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1. Introduction and statement of the results. Let g ≥ 2 be an
integer. For k ∈ N every integer n ∈ [gk−1, gk) can be uniquely written as

n =
k−1
∑

ν=0

zνg
ν (zν ∈ {0, . . . , g − 1}, zk−1 > 0),

briefly n = zk−1 . . . z0. Sierpiński [6] showed, that for any given b, b′ ∈
{0, . . . , g − 1}, (b, g) = 1, and b′ > 0, there are infinitely many primes p
which have b as the last digit z0 and b′ as the first. This is an immediate
consequence of Dirichlet’s theorem on primes in arithmetic progressions.

The question can be generalized as follows. For a ∈ N and k ≥ a let
0 ≤ l1 < · · · < la ≤ k − 1, ~l = (l1, . . . , la), and

(1.1)
b1, . . . , ba ∈ {0, . . . , g − 1} with (b1, g) = 1 if l1 = 0,

ba > 0 if la = k − 1.

Such vectors ~l and ~b = (b1, . . . , ba) will be called admissible. Write

π
k,a,~l,~b

= #{gk−1 ≤ p < gk : p = zk−1 . . . z0, zlj = bj (j = 1, . . . , a)},

f1(l) =







1/ϕ(g) if l = 0,

1/g if 1 ≤ l < k − 1,

1/(g − 1) if l = k − 1,

f(~l ) =
a

∏

j=1

f1(lj).

It seems reasonable to expect, for any fixed a and admissible ~l and ~b,

π
k,a,~l,~b

∼ f(~l )(π(gk) − π(gk−1)) (k → ∞).(C)

It will be shown that (C) is true for a = 1 and a = 2.

Theorem 1. For a ∈ {1, 2} and admissible ~l and ~b of length a we have

π
k,a,~l,~b

= f(~l )(1 − g−1)
gk

ln gk
+ O

(

gk

k2

)

.
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The O-constants here and in what follows may depend on g, but not
on ~l.

There is some hope that (C) can be proved for a = 3 or even for bigger
values. If one assumes the Riemann hypothesis for the characters mod gd

(d ∈ N0) then much more can be shown.

Theorem 2. Assume the Riemann hypothesis for the L-fuctions with

characters mod gd (d ∈ N0). Then, for any ε ∈ (0, 1), k ≥ k0(ε), and all

admissible vectors ~l,~b of length a, 1 ≤ a ≤ (1 − ε)k1/2, we have

π
k,a,~l,~b

= f(~l )

(

1 − 1

g

)

gk

ln gk
+ O(gk−ak−2).

It is not clear whether any form of the density hypothesis for the L-
functions mod gd will imply a result of similar strength.

2. Proof of Theorem 1

2.1. The proof will be given in the more complicated case a = 2. Let
0 ≤ l < l′ ≤ k − 1, ~l = (l, l′), b, b′ ∈ {0, . . . , g − 1}, (b, g) = 1 if l = 0, b′ > 0

if l′ = k − 1, ~b = (b, b′). Instead of πk we will study

ψk := ψ
k,2,~l,~b

=
∑

gk−1≤n<gk

zl=b, zl′=b′

Λ(n),

and show

ψk = f(~l )gk

(

1 − 1

g

)

+ O(gkk−1).(2.1.1)

Let k be sufficiently large and write x = gk.

2.2. First case: l > 1
5k. Every n to be counted in ψk can be written as

(2.2.1)
n = n2g

l+1 + bgl + n1, where

0 ≤ n1 < gl, gk−l−2 ≤ n2 < gk−l−1,

and n2 has the digit b′ at the place with index l′ − l− 1. In 2.2, n2 will run
through these numbers. This gives

ψk =
∑

n2

(ψ((gn2 + b+ 1)gl) − ψ((gn2 + b)gl)) + O(xk−1),

where

ψ(y) =
∑

n≤y

Λ(n).

