{1}{2}\right)}\right. \tag{2.4.8}\\
& \left.+\max _{3 / 4 \leq \sigma \leq 4 / 5} x^{\sigma+\xi\left(\frac{3(1-\sigma)}{3 \sigma-1}-\frac{1}{2}\right)+\varepsilon}\right)+x k^{-1}
\end{align*}
$$

The function $G(\sigma)=\sigma+\xi\left(\frac{3(1-\sigma)}{3 \sigma-1}-\frac{1}{2}\right)$ is decreasing in $[3 / 4,4 / 5]$ for $\xi \in$ [19/45, 4/5]. Hence the second term in (2.4.8) is

$$
\ll k^{11} x^{17 / 20+\xi / 10+\varepsilon} \ll x k^{-1}
$$

The function $H(\sigma)=\sigma+\xi\left(\frac{3(1-\sigma)}{2-\sigma}-\frac{1}{2}\right)$ is increasing in $[1 / 2,3 / 4]$ for $\xi \leq$ $25 / 48$. Again $\sigma=3 / 4$ leads to a sufficient bound.

For $25 / 48<\xi \leq 4 / 5, G(\sigma)$ has a maximum at

$$
\sigma^{*}=2-\sqrt{3 \xi} \in[1 / 2,3 / 4]
$$

We have $1 / 10+H\left(\sigma^{*}\right)=21 / 10-2 \sqrt{3 \xi}+5 \xi / 2$. In $[25 / 48,4 / 5]$ this function is increasing and gives a value <1 at $\xi=4 / 5$.

This shows that (2.1.1) is true in all subcases of the third case. Theorem 1 is proved.
3. Proof of Theorem 2. Assume $r \geq r_{0}(\varepsilon)$ and $a>2$. We will treat the case in which there is a j with $1<j, j+1<a$ such that $l_{j+1}-l_{j}$ is maximal amongst the $a+1$ numbers $l_{1}, l_{2}-l_{1}, \ldots, l_{a}-l_{a-1}, k-1-l_{a}$, i.e. $l_{j+1}-l_{j} \geq k /(a+1)$. We write $l=l_{j}, l^{\prime}=l_{j+1}, b=b_{j}, b^{\prime}=b_{j+1}$. The numbers n to be counted in $\psi_{k, a, \vec{l}, \vec{b}}$ can be written as

$$
n=n_{2} g^{l^{\prime}+1}+b^{\prime} g^{l^{\prime}}+\sum_{\nu=l+1}^{l^{\prime}-1} z_{\nu} g^{\nu}+b g^{l}+n_{1}
$$

where $0 \leq n_{1}<g^{l}$ with the digits b_{1}, \ldots, b_{j-1} at the corresponding places, and $g^{k-l^{\prime}-2} \leq n_{2}<g^{k-l^{\prime}-1}$ with the digits b_{j+2}, \ldots, b_{a}. We have

$$
N_{1}:=\#\left\{n_{1}\right\} \approx g^{l-j} \quad \text { and } \quad N_{2}:=\#\left\{n_{2}\right\} \approx g^{k-l^{\prime}-(a-j)}
$$

The explicit formula yields

$$
\begin{align*}
\psi_{k, \vec{a}, \vec{l}, \vec{b}}= & \sum_{n_{1}, n_{2}}\left(\varphi\left(g^{l+1}\right)\right)^{-1} g^{l^{\prime}} \tag{3.1}\\
& -\left(\varphi\left(g^{l+1}\right)\right)^{-1} \sum_{\chi \bmod g^{l+1}}\left(\sum_{n_{1}} \bar{\chi}\left(n_{1}+b g^{l}\right)\right) \sum_{n_{2}} \\
& \sum_{\varrho(\chi),|\gamma| \leq x}\left(\frac{g^{l^{\prime} \varrho}}{\varrho}\left(\left(n_{2} g+b^{\prime}+1\right)^{\varrho}-\left(n_{2} g+b^{\prime}\right)^{\varrho}\right)+\mathrm{O}\left(k^{2}\right)\right) \\
& +\mathrm{O}(k) .
\end{align*}
$$

