
ACTA ARITHMETICA

119.3 (2005)

Relative norms of units and 4-rank of class groups

by
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1. Introduction. In this paper, we use the following notation, for K
being a number field:

• OK is the ring of integers of K;
• O∗

K is the group of units in OK ;
• Cl(K) is the class group;
• h(K) is the class number;
• for a fractional ideal a of K, [a]K is the ideal class in Cl(K) contain-

ing a;
• e4(K) is the number of invariants of K divisible by 4, i.e. the number

of cyclic factors of the 2-class group of K whose order is divisible by 4
(e4(K) will also be called the 4-rank of K);

• for an extension L/K of number fields, NL/K is the relative norm map;
• Z is the set of rational integers and N resp. N0 is the set of positive

resp. non-negative integers;
• ‖ means “divides exactly” (for prime powers);
• Fq is the finite field with q elements where q is a prime power.

The problem of the solvability of the negative Pell equation, x2 − dy2

= −1 with d > 1 square-free can, as is well known, be formulated as a
question of whether the fundamental unit εd of Q(

√
d) has norm −1. In

other words, we ask whether the relative norm map between unit groups,

N
Q(

√
d)/Q

: O∗
Q(

√
d)

→ O∗
Q = {±1},

is surjective.
In general, we could ask the following natural question. Let L/K be an

extension of number fields. What can be said about the relative norm map

NL/K : O∗
L → O∗

K

between unit groups? (Clearly, units of L are mapped to units of K.) In
particular, can we decide whether this map is surjective?
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244 T. Bülow

In this paper, we investigate this problem for certain cyclic extensions of
prime degree, mostly quadratic.

Apart from the classical case, not much is known about the general
question. Hilbert (see [5]) gave a reformulation (in terms of the ramified
primes of L/K) of the problem only in the special case of K = Q(i) the

Gaussian field and L = K(
√

d), d an integer. We shall have more to say
about this case later and we shall use it to illustrate some of the results.

See also [3] where this problem about surjectivity is considered for certain
quadratic extensions of totally real number fields.

We mention two classical results.

Definition 1. Let D be the discriminant of the quadratic number
field K. Consider factorizations D = D1D2 of D where each of D1 and
D2 is a product of prime discriminants or equal to 1. The factorizations
D = D1D2 and D = D2D1 are considered the same. The factorization
D = D1D2 is of the second kind (German: “von zweiter Art”) if

(
D2

p

)
= 1 for all primes p |D1 and

(
D1

p

)
= 1 for all primes p |D2.

Here
(

Di

·
)

is the Kronecker symbol.

Definition 2. For a finite abelian group G, the number of cyclic factors
of the 2-Sylow subgroup of G whose order is divisible by 4 is called the 4-rank

of G.

In 1934, Rédei and Reichardt (see [12] and [13]) proved the following
theorem:

Theorem 1. Let the quadratic number field K have discriminant D. If

the number of factorizations D = D1D2 of D of the second kind is 2u, then

u is the 4-rank of the strict class group of K.

They also proved the following

Theorem 2. Let d > 1 be a square-free integer. Assume that d is not

divisible by a prime congruent to 3 modulo 4. If only the trivial factorization

of the discriminant of Q(
√

d) is of the second kind (which, by Theorem 1,

means that the strict 2-class group of Q(
√

d) is elementary abelian), then

N(εd) = −1.

The main results of this paper are the following two theorems (see Defi-
nition 4 for the definition of a (right) Rédei matrix and factorizations of the
second kind):

Theorem 3. Let l be a prime number. Let K be a number field that

contains the lth roots of unity and assume that l ∤ h(K); let π1, . . . , πt ∈ OK ,
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t ≥ 2, be such that (π1), . . . , (πt) are powers of distinct prime ideals. Let

β1, . . . , βt ∈ {1, . . . , l−1}; put α := πβ1

1 · · ·πβt

t and L := K( l
√

α). Assume that

the prime ideal in K dividing (πi) is the unique prime ramified in K( l
√

πi).
Consider the Rédei matrix M = ML/K . Define u ≥ 0 by rankFl

(M) =
t − 1 − u. Then the index [O∗

K : NL/K(O∗
L)] divides lu. In particular , if M

has maximal rank , t − 1, then NL/K(O∗
L) = O∗

K .

We shall use e4(L) to denote the 4-rank of the class group of the number
field L (cf. Definition 2).

Theorem 4. Let K be a number field and assume that 2 ∤ h(K); let

π1, . . . , πt ∈ OK , t ≥ 2, be such that (π1), . . . , (πt) are distinct prime ideals.

Put α := π1 · · ·πt and L := K(
√

α). Assume that (πi) is the unique prime

ramified in K(
√

πi). Assume that O∗
K ⊆ NL/K(L), so the 2-rank of Cl(L) is

t− 1 (cf. Lemmas 1 and 2). Let the right Rédei matrix ML/K have F2-rank

t − 1 − u, u ≥ 0. We can write [O∗
K : NL/K(O∗

L)] = lw, w ≥ 0. Then

u − w ≤ e4(L) ≤ u.

In particular , if M has maximal rank , t − 1 (i.e. if only the trivial factor-

ization of α is of the second kind), then the 2-class group of L is elementary

abelian.

2. General observations. In this section, we will see that the problem
about surjectivity of the relative norm map between unit groups for certain
cyclic extensions of prime degree is related to the ambiguous ideals of the
extension.

Definition 3. Let L/K be a cyclic extension of number fields with
Galois group Gal(L/K) = 〈σ〉. An ideal a of L is called ambiguous (with
respect to K) if it is fixed by σ: σ(a) = a.

An ideal class [a] of L is called ambiguous (with respect to K) if it is
fixed by σ: σ([a]) = [a]. The group of ambiguous ideal classes is denoted by
Am(L/K). An ideal class [a] of L is called strongly ambiguous (with respect
to K) if it contains an ambiguous ideal. The group of strongly ambiguous
ideal classes is denoted by Ams(L/K). Clearly, Ams(L/K) ⊆ Am(L/K).

From [8, §13, Lemma 4.1] and [6, p. 115] we have:

Lemma 1. Let L/K be a cyclic extension of number fields of prime de-

gree l. Let t′ be the number of ramified primes in L/K. For l odd , assume

that no infinite prime ramifies in L/K. Then

|Am(L/K)| =
h(K)lt

′−1

[O∗
K : NL/K(L∗) ∩O∗

K ]
,

|Ams(L/K)| =
h(K)lt

′−1

[O∗
K : NL/K(O∗

L)]
.
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The following lemma is well known and easily proved.

Lemma 2. Let L/K be a quadratic extension of algebraic number fields.