The error term, which of course could be estimated much better, results
from the possible contribution of the end points of the intervals.
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Let ̺ = ̺(ζ) = β + iγ denote non-trivial zeros of ζ(s) (and similarly let
̺(χ) be zeros of L(s, χ)). Then, for 2 ≤ T ≤ x,

ψk = gl #{n2} −
∑

̺(ζ), |γ|≤T

̺−1gl̺
∑

n2

((gn2 + b+ 1)̺ − (gn2 + b)̺)(2.2.2)

+ O

(

x

T
k2 #{n2}

)

+ O(xk−1).

The main term is equal to that in (2.1.1). The contribution of the error
terms is ≪ xk−1 if

T = xg−lk3.(2.2.3)

For |̺| ≤ xg−lk−1 =: T1 the difference in the n2-sum can be expanded to

̺(gn2 + b)̺−1 +
̺(̺− 1)

2
(gn2 + b)̺−2 + · · · .

We will treat the first term. The higher terms can be treated in the same
manner. Because of the choice of T1 they lead to smaller bounds. For T1 <
|̺| ≤ T there is no cancellation. It is therefore sufficient to study the follow-
ing expression:

Σ̺ :=
∑

̺(ζ), |γ|≤T1

glβ
∣

∣

∣

∑

n2

(gn2 + b)̺−1
∣

∣

∣
(2.2.4)

+
glk

x

∑

̺(ζ), T1<|γ|≤T

glβ
∣

∣

∣

∑

n2

(gn2 + b)̺
∣

∣

∣
.

For these sums and similar ones in the other cases we will apply zero density
bounds and a mean value theorem for Dirichlet polynomials.

Write as usual, for q ≥ 1, χ mod q, 1/2 ≤ σ ≤ 1, T ≥ 2,

N(σ, T, χ) = #{̺ = β + iγ : L(̺, χ) = 0, β ≥ σ, |γ| ≤ T}.

Then we have

(2.2.5)
∑

χ mod q

N(σ, T, χ) ≪ε











(qT )3(1−σ)/(2−σ) ln9(qT ) if 1/2 ≤ σ ≤ 3/4,

(qT )3(1−σ)/(3σ−1)+ε if 3/4 ≤ σ ≤ 4/5,

(qT )(2+ε)(1−σ) if 4/5 ≤ σ ≤ 1,

(2.2.6) ≪ε (qT )(12/5+ε)(1−σ)

(see Montgomery [4, Theorem 12.1], Huxley [1], Jutila [3]).

Let an ∈ C for 1 ≤ n ≤ N, and set D(s) =
∑

n≤N ann
−s. Let A be a set

of complex numbers s = σ + iτ where σ ≥ σ0, |τ − τ ′| ≥ δ for s 6= s′ ∈ A,
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and T0 − δ/2 ≤ τ ≤ T0 + T + δ/2. Then
∑

s∈A

|D(s)|2 ≪ ln lnN · (δ−1 + lnN) · (T +N)
∑

n≤N

|an|2n−2σ0(2.2.7)

(Montgomery [4, Theorem 7.5]).

Put

σ0 = σ0(ζ) = 1 − k−3/4 =: 1 − δ0.

The Vinogradov–Korobov zero free region (see Ivić [2, Theorem 6.1]) ensures

ζ(s) 6= 0 for |Im s| ≤ x,Re s ≥ σ0.

We have

Σ̺ ≪ k max
1/2≤σ≤σ0

glσ
{

(N(σ, T1))
1/2

(

∑

̺, |γ|≤T1

σ≤β≤σ+k−1

∣

∣

∣

∑

n2

(gn2 + b)̺−1
∣

∣

∣

2)1/2

+
glk

x
(N(σ, T ))1/2

(

∑

̺, |γ|≤T1

σ≤β≤σ+k−1

∣

∣

∣

∑

n2

(gn2 + b)̺
∣

∣

∣

2)1/2}

.