Because

$$
\begin{equation*}
\sum_{\chi \bmod g^{l+1}}\left|\sum_{n_{1}} \chi\left(n_{1}+b g^{l}\right)\right| \ll g^{l} N_{1}^{1 / 2} \tag{3.2}
\end{equation*}
$$

the contribution of the error terms is

$$
\begin{equation*}
\ll N_{1}^{1 / 2} N_{2} k^{2} \leq N_{1} N_{2} k^{2} \ll \frac{x}{g^{a}} g^{-\left(l^{\prime}-l\right)} k^{2} \tag{3.3}
\end{equation*}
$$

Again, for $|\gamma| \leq T_{1}:=x g^{-l^{\prime}} k^{-1}$, the difference $\left(n_{2} g+b^{\prime}+1\right)^{\varrho}-\left(n_{2} g+b^{\prime}\right)^{\varrho}$ can be simplified by Taylor's formula. For $T_{1} \leq U<U^{\prime} \leq 2 U \leq x$ we will consider the sum

$$
\Sigma_{U}:=\left(\varphi\left(g^{l+1}\right)\right)^{-1} \sum_{\chi \bmod g^{l+1}}\left(\sum_{n_{1}} \bar{\chi}\left(n_{1}+b_{1} g^{l}\right)\right) \sum_{\substack{\varrho(\chi) \\ U<|\gamma| \leq U^{\prime}}} \frac{g^{l^{\prime} \varrho}}{\varrho} \sum_{n_{2}}\left(n_{2} g+b^{\prime}\right)^{\varrho}
$$

The Riemann hypothesis, (3.2), and (2.2.7) imply

$$
\Sigma_{U} \ll g^{\left(l^{\prime}-l\right) / 2} N_{1}^{1 / 2} U^{-1 / 2} k^{1 / 2}\left(\sum_{\chi \bmod g^{l+1}} \sum_{\substack{\varrho(\chi) \\ U<|\gamma| \leq U^{\prime}}}\left|\sum_{n_{2}}\left(n_{2} g+b^{\prime}\right)^{\varrho}\right|^{2}\right)^{1 / 2}
$$

$$
\begin{aligned}
& \ll k^{2} g^{\left(l^{\prime}-l\right) / 2} N_{1}^{1 / 2} U^{-1 / 2}\left(g^{l} U\left(x g^{-l^{\prime}}\right) N_{2}\right)^{1 / 2} \\
& \ll k^{2} x g^{-\left(a+l^{\prime}-l\right) / 2} \quad\left(x=g^{k}\right)
\end{aligned}
$$

There are $\ll k$ sums Σ_{U}. Therefore, the χ-term in (3.1) is

$$
\ll x g^{-a} k^{-1} \cdot g^{a / 2-\left(l^{\prime}-l\right) / 2} k^{4}
$$

This is $\ll x g^{-a} k^{-1}$ for $k \geq k_{0}(\varepsilon)$ and $a \leq(1-\varepsilon) k^{1 / 2}$.

References

[1] M. N. Huxley, Large values of Dirichlet polynomials, II, Acta Arith. 26 (1975), 435-444.
[2] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985.
[3] M. Jutila, On Linnik's constant, Math. Scand. 41 (1977), 45-62.
[4] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin, 1971.
[5] K. Prachar, Primzahlverteilung, Springer, Berlin, 1957.
[6] W. Sierpiński, Sur les nombres premiers ayant des chiffres initiaux et finals donnés, Acta Arith. 5 (1959), 265-266.

Abteilung für Reine Mathematik
Mathematisches Institut
Universität Freiburg
Eckerstr. 1
D-79104 Freiburg, Germany
E-mail: dieter.wolke@math.uni-freiburg.de