Suppose that 2 ∤ h(K). Then the 2-Sylow subgroup Am2(L/K) of the group

of ambiguous ideal classes is given by

Am2(L/K) = {[a]L ∈ Cl(L) | [a]2L = [(1)]L};
and hence

|Am2(L/K)| = [Cl(L) : Cl(L)2] = 2rank2(Cl(L)).

In particular ,

2 |h(L) ⇔ 2 | |Am2(L/K)|.

Proposition 1. Let L/K be a cyclic extension of number fields of

prime degree l. Assume that l ∤ h(K) and that L/K is unramified at infin-

ity. Let p1, . . . , pt ⊆ OL be the ramified prime ideals in L/K. Put Cl0(L) =
{[pa1

1 · · · pat
t ]L | 0 ≤ ai ≤ l − 1}. Then

|Cl0(L)| =
lt−1

[O∗
K : NL/K(O∗

L)]
.

In particular , the index [O∗
K : NL/K(O∗

L)] is a power of l.

Proof. Using the ambiguous class number formula (cf. Lemma 1),

|Am(L/K)| =
h(K)lt−1

[O∗
K : NL/K(L∗) ∩O∗

K ]
,

and the fact that the map Cl(K) → Cl(L), [a]K 7→ [a]L, is injective (since
l ∤ h(K), cf. [10, Corollary, p. 190]) it is not hard to see that the group
Ams(L/K) of strongly ambiguous ideal classes of L/K is the product of the
subgroups

Cl0(L) and {[a]L | a fractional ideal in K},
where Cl0(L) is an l-group (possibly trivial) and the second factor has order
h(K). It follows from Lemma 1 that

|Cl0(L)| =
|Ams(L/K)|

h(K)
=

lt−1

[O∗
K : NL/K(O∗

L)]
.

3. A sufficient condition for surjectivity. Let l be a prime number.
Let K be an algebraic number field that contains the lth roots of unity and
assume that l ∤ h(K); let π1, . . . , πt ∈ OK , t ≥ 2, be such that (π1), . . . , (πt)
are powers of distinct prime ideals. Assume that no prime different from
the prime in K dividing (πi) is ramified in the extension K( l

√
πi)/K. Let

β1, . . . , βt ∈ {1, . . . , l − 1}; put α := πβ1

1 · · ·πβt

t . Let pi ⊆ OK( l
√

α) be the

prime ideal above (πi). Put L := K( l
√

α) and L′ := K( l
√

π1, . . . , l
√

πt).
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Definition 4. Let the notation be as above.

(i) We use the Artin symbol to define the t × t Rédei matrix M =
[Muv] = ML/K with coefficients in Fl (the field with l elements) correspond-
ing to the extension L/K in the following way:

For u, v ∈ {1, . . . , t}, we let Muv := k if
(

L′/L

pu

)
( l
√

πv)
/

l
√

πv = e
2πi

l
·k.

(ii) Let l = 2 (and hence β1 = · · · = βt = 1), and let (π1), . . . , (πt) be
prime ideals. We say that the Rédei matrix M is a right Rédei matrix if it
satisfies the matrix relation

M




1
...

1


 =




0
...

0


 .

(iii) Let the assumptions be as in (ii). Consider a factorization α = α1α2

where α1 =
∏

u∈A1
πu and α2 =

∏
u∈A2

πu with disjoint A1 and A2 whose
union is {1, . . . , t}. We think of α = α1α2 and α = α2α1 as the same
factorization of α; hence there are 2t−1 distinct factorizations of α. We say
that α = α1α2 is a factorization of α of the second kind if the right Rédei
matrix M = ML/K satisfies

∑

v∈A2

Muv = 0 for all u ∈ A1 and
∑

v∈A1

Muv = 0 for all u ∈ A2.

Remark 1. (1) If p
γ1

1 · · · pγt

t , γu ≥ 0, is a principal ideal, then
(

L′/L

p1

)γ1

· · ·
(

L′/L

pt

)γt

= 1,

i.e. the matrix relation [γ1 · · · γt]M = [0 · · · 0] holds. It follows that

rankFl
(M) ≤ dimFl

(Cl0(L))

where Cl0(L) = {[pa1

1 · · · pat
t ]L | 0 ≤ ai ≤ l − 1}.

In particular, if (πi) is the nith power of a prime ideal in K, we have

p
n1β1

1 · · · pntβt

t = ( l
√

α), which implies that a Rédei matrix has rank at most
t − 1 over Fl.

Also, under the assumptions in (ii), a symmetric Rédei matrix is clearly
a right Rédei matrix.

(2) Our definition (iii) is a generalization of the concepts in [13]. It is
easily seen that

the F2-rank of ML/K is t − 1 − u

⇔ the number of factorizations of α of the second kind is 2u.
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We can now prove Theorem 3. Put L := K( l
√

α) and let Cl0(L) =
{[pa1

1 · · · pat
t ]L | 0 ≤ ai ≤ l − 1}. Then Remark 1 and Proposition 1 im-

ply that

lt−1−u = lrankFl
(M) ≤ |Cl0(L)| =

lt−1

[O∗
K : NL/K(O∗

L)]
.

Therefore, the index [O∗
K : NL/K(O∗

L)] divides lu. If, in particular, u = 0,
then NL/K(O∗

L) = O∗
K . This completes the proof of Theorem 3.

We shall illustrate the quadratic case in Section 5; here we give one
example for l = 3:

Proposition 2. Let p be a prime number congruent to 1 modulo 9; so

we can write p = a2+3b2 with a, b ∈ Z. Assume that 3 ‖ b. Then the following

two relative norm maps are surjective:

NK( 3
√

3p)/K : O∗
K( 3

√
3p) → O∗

K , N
K( 3

√
3p2)/K

: O∗
K( 3

√
3p2)

→ O∗
K ,

where K = Q(
√
−3).

Proof. Write p = ππ, π = a + b
√
−3, π = a − b

√
−3; we can assume

that a ≡ 1 (mod9). Since also 3 | b, it is easy to see that
(

π
π

)
3

=
(

π
π

)
3

= 1.

The fact that 3 ‖ b implies that (
√
−3) is inert in each of K( 3

√
π)/K and

K( 3
√

π)/K.
If we let α1 :=

√
−3 · π ·π and α2 :=

√
−3 · π2 ·π2, we see that the Rédei

matrices M1 = MK( 3
√

α1)/K and M2 = MK( 3
√

α2)/K have the forms

M1 =




∗ x y

∗ −x 0

∗ 0 −y


 , M2 =




∗ x y

∗ x 0

∗ 0 y


 ,

where x and y are non-zero. Hence M1 and M2 have rank 2 = 3− 1 over F3.

By Theorem 3 it is enough to note that K( 3
√

α1) = K( 3
√

3p2) and K( 3
√

α2) =
K( 3

√
3p).

4. 4-rank of class groups. From now on, we shall only consider qua-
dratic extensions.