We split up the set of zeros into ≪ k classes A which fulfill the conditions
of (2.2.7) with δ = 1. Hence, by (2.2.7) and (2.2.6)

Σ̺ ≪ε k
3 max

1/2≤σ≤σ0

glσT (6/5+ε)(1−σ)

(

x

gl
k3

)1/2

×
{(

x

gl

)(2σ−1)/2

+
glk

x

(

x

gl
k3

)(2σ+1)/2}

≪ k10 max
1/2≤σ≤σ0

xσ(xg−l)(6/5+ε)(1−σ)

≪ k10(x1/2+3/5+εg−3l/5 + xσ0+(6/5+ε)δ0g−6lδ0/5).

This is ≪ xk−1 for gl > x1/5 if ε > 0 is chosen sufficiently small. Hence
Theorem 1 is true in this case.

2.3. Second case: l ≤ 1
5k, l

′ > 4
5k. The numbers n to be counted here

can be written as

(2.3.1)
n = n2g

l′+1 + b′gl′ +

l′−1
∑

ν=l+1

zνg
ν + bgl + n1 where

1 ≤ n1 ≤ gl − 1, (n1, g) = 1, gk−l′−2 ≤ n2 < gk−l′−1 − gl′+1.

In this part n1 and n2 will denote these numbers. We get
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(2.3.2) ψk =
∑

n1,n2

(ψ(n2g
l′+1 + (b′ + 1)gl′, gl+1, bgl + n1)

− ψ(n2g
l′+1 + b′gl′ , gl+1, bgl + n1)) + O(x/k)

=
∑

n1,n2

gl′

ϕ(gl+1)
− 1

ϕ(gl+1)

∑

χ mod gl+1

∑

n1

χ(n1 + bgl)

×
∑

n2

(

∑

̺(χ),|γ|≤T

gl′̺

̺
((n2g + b′ + 1)̺ − (n2g + b′)̺) + O

(

x

T
k2

))

+ O(xk−1) (2 ≤ T ≤ x).

Again the main term gives the expected value. By the Pólya–Vinogradov
inequality we have

∑

n1

χ(n1 + bgl) ≪
{

gl if χ = χ0,

gl/2k if χ 6= χ0.
(2.3.3)

Therefore the contribution of the error term O(xT−1k2) in (2.3.2)—which
does not depend on n1—is ≪ #{n2}gl/2kxT−1k2. This is ≪ xk−1 for

T = xgl/2−l′k4.(2.3.4)

Note that T < x for k sufficiently large.

Let Σ̺ be the ̺-sum in (2.3.2). For ̺ = β+ iγ with |γ| ≤ xg−l′k−1 =: T1

we have

̺−1((n2g + b′ + 1)̺ − (n2g + b′)̺) ≪ (xg−l′)β−1.

Put

σ0(l) =

{

1 − k−3/4 if gl ≤ k30,

1 otherwise

(in particular, σ0(ζ) = σ0(0)). Then σ0(l) describes a zero free region of
L(s, χ), χ mod gl (see Prachar [5, §6, Satz 6.2]). Hence

Σ̺ ≪ k3 max
1/2≤σ≤σ0(ζ)

(xσN(σ, T1) + xg−l′ max
T1<U≤T

U−1xσN(σ, U))

+ k4g−l/2 max
1/2≤σ≤σ0(l)

(

xσ
∑

χ mod gl+1

N(σ, T1, χ1)

+ xg−l′ max
T1<U≤T

U−1xσ
∑

χ mod gl+1

N(σ, U, χ)
)

.

It is easy to see that (2.2.6), combined with the zero free regions, is sufficient
to show that the last quantity is ≪ xk−1 in the case gl, xg−l′ ≤ x1/5.

2.4. Third case: gl′ ≤ x4/5, gl ≤ x1/5. Assume, for simplicity, 0 < l < l′.
The other cases can be treated in the same manner with minor modifications.
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Here we write the numbers n to be counted as

n =
k−1
∑

ν=l′+1

zνg
ν + b′gl′ + n2g

l+1 + bgl + n1

where

1 ≤ n1 < gl, (n1, g) = 1, 0 ≤ n2 < gl′−(l+1).

