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Primes with preassigned digits
by

DIETER WOLKE (Freiburg)

1. Introduction and statement of the results. Let g > 2 be an
integer. For k € N every integer n € [¢F!, g*) can be uniquely written as
k—1
n:Zz,,g” (2, €{0,...,9— 1}, 21 > 0),

v=0
briefly n = zp_1...2p. Sierpinski [6] showed, that for any given b,b' €
{0,...,9 — 1}, (b,g) = 1, and V' > 0, there are infinitely many primes p
which have b as the last digit z9 and b’ as the first. This is an immediate
consequence of Dirichlet’s theorem on primes in arithmetic progressions.
The question can be generalized as follows. For a € N and k£ > a let
0<l < - <lg<k—1,1=(l,...,1l,), and

(1.1) bl,...,bQG{O,...,g—l} with (b1,9) =1if [ =0,
' bo >0 ifl,=k—1.
Such vectors [ and b = (by, ..., b,) will be called admissible. Write
Mearp =# < p<gtip=21. 20,2, =05 (j=1,...,0)},
1elg)  if1=0, a
Al =4 1/g ifl1<i<k-1, f()=]]AE).
1/(g—1) ifl=Fk-1, j=1

It seems reasonable to expect, for any fixed a and admissible [ and 5,
(©) T~ F)() = (g ) (k= o).
It will be shown that (C) is true for a = 1 and a = 2.

THEOREM 1. For a € {1,2} and admissible | and b of length a we have
k k
7 -1\ 9 g
Wkafg: f(l)(]_—g 1)—k+0<ﬁ)
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The O-constants here and in what follows may depend on g, but not
on [.

There is some hope that (C) can be proved for a = 3 or even for bigger
values. If one assumes the Riemann hypothesis for the characters mod g¢
(d € Ny) then much more can be shown.

THEOREM 2. Assume the Riemann hypothesis for the L-fuctions with
characters mod g¢ (d € Ny). Then, for any € € (0,1), k > ko(e), and all
admissible vectors l_:l; of length a, 1 < a < (1 — )kY2, we have

" 1 k
Mats = HD(1- 1) 2z + 0602,

It is not clear whether any form of the density hypothesis for the L-

functions mod g¢ will imply a result of similar strength.

2. Proof of Theorem 1

2.1. The proof will be given in the more complicated case a = 2. Let
0<I<lU<k-1,1=(1),bd €{0,...,9—1}, (b,g) =1if 1 =0, >0
if ! =k—1,b=(b). Instead of 7, we will study

k== >, A,

gFl<n<gk
21=b, z;=b
and show
. 1
(2.11) wzfmf0—5)+mfvw

Let k be sufficiently large and write z = g*.
2.2. First case: | > ék} Every n to be counted in v, can be written as

n =nag™t +bg' + ni, where

(2.2.1)
0<m <g, ¢""2<ny < g

and ng has the digit b at the place with index I’ — [ — 1. In 2.2, no will run
through these numbers. This gives

vk = (Y((gna + b+ 1)g") — v((gna +b)g")) + O(xk ™),
where
Y(y) = An).
n<y

The error term, which of course could be estimated much better, results
from the possible contribution of the end points of the intervals.
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Let 0 = 0(¢) = B + i~y denote non-trivial zeros of ((s) (and similarly let
o(x) be zeros of L(s,x)). Then, for 2 <T < z,

(222) Yp=g' #{na}— D 07D ((gna+b+1)°— (gna+b)°)

Q(C)? ‘V‘ST n2
+0 (; k2 #{ng}) +O(zk™Y).

The main term is equal to that in (2.1.1). The contribution of the error
terms is < xk~ ! if

(2.2.3) T =g k3.
For |g| < xg 'k~ =: T} the difference in the ny-sum can be expanded to

ole—1)

2
We will treat the first term. The higher terms can be treated in the same
manner. Because of the choice of T} they lead to smaller bounds. For 77 <
|o| < T there is no cancellation. It is therefore sufficient to study the follow-
ing expression:

(2:2.4) To= Y g Yl 0

o(Q), v[<Th n2

+ ﬁ Z gl’g‘Z(gng-f—b)Q‘.

o(¢), i <|y|I<T

o(gna + )71 + (gn2 +b)2% +

For these sums and similar ones in the other cases we will apply zero density
bounds and a mean value theorem for Dirichlet polynomials.

Write as usual, for ¢ > 1, x mod q, 1/2 <o <1,T > 2,

N(o,T,x) =#{oe=8+iy: L(o,x) =0, 8 > 0, |7| < T}.

Then we have

(¢T)30=2)/C=) 10 (qT) if 1/2 < o < 3/4,
(225) Y N(0.T,x) < { (qT)31=0)/Bo-1te £3/4< 0 <45,
Xx mod g (qT) (24€)(1—0) if 4/5 <o<1,
(2.2.6) <. (qT)12/3+9)(1-0)

(see Montgomery [4, Theorem 12.1], Huxley [1], Jutila [3]).