In this section, we prove Theorem 4. We shall use the following lemma
whose proof is elementary:

Lemma 3. Let G be a finite abelian 2-group of 2-rank n ∈ N. Let H be a

subgroup of index 2 in G. Then it is possible to choose a basis b1, . . . , bn ∈ G
for G such that H = 〈b1, . . . , bn−1, b

2
n〉.

We can now prove Theorem 4. First, note that, by Proposition 1, we
have
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dimF2
({[pa1

1 · · · pat
t ]L | ai ∈ {0, 1}}) = t − 1 − w, w ∈ {0, 1, . . . , t − 1},

where pi is the prime ideal in L above (πi).
The idea of the proof is the same as in Reichardt [13], with a few adjust-

ments. Class field theory will be used.
Note first that for a non-trivial factorization α = α1α2 of α,

α = α1α2 is of the second kind

⇔ each prime in L dividing (α) splits completely in K(
√

α1,
√

α2).

Put A := the group of fractional ideals of L and S := the group of
fractional principal ideals of L.

As the 2-rank of Cl(L) is t−1 ≥ 1, there is (by class field theory) at least
one ideal group H1 (modulo S) in L of index 2 in A. The corresponding class
field L1 is a quadratic and unramified extension of L and hence has the form
L1 = K(

√
α1,

√
α2) where α = α1α2 is a non-trivial factorization of α. Con-

versely, for every such non-trivial factorization of α the field K(
√

α1,
√

α2)
is a quadratic and unramified extension of L and is, therefore, the class field
for an ideal group (modulo S) in L of index 2 in A.

By class field theory, e4(L) ≥ 1 if and only if there exists an unramified
Z/4-extension L2 of L. If this is the case, there is exactly one field L1 between
L and L2 such that L1/L is a quadratic and unramified extension; L1 must
have the form L1 = K(

√
α1,

√
α2); the unique non-trivial factorization α =

α1α2 of α will be called the factorization of α attached to L2.
We now prove some claims:

(a) If the non-trivial factorization α = α1α2 is attached to L2 where L2

is unramified and Z/4 over L, then α = α1α2 is of the second kind.

Let H2 be the ideal group (modulo S) in L corresponding to L2. Let
cH2 be a generator of A/H2 (≃ Z/4). Fix an i ∈ {1, . . . , t}. Since, in L,
(πi) = p2

i and (πi) ∈ H2, we have pi ∈ 〈(cH2)
2〉 =: H1. As the class field L1

corresponding to H1 is unramified and quadratic over L and contained in L2,
it follows that pi splits completely in L1 = K(

√
α1,

√
α2). Hence α = α1α2

is of the second kind. This proves (a).

(b) Let the non-trivial factorization α = α1α2 be of the second kind. Let

H1 be the ideal group (modulo S) in L corresponding to K(
√

α1,
√

α2).
Then

K(
√

α1,
√

α2)/L is contained in an unramified Z/4-extension

⇔ rank2(H1/S) = t − 1,

and we have p1, . . . , pt ∈ H1.

G := A/S has 2-rank t − 1; and G1 := H1/S has index 2 in G. By
Lemma 3 (applied to 2-Sylow groups) we can write
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G = 〈g1S, . . . , gt−1S〉H/S, gi ∈ A,

and

G1 = 〈g1S, . . . , gt−2S, (gt−1S)2〉H/S,

where [H : S] is odd. We see that

H1 = 〈g1, . . . , gt−2, g
2
t−1〉H.

Assume that G1 has 2-rank t − 1. Then we must have g2
t−1 6∈ S. Put H2 :=

〈g1, . . . , gt−2, g
4
t−1〉H. Then A/H2 ≃ Z/4.

Now let rank2(G1) < t − 1. Then

H1 = 〈g1, . . . , gt−2〉H.

From this we see that if H1 ⊇ N ⊇ S and [H1 : N ] = 2, then A/N 6≃ Z/4.
(For A = H1 ∪ gt−1H1.) This proves the first part of (b). The second part is
clear since each pi splits completely in K(

√
α1,

√
α2).

(c) Let the non-trivial factorization α = α1α2 be of the second kind. If

NL/K(O∗
L) = O∗

K , then K(
√

α1,
√

α2)/L is contained in an unrami-

fied Z/4-extension.

This follows from (b) and Proposition 1.

(d) Assume that NL/K(O∗
L) 6= O∗

K and that (cf. Proposition 1)

dimF2
({[pa1

1 · · · pat
t ]L | ai ∈ {0, 1}}) = t − 1 − w, w ≥ 1.

If prime ideals p̃1, . . . , p̃w in L not dividing (2α) are chosen such that

dimF2
({[pa1

1 · · · pat
t p̃ã1

1 · · · p̃ãw
w ]L | ai, ãj ∈ {0, 1}}) = t − 1,

then, for a non-trivial factorization α = α1α2 of the second kind,

K(
√

α1,
√

α2)/L is contained in an unramified Z/4-extension

⇔
(

α1

p̃j

)
=

(
α2

p̃j

)
= 1 for all j ∈ {1, . . . , w}.

Let H1 be as in (b). Then (d) follows from:

K(
√

α1,
√

α2)/L is contained in an unramified Z/4-extension

⇔ pj ∈ H1 for all j ∈ {1, . . . , w}

⇔ pj splits completely in K(
√

α1,
√

α2) for all j ∈ {1, . . . , w}

⇔
(

α1

p̃j

)
=

(
α2

p̃j

)
= 1 for all j ∈ {1, . . . , w}.
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The proof of the theorem can now be finished as follows. Put

n := the number of non-trivial factorizations α = α1α2 of the second kind

where K(
√

α1,
√

α2)/L is contained in an unramified Z/4-extension

= the number of non-trivial factorizations α = α1α2 where

K(
√

α1,
√

α2)/L is contained in an unramified Z/4-extension

= the number of subgroups of G := A/S of index 2

containing a subgroup in G with factor group Z/4

= 2e4(G) − 1 = 2e4(L) − 1,

where e4(G) is the 4-rank of the group G; here the third equality follows
from class field theory and the fourth is group theory of finite abelian groups.

From (a) we get
n ≤ 2u − 1.

For a given j ∈ {1, . . . , w} we have

xj :=

∣∣∣∣
{

α = α1α2 of the second kind
∣∣∣
(

α1

p̃j

)
=

(
α2

p̃j

)
= 1

}∣∣∣∣ ∈ {2u−1, 2u};

in particular, xj = 2u if NL/K(O∗
L) = O∗

K . Since

n + 1 =

∣∣∣∣
{

α = α1α2 of the second kind
∣∣∣
(

α1

p̃j

)
=

(
α2

p̃j

)
= 1

for all j ∈ {1, . . . , w}
}∣∣∣∣,

we conclude that
n + 1 ≥ 2u−y ≥ 2u−w

where y is the number of j with xj = 2u−1.
Note also that for u = t − 1,

n + 1 = 2u ⇔ x1 = · · · = xw = 2u.