Therefore

ψ
k,2,~l,~b

=
∑

n1,n2

(ψ(x, gl′+1, b′gl′ + n2g
l+1 + bgl + n1)(2.4.1)

− ψ(xg−1, gl′+1, b′gl′ + n2g
l+1 + bgl + n1)) + O(xk−1)

= x

(

1 − 1

g

)

1

ϕ(g)
g−l′ #{n1} · #{n2}

− 1

ϕ(g)gl′

∑

χ mod gl′+1

∑

n1,n2

χ(b′gl′ + n2g
l+1 + bgl + n1)

×
(

∑

̺(χ),|γ|≤T

1

̺
x̺(1 − g−̺) + O

(

x

T
k2

))

+ O(xk−1).

The contribution of the error terms is, by the orthogonality relation for
characters, ≪ g−l′g3l′/2(x/T )k2 + xk−1. This is ≪ xk−1 if one chooses

T = gl′/2k3.(2.4.2)

For χ mod gl′+1, χ 6= χ0, we consider the sum

Σχ :=
∑

n1,n2

χ(b′gl′ + n2g
l+1 + bgl + n1).(2.4.3)

Σχ results from summation over ≪ gl′−l intervals of length ≪ gl. By Pólya–

Vinogradov the sum over every such interval is ≪ gl′/2k, hence

Σχ ≪ g3l′/2−lk.(2.4.4)

On the other hand,

Σχ =
∑

n1

∑

n≤gl′

n≡n1+bgl (gl+1)

χ(n+ b′gl′)

=
1

ϕ(g)gl

∑

n1

∑

χ1 mod gl+1

∑

n≤gl′

χ(n+ b′gl′)χ1(n1 + bgl).

The sum over n1 is ≪ gl/2k if χ1 6= χ0, but
∑

n χ( ) ≪ gl′/2k. Therefore

Σχ ≪ gl′/2kg−l(gl + gl · gl/2k) ≪ g(l+l′)/2k2.
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Combined with (2.4.4) this implies

Σχ ≪ k2 min(g3l′/2−l, g(l+l′)/2) ≪ k2g5l′/6.(2.4.5)

The contribution of the ̺-sum to (2.4.1) is

≪
∑

̺(ζ), |γ|≤T

xβ

|γ| + g−l′
∑

χ mod gl′+1, χ 6=χ0

|Σχ|
∑

̺(χ), |γ|≤T

xβ

|γ| .(2.4.6)

For gl′ ≤ k30 we use, similarly to the second case, σ0(l
′) = 1 − k−3/4. Now

(2.2.6) and the last inequality in (2.4.5) show that (2.4.6) is ≪ xk−1.
In the case k30 < gl′ ≤ x1/3 we argue in the same manner with σ0(l

′) = 1.
For x1/3 < gl′ ≤ x19/45 one uses Σχ ≪ k2g(l+l′)/2. In the case

x19/45 < gl′ ≤ x4/5(2.4.7)

the ζ-part in (2.4.6) can be bounded by (2.2.6) with σ0(ζ) = 1− k−3/4. The
χ-part Σ̺,χ requires a bit more care. (2.2.5) gives

Σ̺,χ ≪ε k
11g(l−l′)/2 max

U≤T
( max
1/2≤σ≤3/4

U−1(Ugl′)3(1−σ)/(2−σ)xσ

+ max
3/4≤σ≤4/5

U−1(Ugl′)3(1−σ)/(3σ−1)−εxσ

+ max
4/5≤σ≤1

U−1(Ugl′)(2+ε)(1−σ)xσ).

The contribution of the part with 4/5 ≤ σ ≤ 1 is ≪ xk−1 for the whole
interval. The exponent of U is ≤ 0 for 1/2 ≤ σ ≤ 4/5. Write gl′ = xξ,
19/45 ≤ ξ ≤ 4/5. Then we have, using gl ≤ x1/5,

Σ̺,χ ≪ k11x1/10( max
1/2≤σ≤3/4

xσ+ξ(
3(1−σ)
2−σ

− 1
2
)(2.4.8)

+ max
3/4≤σ≤4/5

xσ+ξ(
3(1−σ)
3σ−1

− 1
2
)+ε) + xk−1.