Let a, € Cfor 1 <n < N, and set D(s) = > -y ann°. Let A be a set
of complex numbers s = o + iT where o > 0q, [T — 7| > § for s # &' € A,



204 D. Wolke

and Top —0/2 <7 <Typ+ T+ /2. Then

(227) D ID()P <InlnN- (5 +InN) - (T+N) > |an]*n 27
seA n<N

(Montgomery [4, Theorem 7.5]).
Put

oo =00(¢) =1—k™3/4* =11 4.
The Vinogradov-Korobov zero free region (see Ivi¢ [2, Theorem 6.1]) ensures

¢(s) #0 for [Ims| < z,Res > op.

We have
lo 1/2 12\ /2
T, <k max g {(N(a, ) ( 3 ‘Z(gng—}—b)g ‘ )
/20500 o, [YI<Th n2
o<pB<o+k1
l
J'k 24 1/2
+7(N(07T))1/2< > ’Z(Q”frb)g‘ ) }
o, ‘V‘STl n2
o<p<o+k1

We split up the set of zeros into < k classes A which fulfill the conditions
of (2.2.7) with 6 = 1. Hence, by (2.2.7) and (2.2.6)

1/2<0<00 gl

(20-1)/2 (20+1)/2
AG) G
g T \g

< k' max m"(mg*l)(G/E’*E)(l*")
1/2<0<o09¢

< le(xl/2+3/5+ag—SZ/5 + mao+(6/5+a)50g—6l50/5)_

1/2
Eg <<5 k3 max glUT(6/5+5)(170.) ( Z k3>

This is < xzk~! for ¢! > 2!/° if ¢ > 0 is chosen sufficiently small. Hence
Theorem 1 is true in this case.

2.3. Second case: | < %k, > %k. The numbers n to be counted here
can be written as
-1
n=nog" tt+ ¥/ g" + Z 2,g" +bg' +n1 where
(2.3.1) =11

1<m <g' =1, (n,9)=1, " 2<ny < gttt g+t

In this part n; and no will denote these numbers. We get
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(232) dr= > (nag" ™+ ¥ +1)g" g bg' + m1)

ni,n2

—(nag" T+ 0 g", g bt + n)) + Oz /k)

v 1
- Z (p(gl—i-l) T o(g ) Z Zﬂnl""bgl)

n1,n2 x mod gl+1 n1

x %: (g(xz %Q (nag + b +1)2 — (nag +1))%) + O(% k2)>

)iy IST

+0(zk™) (2<T<2).

Again the main term gives the expected value. By the Pdélya—Vinogradov
inequality we have

l .
g if X = X0,

(2.3.3) x(n1 +bgl) < { .
%: g%k if x # xo.

Therefore the contribution of the error term O(zT~'k?) in (2.3.2)—which
does not depend on ni—is < #{no}¢"/?kaT~'k?. This is <« zk~! for
(2.3.4) T = xg/?7 VA,
Note that T' < x for k sufficiently large.
Let X, be the g-sum in (2.3.2). For o = 4y with |y| < zg 'k~ =T}
we have
07 ((nag + V' +1)° = (nag +1)°) < (xg™")7 ",

Put
_.=3/4 el 30

Uo(l):{l k 1fg§'/-c ,
1 otherwise

(in particular, o¢(¢) = 00(0)). Then o¢(l) describes a zero free region of
L(s,x), x mod g' (see Prachar [5, §6, Satz 6.2]). Hence

Y, <k max (2°N(0,T1)+ zg™" max U '2°N(o,U))
1/2<0<00(¢) T <ULT

RSP ( o Nl T
T 1/2£8£§o(1) v Z (0,71, x1)
x mod git1

= —1,.0
+xg TE%?TU x Z N (o, U,X)).
x mod gi+1

It is easy to see that (2.2.6), combined with the zero free regions, is sufficient
to show that the last quantity is < xk~! in the case g, :Ug*l/ < 25,

2.4. Third case: gl/ < 25, g < z1/5. Assume, for simplicity, 0 <1 < I’
The other cases can be treated in the same manner with minor modifications.
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Here we write the numbers n to be counted as

k—1
n= Y zg +Vg" +nag'™ +bg +n
v=l'+1
where
1<m <g, (n,9)=1 0<ng<g I+
Therefore
(240) dy,rp= O (e, g Vg +nag™tt 4 bg! )

ni,n2

—ap(xgt, GV G + nagtt + bgt + n1)) + O(zk™1)

= x(l - é) @ g " #{m} - #{n2}

1 '
- Z Zy(b'gl + g™t 4 byt + 1)

x mod gl/+1 M1,n2

« <g(x)727:ST Leti—g o)+ o(% k2>> + 0@k,

The contribution of the error terms is, by the orthogonality relation for
characters, < ¢~V ¢3"/?(x/T)k? + zk~". This is < zk~" if one chooses

(2.4.2) T = ¢"/%k>.

For x mod ¢" !, x # x0, we consider the sum

(2.4.3) D=y x(W'g" +nag™ + b + ).
ni,n2

X\ results from summation over < ¢" ! intervals of length < ¢'. By Pélya—
Vinogradov the sum over every such interval is < gl// 2k, hence

(2.4.4) 2, < g
On the other hand,

2y —Z Z X(n+b/gl/)

n<g
n=nj+bg! (g't1)

ZZ > > x(n+Vg")xi(na + bgh).