This completes the proof of Theorem 4.

Remark 2. (1) As the proof shows, information (in concrete examples)
about (some of) the prime ideals p̃1, . . . , p̃w could give a more precise lower
bound on the 4-rank of L.

(2) For cyclic extensions L = K( l
√

α) of K (l odd prime) with Gal(L/K)
= 〈σ〉, it might be possible, using other methods, e.g. ideas from [1] and [2],
to prove a similar result where 2-rank and 4-rank are replaced by the indices

[Cl(L) : Cl(L)1−σ] and [Cl(L)1−σ : Cl(L)(1−σ)2].

5. Quadratic extensions of Q(i). Let (π1), . . . , (πt) be distinct prime
ideals in OQ(i) = Z[i] and assume that (πj) is the only ramified prime in

Q(i,
√

πj)/Q(i). Put α := π1 · · ·πt. Since we are asking whether x2−αy2 = i
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is solvable in Z[i], we shall assume that the necessary condition for solvabil-
ity,

NQ(i)/Q(πj) ≡ 1 (mod8) for all j ∈ {1, . . . , t},
is fulfilled. This means that i ∈ O∗

Q(i) is the relative norm of a number in

Q(i,
√

α), and so this is also a necessary (and sufficient) condition for

rank2(Cl(Q(i,
√

α))) = t − 1

(cf. Lemma 2 and the ambiguous class number formula).
We begin by considering the case where α := d = π1 · · ·πt where d 6= ±1

is a square-free rational integer. Let pj be the prime ideal in L := Q(i,
√

d)
above (πj).

Remark 3. According to [5],

rankF2
({[ pa1

1 · · · pat
t ]L | ai ∈ {0, 1}}) ∈ {t − 2, t − 1}

and the following statements are equivalent:

(1) i ∈ N
Q(i,

√
d)/Q(i)(O∗

Q(i,
√

d)
).

(2) There exist ε ∈ O∗
Q(

√
d)

and γ ∈ O
Q(

√
d) such that γ2 = 2ε.

(3) rankF2
({[ pa1

1 · · · pat
t ]L | ai ∈ {0, 1}}) = t − 1.

Note that the equivalence of (1) and (3) also follows from Proposition 1.

From the equivalence of (1) and (2) we deduce a rational (and complete)
criterion for i being in N

Q(i,
√

d)/Q(i)(O∗
Q(i,

√
d)

):

Theorem 5. (1) i ∈ N
Q(i,

√
2)/Q(i)(O∗

Q(i,
√

2)
).

Let d ∈ N \ {1, 2} be square-free.

(2) If d ≡ 1 (mod4), then i 6∈ N
Q(i,

√
d)/Q(i)(O∗

Q(i,
√

d)
).

(3) If the negative Pell equation x2 − dy2 = −1 is solvable (in Z), then

i 6∈ N
Q(i,

√
d)/Q(i)(O∗

Q(i,
√

d)
).

(4) If d 6≡ 1 (mod4) and x2 − dy2 = −1 is not solvable (in Z), then:

i ∈ N
Q(i,

√
d)/Q(i)(O

∗
Q(i,

√
d)

) ⇔ ∃x, y ∈ Z : x2 − dy2 = ±2.

Proof. (1) This is immediate from Remark 3.

(2) Assume that γ2 = 2ε, γ ∈ O
Q(

√
d), ε ∈ O∗

Q(
√

d)
; write γ = (x + y

√
d)/2.

We see that x2 − dy2 = ±8. Since also

2ε = γ2 = ±2 +
y2d + xy

√
d

2
,

we conclude that 2 |x, y. But an equation (x′)2 − d(y′)2 = ±2 is impossible
modulo 4.
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(3) Let x2 − dy2 = −4 be solvable and let ε be a fundamental unit of

Q(
√

d) which has norm −1. If i ∈ N
Q(i,

√
d)/Q(i)(O∗

Q(i,
√

d)
), then we have an

equation γ2 = ±2εk with k ∈ {0, 1}. As
√

2 6∈ Q(
√

d), we must have k = 1.
This gives the following contradiction:

0 < (N
Q(

√
d)/Q

(γ))2 = N
Q(

√
d)/Q

(2ε) = −4.

(4) As O
Q(

√
d) = Z[

√
d], the implication “⇒” is clear. So assume that

x2 − dy2 = 2(−1)k; put γ := x + y
√

d. Just note that

γ2 = x2 + dy2 + 2xy
√

d = 2((−1)k + dy2 + xy
√

d)

and

N
Q(

√
d)/Q

((−1)k + dy2 + xy
√

d) = 1 + d2y4 + 2dy2(−1)k − dx2y2

= 1 + dy2(dy2 + 2(−1)k − x2) = 1.

Remark 4. Let d ∈ Z\{±1, 2} be square-free and assume that d 6≡ 1
(mod4) and that x2 − dy2 = −1 is not solvable (in Z). If q1, . . . , qc ≡ 3
(mod4) are (some of the) prime factors of d and if ∃x, y ∈ Z : x2 − dy2 =
±2, then, clearly, q1 ≡ · · · ≡ qc (mod8) and exactly one of the equations
is solvable; in that case, x2 − dy2 = 2 is solvable if qi ≡ 7 (mod8) and
x2 − dy2 = −2 is solvable if qi ≡ 3 (mod8).

Corollary 1. Let q ≡ 3 (mod4) be a prime number. Then

i ∈ NQ(i,
√

q)/Q(i)(O∗
Q(i,

√
q)) and i ∈ NQ(i,

√
2q)/Q(i)(O∗

Q(i,
√

2q)).

Proof. It is well known that one of the equations x2 − qy2 = ±2 and one
of the equations x2 − 2qy2 = ±2 is solvable (see for instance [11]).

Lemma 4. Let K be a quadratic number field with discriminant D, and

let q and p1, p2 be prime numbers such that (q) is inert in K and p1, p2 are

split with prime (principal) ideal factorizations

(p1) = (π1)(π̃1) and (p2) = (π2)(π̃2)

in K. Assume that each of π1 and π2 is congruent to a square modulo 4
in OK . Then the following statements about quadratic residue symbols hold :

(1)
( q

πi

)
=

( q
π̃i

)
=

( q
pi

)
where the last symbol is an ordinary (rational)

Legendre symbol.

(2)
(

π̃1

π2

)
=

(
π1

π̃2

)
.