The function G(σ) = σ + ξ
(3(1−σ)

3σ−1 − 1
2

)

is decreasing in [3/4, 4/5] for ξ ∈
[19/45, 4/5]. Hence the second term in (2.4.8) is

≪ k11x17/20+ξ/10+ε ≪ xk−1.

The function H(σ) = σ + ξ
(3(1−σ)

2−σ − 1
2

)

is increasing in [1/2, 3/4] for ξ ≤
25/48. Again σ = 3/4 leads to a sufficient bound.

For 25/48 < ξ ≤ 4/5, G(σ) has a maximum at

σ∗ = 2 −
√

3ξ ∈ [1/2, 3/4].

We have 1/10 +H(σ∗) = 21/10− 2
√

3ξ+ 5ξ/2. In [25/48, 4/5] this function
is increasing and gives a value < 1 at ξ = 4/5.

This shows that (2.1.1) is true in all subcases of the third case. Theorem 1
is proved.
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3. Proof of Theorem 2. Assume r ≥ r0(ε) and a > 2. We will treat
the case in which there is a j with 1 < j, j + 1 < a such that lj+1 − lj is
maximal amongst the a+ 1 numbers l1, l2 − l1, . . . , la − la−1, k − 1 − la, i.e.
lj+1 − lj ≥ k/(a+ 1). We write l = lj , l

′ = lj+1, b = bj , b
′ = bj+1. The

numbers n to be counted in ψ
k,a,~l,~b

can be written as

n = n2g
l′+1 + b′gl′ +

l′−1
∑

ν=l+1

zνg
ν + bgl + n1,

where 0 ≤ n1 < gl with the digits b1, . . . , bj−1 at the corresponding places,

and gk−l′−2 ≤ n2 < gk−l′−1 with the digits bj+2, . . . , ba. We have

N1 := #{n1} ≈ gl−j and N2 := #{n2} ≈ gk−l′−(a−j).

The explicit formula yields

ψ
k,~a,~l,~b

=
∑

n1,n2

(ϕ(gl+1))−1gl′(3.1)

− (ϕ(gl+1))−1
∑

χ mod gl+1

(

∑

n1

χ(n1 + bgl)
)

∑

n2

∑

̺(χ),|γ|≤x

(

gl′̺

̺
((n2g + b′ + 1)̺ − (n2g + b′)̺) + O(k2)

)

+ O(k).

Because
∑

χ mod gl+1

∣

∣

∣

∑

n1

χ(n1 + bgl)
∣

∣

∣
≪ glN

1/2
1(3.2)

the contribution of the error terms is

≪ N
1/2
1 N2k

2 ≤ N1N2k
2 ≪ x

ga
g−(l′−l)k2.(3.3)

Again, for |γ| ≤ T1 := xg−l′k−1, the difference (n2g + b′ + 1)̺ − (n2g + b′)̺

can be simplified by Taylor’s formula. For T1 ≤ U < U ′ ≤ 2U ≤ x we will
consider the sum

ΣU := (ϕ(gl+1))−1
∑

χ mod gl+1

(

∑

n1

χ(n1 + b1g
l)

)

∑

̺(χ)
U<|γ|≤U ′

gl′̺

̺

∑

n2

(n2g + b′)̺.

The Riemann hypothesis, (3.2), and (2.2.7) imply

ΣU ≪ g(l′−l)/2N
1/2
1 U−1/2k1/2

(

∑

χ mod gl+1

∑

̺(χ)
U<|γ|≤U ′

∣

∣

∣

∑

n2

(n2g + b′)̺
∣

∣

∣

2)1/2
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≪ k2g(l′−l)/2N
1/2
1 U−1/2(glU(xg−l′)N2)

1/2

≪ k2xg−(a+l′−l)/2 (x = gk).

There are ≪ k sums ΣU . Therefore, the χ-term in (3.1) is

≪ xg−ak−1 · ga/2−(l′−l)/2k4.

This is ≪ xg−ak−1 for k ≥ k0(ε) and a ≤ (1 − ε)k1/2.
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