N1 y; mod gl+t n<gl,
The sum over ny is < g"/2k if x1 # xo0, but 3, x( ) < ¢""/?k. Therefore
EX <<gll/2kg_l(gl+gl gl/Qk) < g(l+l/)/2k‘2.



Primes with preassigned digits 207

Combined with (2.4.4) this implies

(2.4.5) PIVES k> min(g3l,/2_l,g(l+ll)/2) < k‘295l,/6.
The contribution of the g-sum to (2.4.1) is
B B
X U X
(2.4.6) < Y mte >oooomnl Y o
o(€), VT xmod gV’ +1, x#£xo o(x), VST

For gl/ < k30 we use, similarly to the second case, oo(I') = 1 — k—3/%. Now
(2.2.6) and the last inequality in (2.4.5) show that (2.4.6) is < xk~1.

In the case k%0 < ¢! < z!/3 we argue in the same manner with oo(I') = 1.
For 21/3 < gV < 19/%5 one uses DIV k2gU+)/2 Tn the case

(2.4.7) 1 < gl < g5
the ¢-part in (2.4.6) can be bounded by (2.2.6) with (¢) = 1 — k=3/%. The
x-part X, \ requires a bit more care. (2.2.5) gives

¥ kll (1-=1y/2 U—l U U\3(1—0)/(2—0) .00
ox e ?3%(1/21232(3/4 (Ug) v

max Ufl(Ugl )3( )/(3071)75‘%0
3/4<0<4/5

+ max U (UGG =)0y,
4/5<0<1
The contribution of the part with 4/5 < 0 < 11is < k! for the whole
interval. The exponent of U is < 0 for 1/2 < o < 4/5. Write g" = a¥,
19/45 < € < 4/5. Then we have, using ¢! < z!/%,

3(1—0o)
(248) Do € K210 max 2D
1/2<0<3/4
max x”+§(3§;:§)_%)+6) + kL
3/4<0<4/5
The function G(o) = o + &( ?E(IT (; — 3) is decreasing in [3/4,4/5] for £ €

[19/45,4/5]. Hence the second term in (2.4.8) is
< M p17/2046/104e o pp 1

The function H(o) = o + 5(3(%? — 3) is increasing in [1/2,3/4] for ¢ <
25/48. Again o = 3/4 leads to a sufficient bound.
For 25/48 < ¢ <4/5, G(0) has a maximum at

of=2—+/3§€[1/2,3/4].
We have 1/10+ H(o*) = 21/10 — 24/3 4+ 5£/2. In [25/48,4/5] this function
is increasing and gives a value < 1 at £ = 4/5.
This shows that (2.1.1) is true in all subcases of the third case. Theorem 1
is proved.
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3. Proof of Theorem 2. Assume r > ry(e) and a > 2. We will treat
the case in which there is a j with 1 < j,j + 1 < a such that [, —[; is
maximal amongst the a + 1 numbers l1,lo — I3, ..., —lo—1,k — 1 — 1, i.e.
lj+1 — lj Z k/(a+ 1). We write [ = lj, l/ = lj+1, b = bj, b/ = bj+1. The
numbers n to be counted in wk,a,l_:l; can be written as

-1
n=nag" T+ Vg + > 29" +bg +n1,
v=I[+1
where 0 < ny < ¢! with the digits by, ..., bj—1 at the corresponding places,
and gkil/f? <ng < g’“*l/*1 with the digits bjy2,...,b,. We have

Ni:=#{m}~g"7 and Ny:=#{ny}~ gh—V—(a=),
The explicit formula yields
B Y= 2 (g™ g

— (Pl Y] (Zi(m + bgl)) >
x mod gi+1 ni no
g"e
> <_ ((n2g +b' +1)? = (n2g +0')%) + O(k2)>
o0 < N ©
+Ok).
Because
(32) S 3wt + v < g

x mod gi+1  n1
the contribution of the error terms is

(3.3) < NP Nok? < Ny Nok? < = g~ =032,
g

Again, for |y] < Ty := zg~ "k, the difference (nag + b +1)2 — (nag + /)@
can be simplified by Taylor’s formula. For T} < U < U’ < 2U < z we will
consider the sum

l'o
Soi= @) Y (Exmhg) T D nag 40

x mod gitl M o(x
U<ly|<U’

The Riemann hypothesis, (3.2), and (2.2.7) imply

Sy < g“’—“/?Nf/QU—l/?kl/?( D ‘Z (nag + V) ’ )

x mod g+t o(x)
U<|v|I<U!

1/2
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< k2g(l’—l)/2Nll/QU—l/z(glU(xg—l’)N2)1/2

< kQacg_(“'H/_l)/2 (x = g").

There are < k sums Xp7. Therefore, the x-term in (3.1) is

< I’g_ak_l . ga/2_(l,_l)/2]€4.

This is < xg~ %! for k > ko(e) and a < (1 — )k'/2.
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