(3) If the Legendre symbol
(p1

p2

)
has the value 1, then

(
π1

π2

)
=

(
π̃1

π2

)
and(

π1

π̃2

)
=

(
π̃1

π̃2

)
; if

(p1

p2

)
= −1, then

(
π1

π2

)
6=

(
π̃1

π2

)
and

(
π1

π̃2

)
6=

(
π̃1

π̃2

)
.

If K 6⊆ R, each of these quadratic residue symbols retains its value when

reversed.
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Proof. (1), (2) and (3) are clear. The last claim follows from the Qua-
dratic Reciprocity Law in quadratic fields (Theorem 165 of [4]), which
states the following. Let α, β ∈ OK , with real conjugates α1, . . . , αr1

and
β1, . . . , βr1

, be coprime to 2, and suppose that α or β is congruent to a
square modulo 4; then(

α

β

)
·
(

β

α

)
= (−1)

∑n
i=1

((sgn(αi)−1)/2)·((sgn(βi)−1)/2).

The (right) Rédei matrices we encounter in the rest of this paper will be
symmetric because of the Quadratic Reciprocity Law in quadratic fields.

We shall now give some applications of Theorem 4 for K = Q(i) and
α := d = π1 · · ·πt where d is a rational integer.

Note that if q ≡ 3 (mod4) is a prime number and a ∈ Z, then, in
OK = Z[i], a is a quadratic residue modulo q.

Recall that e4(L) denotes the 4-rank of the class group of the number
field L; also, if the odd d satisfies i ∈ N

Q(i,
√

d)/Q(i)(O∗
Q(i,

√
d)

), then d ≡ 3

(mod4).
The first application is immediate:

Theorem 6. Let q1, . . . , qt ≡ 3 (mod4) be prime numbers. Put d :=
q1 · · · qt. Then:

(1) e4(Q(i,
√

d)) ∈ {t − 2, t − 1}.
(2) If i ∈ N

Q(i,
√

d)/Q(i)(O∗
Q(i,

√
d)

), then t is odd and

e4(Q(i,
√

d)) = t − 1;

in particular , e4(Q(i,
√

d)) is even.

Proof. The right Rédei matrix M
Q(i,

√
d)/Q(i) is the zero matrix.

Theorem 7. Let q1, . . . , qt ≡ 3 (mod4) and p ≡ 1 (mod8) be prime

numbers. Put d := q1 · · · qtp. Then:

(1) e4(Q(i,
√

d)) ∈ {t − 2, t − 1, t, t + 1}.
(2) If i ∈ N

Q(i,
√

d)/Q(i)(O∗
Q(i,

√
d)

), then t is odd and

e4(Q(i,
√

d)) ∈ {t − 1, t + 1};
in particular , e4(Q(i,

√
d)) is even.

Proof. In Q(i), let the prime factorization of p be p = ππ where we can
assume that π ≡ π ≡ 1 (mod4). We only have to prove that the number of
factorizations of α = q1 · · · qtππ of the second kind is 2t−1 or 2t+1; the other
assertions follow from this.

We can write α = q1 · · · qaq
′
1 · · · q′bππ where

(
π
qi

)
=

(
π
qi

)
= 1 and

(
π
q′j

)
=

(
π
q′j

)
= −1.
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Consider a factorization α = α1α2 of α. Assume that π |α1 and π |α2.
If b > 0, then (for example) q′1 |α1 and hence

(
α2

q′
1

)
=

(
π
q′
1

)
= −1 and so

α = α1α2 is not of the second kind. If b = 0, then, clearly, α = α1α2 is of
the second kind; and there are 2t such factorizations of the second kind.

For factorizations of the form

α1 = qi1 · · · qicq
′
j1 · · · q

′
jd

, α2 = qic+1
· · · qiaq′jd+1

· · · q′jb
ππ

where
(

π
qik

)
=

(
π

qik

)
= 1 and

(
π

q′jk

)
=

(
π

q′jk

)
= −1 it is easily seen that

α = α1α2 is of the second kind ⇔ 2 | d.

Hence

the number of such factorizations of the second kind

= (number of subsets of {1, . . . , b} with an even number of elements)

· (number of subsets of {1, . . . , a})

=

{
1 · 2a = 2t if b = 0,

2b−1 · 2a = 2t−1 if b > 0.

Therefore, the total number of factorizations of the second kind is{
2t + 2t = 2t+1 if b = 0,

0 + 2t−1 = 2t−1 if b > 0.

Theorem 8. Let q1, . . . , qt ≡ 3 (mod4) and p1, . . . , pa ≡ 1 (mod8) be

prime numbers and suppose that all the Legendre symbols
( qi

pj

)
and

(pk

pj

)
are

equal to 1. Put d := q1 · · · qtp1 · · · pa. Then:

(1) e4(Q(i,
√

d)) ∈ {t + a − 2, . . . , t + 2a − 1}.
(2) If i ∈ N

Q(i,
√

d)/Q(i)(O∗
Q(i,

√
d)

), then t is odd and e4(Q(i,
√

d)) is even.

Proof. We have
α = q1 · · · qtπ1π1 · · ·πaπa;

here the prime factorization of pi is pi = πiπi where we can assume that
π ≡ π ≡ 1 (mod4).

Put β := π1π1 · · ·πaπa, α1 = qi1 · · · qicβ1 and α2 = qic+1
· · · qitβ2. Since,

clearly,

α = α1α2 is of the second kind ⇔ β = β1β2 is of the second kind

(because the Legendre symbols
( qi

pj

)
are equal to 1), the number of factoriza-

tions of the second kind of α is 2t multiplied by the number of factorizations
of the second kind of β. The right Rédei matrix MQ(i,

√
β)/Q(i) is a block ma-

trix built of 2 × 2 blocks of the form
[

x x
x x

]
(because the Legendre symbols(pk

pj

)
are equal to 1). If we replace each such block with the entry x, we get

an antisymmetric a×a matrix of the same F2-rank as MQ(i,
√

β)/Q(i). By §91
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of [14], this rank is even. Hence the number of factorizations of the second
kind of α is of the form 2t · 22a−1−2k where 2k ∈ {0, 1, . . . , a}. The theorem
follows.

Let d be a product of t prime numbers congruent to 3 modulo 4. As
noted in Theorem 6, e4(Q(i,

√
d)) = t − 2 or t − 1. So, it would be natural

to ask if we can decide, just by looking at the prime factors of d modulo 8,
exactly when the case e4(Q(i,

√
d)) = t − 1 occurs. This is done in the next

theorem.

Remark 5. Let d > 1 be a square-free integer. Consider the natural
map

φ : Cl(Q(
√

d)) × Cl(Q(
√
−d)) → Cl(Q(i,

√
d)),

([a]
Q(

√
d), [b]Q(

√
−d)) 7→ [a]

Q(i,
√

d)[b]
Q(i,

√
d).

(1) In [7], it is proved that the kernel and cokernel of φ are elementary
abelian 2-groups.

(2) When d is a product of prime numbers congruent to 3 modulo 4, the

image of φ is exactly the subgroup of Cl(Q(i,
√

d)) consisting of squares of
ideal classes. (More precisely, this follows from the fact that, in this case,
Hilbert’s concepts of “Hauptgeschlecht” and “Geschlechter der Hauptart”
coincide for the extension Q(i,

√
d)/Q(i); see [5].)

For the (unique) factorization D = D1 · · ·Dm of the discriminant D of a
quadratic field K as a product of prime discriminants Di, let χi be the genus
character of the strict class group Cls(K) corresponding to Di. A strict ideal
class C ∈ Cls(K) is the square of a strict class if and only if at least m − 1
of χ1(C), . . . , χm(C) are equal to 1 (since χ1 · · ·χm = 1); see [15]. We can
now state and prove:

Theorem 9. Let t ∈ N. Let the positive square-free integer d have the

prime factorization

d = q1 · · · qsqs+1 · · · qt

with prime numbers q1 ≡ · · · ≡ qs ≡ 3, qs+1 ≡ · · · ≡ qt ≡ 7 (mod8).

(1) If s = 0, then e4(Q(i,
√

d)) = t − 1.

(2) If s = t, then e4(Q(i,
√

d)) =

{
t − 1 if 2 ∤ t,

t − 2 if 2 | t.
(3) If 0 < s < t, then

e4(Q(i,
√

d)) = t − 1 ⇔
(

qs+1 · · · qt

qi

)
= (−1)t−1 for all i ∈ {1, . . . , s} and

(
q1 · · · qs

qj

)
= 1 for all j ∈ {s + 1, . . . , t},

where the above symbols are the ordinary Legendre symbols.
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Proof. First note that for t = 1 the class number of Q(i,
√

d) is odd, so
the assertion is true in this case. So suppose that t ≥ 2. Put

K1 := Q(
√

d) and K2 := Q(
√
−d).

In this proof, we shall use a superscript “s” to denote strict ideal classes:
[a]sKi

∈ Cls(Ki). The (ramified) primes in K1 and in K2 above q1, . . . , qs,

qs+1, . . . , qt are inert in L := Q(i,
√

d). Put q0 := 2. In K1 resp. K2, we
shall denote the prime above qi by pj resp. qj for j = 0, . . . , t. Note that
[p0]L = [q0]L = [(1 + i)]L = 1 and [pi]L = [qi]L for i = 1, . . . , t.

Observe that if i ∈ N
Q(i,

√
d)/Q(i)(O∗

Q(i,
√

d)
), then t is odd and e4(Q(i,

√
d))

= t − 1 and s = 0 or s = t. If t is odd, then:

p0 is a principal ideal ⇒ x2−dy2 = ±2 is solvable ⇒ e4(Q(i,
√

d)) = t−1.

Let t be odd and assume that x2 − dy2 = ±2 is not solvable; so p0 is not
a principal ideal. Then we have (with φ as above):

e4(Q(i,
√

d)) = t − 1

⇔ rank2(im(φ)) = t − 1

⇔ ∃y ∈ im(φ)\{[pa1

1 · · · pat
t ]L | ai ∈ {0, 1}} : ord(y) = 2

⇔ ∃x ∈ Cl(K1) × Cl(K2) : ord(x) = 4 and ord(φ(x)) = 2

⇔ ∃z ∈ Cl(K1) × Cl(K2) : z is a square, ord(z) = 2 and φ(z) = 1

⇔ ∃a0, a1, . . . , at, b1, . . . , bt ∈ {0, 1} : ([pa0

0 pa1

1 · · · pat
t ]K1

, [qb1
1 · · · qbt

t ]K2
) is

a square in Cl(K1) × Cl(K2) of order 2 and [pa1

1 qb1
1 · · · pat

t qbt
t ]L = 1

⇔ ([p0p1 · · · ps]K1
, [q1 · · · qs]K2

) is a square in Cl(K1) × Cl(K2) of order 2.

The first “⇔” follows from Remark 5(2). The third “⇔” follows from
Remark 5(1) (about the kernel of φ).

The last “⇒” requires a proof. Assume that

z1 := [pa0

0 pa1

1 · · · pat
t ]K1

∈ Cl(K1) and z2 := [qb1
1 · · · qbt

t ]K2
∈ Cl(K2)

are squares with ord((z1, z2)) = 2 and [pa1

1 qb1
1 · · · pat

t qbt
t ]L = 1. We have

rankF2
({[px1

1 · · · pxt
t ]K1

| xi ∈ {0, 1}}) ∈ {t − 2, t − 1};
let r be this rank. (For t even it is always the case that r = t − 2.)

Consider the equation [pa1

1 qb1
1 · · · pat

t qbt
t ]L = 1, i.e. [pa1+b1

1 · · · pat+bt
t ]L = 1.

If r = t − 2, then, by Remark 3, we must have [pa1+b1
1 · · · pat+bt

t ]K1
= 1,

i.e. [pa1

1 · · · pat
t ]K1

= [pb1
1 · · · pbt

t ]K1
; hence we can assume that (a1, . . . , at) =

(b1, . . . , bt).
In the case we are considering, i.e. t odd, another way (which covers both

of the cases r = t − 2 and r = t − 1) of realizing that we can assume that
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(a1, . . . , at) = (b1, . . . , bt) is the following. As p0 is not a principal ideal, the
map

{[px0

0 px1

1 · · · pxt
t ]K1

| xi ∈ {0, 1}} → {[px1

1 · · · pxt
t ]L | xi ∈ {0, 1}},

[px0

0 px1

1 · · · pxt
t ] 7→ [px1

1 · · · pxt
t ]L

has kernel {1, [p0]K1
}. Hence [pa1+b1

1 · · · pat+bt
t ]K1

= [p0]
γ
K1

for a γ ∈ {0, 1},
and this implies that [pa0

0 pa1

1 · · · pat
t ]K1

= [pa0+γ
0 pb1

1 · · · pbt
t ]K1

; and we can
assume that (a1, . . . , at) = (b1, . . . , bt).

Since [pa0

0 pa1

1 · · · pat
t ]K1

is a square in Cl(K1), either [pa0

0 pa1

1 · · · pat
t ]sK1

or

[pa0

0 pa1+1
1 · · · pat+1

t ]sK1
is a square in Cls(K1). As z2 = z2 · [q1 · · · qt]K2

, we can
assume that [pa0

0 pa1

1 · · · pat
t ]sK1

is a square in Cls(K1).

Let χ
(1)
k resp. χ

(2)
k be the kth genus character of K1 resp. K2 (χ

(i)
0 cor-

responds to the prime discriminant −4 if 2 is ramified in Ki/Q).
If (a1, . . . , at) = (0, . . . , 0), then ord((z1, z2)) = 2 implies that a0 = 1;

hence [p0]
s
K1

= [pa0

0 pa1

1 · · · pat
t ]sK1

is a square in Cls(K1). As

χ
(1)
i ([p0]

s
K1

) =

(−qi

2

)
, i = 1, . . . , t,

we conclude that q1 ≡ · · · ≡ qt ≡ 7 (mod8), i.e. s = 0, and so “⇒” is proved
in this case.

Let (a1, . . . , at) 6= (0, . . . , 0) and consider a j ∈ {1, . . . , t} with aj = 1.
We have

1 = χ
(1)
j ([pa0

0 pa1

1 · · · pat
t ]sK1

) =
t∏

i=0
i6=j

χ
(1)
j ([pai

i ]sK1
) ·

t∏

k=0
k 6=j

χ
(1)
k ([pj]

s
K1

)

and

1 = χ
(2)
j ([qa1

1 · · · qat
t ]K2

) =
t∏

i=1
i6=j

χ
(2)
j ([qai

i ]K2
) ·

t∏

k=1
k 6=j

χ
(2)
k ([qj]K2

).

For i, k ∈ {1, . . . , t}, i 6= k, we have

χ
(1)
k ([pi]

s
K1

) =

(−qk

qi

)
= χ

(2)
k ([qi]K2

).

This and the above equalities imply that

1 = χ
(1)
j ([pa0

0 ]sK1
) · χ(1)

0 ([pj]
s
K1

) =

(−qj

2

)a0

·
(−4

qj

)
=

(−qj

2

)a0

· (−1),

and hence a0 = 1 and qj ≡ 3 (mod8). In particular, as+1 = · · · = at = 0.
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Assume now that j ∈ {1, . . . , s} and aj = 0. Then

1 = χ
(1)
j ([p0p

a1

1 · · · pas
s ]sK1

) = χ
(1)
j ([p0]

s
K1

) ·
s∏

i=1
i6=j

χ
(1)
j ([pai

i ]sK1
)

and

1 = χ
(2)
j ([qa1

1 · · · qas
s ]K2

) =
s∏

i=1
i6=j

χ
(2)
j ([qai

i ]K2
),

which implies that 1 = χ
(1)
j ([p0]

s
K1

) =
(−qj

2

)
= −1, which is a contradiction;

hence a1 = · · · = as = 1. This completes the proof of “⇒”.
For t even it is proved in a similar way (without the assumption of p0

not being principal) that

e4(Q(i,
√

d)) = t − 1

⇔ ([p1 · · · ps]K1
, [q0q1 · · · qs]K2

) is a square in Cl(K1) × Cl(K2) of order 2.

We now go through the cases of the theorem:

(1) q1 ≡ · · · ≡ qt ≡ 7 (mod8): Let t be odd. If p0 is a principal ideal, we
are done; so assume that p0 is not a principal ideal, i.e. ord([p0]K1

) = 2. We
just have to note that

χ
(1)
j ([p0]

s
K1

) =

(−qj

2

)
= 1, j = 1, . . . , t.

Let t be even. We have ord([q0]K1
) = 2 since q1 · · · qt is the only non-

trivial principal ideal in {qx0

0 qx1

1 · · · qxt
t | xi ∈ {0, 1}}. Note that

χ
(2)
j ([q0]K1

) =

(−qj

2

)
= 1, j = 1, . . . , t.

(2) q1 ≡ · · · ≡ qt ≡ 3 (mod8): Let t be odd. If p0 is a principal ideal,
we are done; so we can assume that ord([p0]K1

) = 2. Note that [p0]K1
=

[p0p1 · · · pt]K1
. For j = 1, . . . , t we have

χ
(1)
j ([p0p1 · · · pt]

s
K1

) =
t∏

i=0
i6=j

χ
(1)
j ([pi]

s
K1

) ·
t∏

k=0
k 6=j

χ
(1)
k ([pj]

s
K1

)

=

(−qj

2

) t∏

i=1
i6=j

(−qj

qi

)
·
(−4

qj

) t∏

k=1
k 6=j

(−qk

qj

)

= (−1) · (−1) · (−1)t−1 · (−1)t−1
t∏

m=1
m 6=j

((
qj

qm

)(
qm

qj

))

= (−1) · (−1) · (−1)t−1 · (−1)t−1 · (−1)t−1 = 1
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and
χ

(2)
j ([q1 · · · qt]K2

) = χ
(2)
j (1) = 1,

as required.
Let t be even. As

χ
(2)
1 ([q0q1 · · · qt]K2

) =
t∏

i=0
i6=1

χ
(2)
1 ([qi]K2

) ·
t∏

k=0
k 6=1

χ
(2)
k ([q1]K1

)

=

(−q1

2

) t∏

i=2

(−q1

qi

)
·
(−4

q1

) t∏

k=2

(−qk

q1

)

= (−1) · (−1) · (−1)t−1 · (−1)t−1
t∏

m=2

((
q1

qm

)(
qm

q1

))

= (−1) · (−1) · (−1)t−1 · (−1)t−1 · (−1)t−1 = −1,

[q0q1 · · · qt]K2
is not a square in Cl(K2), as required.

(3) q1 ≡ · · · ≡ qs ≡ 3, qs+1 ≡ · · · ≡ qt ≡ 7 (mod8) and 0 < s < t: First
note that ord([q1 · · · qs]K2

) = 2 for t odd and that ord([q0q1 · · · qs]K2
) = 2

for t even. Let j ∈ {1, . . . , s}. For t odd we have

χ
(1)
j ([p0p1 · · · ps]

s
K1

)

=
s∏

i=0
i6=j

χ
(1)
j ([pi]

s
K1

) ·
t∏

k=0
k 6=j

χ
(1)
k ([pj ]

s
K1

)

=

(−qj

2

) s∏

i=1
i6=j

(−qj

qi

)
·
(−4

qj

) t∏

k=1
k 6=j

(−qk

qj

)

= (−1) · (−1) · (−1)s−1 · (−1)t−1
s∏

m=1
m 6=j

((
qj

qm

)(
qm

qj

))
·
(

qs+1 · · · qt

qj

)

= (−1)t−1

(
qs+1 · · · qt

qj

)
.

Similar computations show that

χ
(2)
j ([q1 · · · qs]K2

) = (−1)t−1

(
qs+1 · · · qt

qj

)
for t odd

and

χ
(1)
j ([p1 · · · ps]

s
K1

) = χ
(2)
j ([q0q1 · · · qs]K2

) = (−1)t−1

(
qs+1 · · · qt

qj

)
for t even.
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Finally, let j ∈ {s + 1, . . . , t}. Then it is easily seen that

χ
(1)
j ([p0p1 · · · ps]

s
K1

) = χ
(2)
j ([q1 · · · qs]K2

) =

(
q1 · · · qs

qj

)
for t odd

and

χ
(1)
j ([p1 · · · ps]

s
K1

) = χ
(2)
j ([q0q1 · · · qs]K2

) =

(
q1 · · · qs

qj

)
for t even.

The assertion in (3) of the theorem follows from this. This completes the
proof of the theorem.

Before we give an application of Theorem 3, we state the following lemma
(whose combinatorial proof we skip).

Lemma 5. Let a, b ∈ N0. Consider the (2a+2b+1)×(2a+2b+1) matrix

over F2:

M =




0 1 · · · · · · · · · 1

1 |
... M11 | M12

... − − + − −

... M21 | M22

1 |




where M11 is a 2a × 2a matrix , M12 is a 2a × 2b matrix , M21 is a 2b × 2a
matrix and M22 is a 2b × 2b matrix ; these four matrices are constructed as

block matrices built of 2 × 2 matrices in the following way :
M11 has the form




[
∗ x1

x1 ∗

]

. . . [
∗ xa

xa ∗

]




with
[∗ xi

xi ∗
]
-blocks on the main diagonal , xi ∈ F2, and all other blocks of the

form
[ y y+1

y+1 y

]
, y ∈ F2 (with possibly different y).

Every block of M12 or of M21 is of the form
[

z z
z z

]
, z ∈ F2 (with vary-

ing z).
M22 comes in two types:

(I) Every block on the main diagonal of M22 is of the form
[∗ x

x ∗
]
, x∈F2

(with varying x), and all other blocks are of the form
[

y y
y y

]
, y ∈ F2 (with

varying y).
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(II) Every block on the main diagonal of M22 is of the form
[∗ x

x ∗
]
, x ∈ F2

(with varying x), and all other blocks are of the form
[ z z+1

z+1 z

]
, z ∈ F2 (with

varying z).
Finally , and in all cases, the entries on the main diagonal of M are

chosen such that all column sums of M are 0.
Then the following statements hold :

(i) If a is even and if M22 is of type (I), then M has maximal F2-rank ,
namely 2a + 2b.

(ii) If both a and b are even and if M22 is of type (II), then M has

maximal F2-rank , 2a + 2b.

We can now give the promised application of Theorem 3 (and Theorem 4,
for the claim about 2-class groups):

Theorem 10. Let a, b ∈ N0 and let a be even. Let q ≡ 3 (mod4) and

p1 ≡ · · · ≡ pa ≡ p′1 ≡ · · · ≡ p′b ≡ 1 (mod8) be prime numbers such that :

(1)
( q

p1

)
= · · · =

( q
pa

)
=

( q
p′
1

)
= · · · =

( q
p′

b

)
= −1;

(2)
( pi

pj

)
= −1 for i, j ∈ {1, . . . , a}, i 6= j;

(3)
( pi

p′u

)
= 1 for i ∈ {1, . . . , a}, u ∈ {1, . . . , b};

(4) for u, v ∈ {1, . . . , b}, u 6= v, either

(i) all the Legendre symbols
(p′u

p′v

)
have the value 1, or

(ii) b is even and all the Legendre symbols
(p′u

p′v

)
have the value −1.

Then

i ∈ N
Q(i,

√
qp1···pap′

1
···p′

b
)/Q(i)

(O∗
Q(i,

√
qp1···pap′

1
···p′

b
)
)

and the 2-class group Cl2(Q(i,
√

qp1 · · · pap′1 · · · p′b)) is elementary abelian.

(And one of the equations x2 − qp1 · · · pap
′
1 · · · p′by2 = ±2 is solvable in Z.)

Proof. We can write pi = πiπi and p′u = π′
uπ′

u where (πi), (πi), (π
′
u), (π′

u)
are prime ideals of K := Q(i) and πi ≡ π′

i ≡ πu ≡ π′
u ≡ 1 (mod4). Then

α = d = qπ1π1 · · ·πaπaπ
′
1π

′
1 · · ·π′

bπ
′
b.

Note that for γ ∈ {q, π1, π1, . . . , πa, πa, π
′
1, π

′
1, . . . , π

′
b, π

′
b}, the prime ideal

(1 + i) and hence every prime of K different from (γ) is unramified in the
extension K(

√
γ)/K. So by Theorem 3 it is enough to show that the (right)

Rédei matrix MQ(i,
√

α)/Q(i) has maximal rank; this follows immediately from
Lemmas 4 and 5.

We now investigate the case where (α) = (π) is a prime of OQ(i) = Z[i].
By the above, we only need to consider the split case, i.e. π of the form
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π = a + bi, a, b ∈ Z, where NQ(i)/Q(π) = a2 + b2 ≡ 1 (mod8) is a prime
number; hence 4 | ab.

The following lemma comes from the unpublished paper [9].

Lemma 6. Let π = a + bi be a prime of Z[i] with 2 | a and a + b ≡ ±1
(mod8). Then

4 |h(Cl(Q(i,
√

π))) ⇔ 8 | a.

Proof. For the convenience of the reader, we sketch the proof from [9].

Put K := Q(i,
√

π) and L := Q(
√

i,
√

π). As L/K is unramified, we have
2 |h(K). Since also the 2-class group Cl2(Q(i,

√
π)) is cyclic, we have

4 |h(K) ⇔ 2 |h(L).

By the ambiguous class number formula, applied to the extension L/F where

F = Q(
√

i), we have

2 |h(L) ⇔ [O∗
F : NL/F (L∗) ∩ O∗

F ] = 1

since h(F ) is odd. A calculation of this index gives the result.

Theorem 11. Let π = a + bi be a prime of Z[i].

(i) If 4 | b, then i ∈ NQ(i,
√

π)/Q(i)(O∗
Q(i,

√
π)

).

(ii) If 4 | a and a + b ≡ ±3 (mod8), then i ∈ NQ(i,
√

π)/Q(i)(O∗
Q(i,

√
π)

).

(iii) If 4 ‖ a and a + b ≡ ±1 (mod8), then i 6∈ NQ(i,
√

π)/Q(i)(O∗
Q(i,

√
π)

).

Proof. (i) By [5], (π) is the only ramified prime ideal of the extension
Q(i,

√
π)/Q(i). Hence the assertion follows from Proposition 1.

(ii) By [5], there are exactly two ramified primes of Q(i,
√

π)/Q(i),
namely (π) and (1 + i). Let p ⊆ OQ(i,

√
π) be the prime ideal above (1 + i).

By Proposition 1, it is enough to show that p is not principal.
As (1+i) is inert in Q(i,

√
iπ) (by [5]), p is inert in L := Q(

√
i,
√

π). Since
the extension L/Q(i,

√
π) is unramified, it follows from class field theory that

p is not principal.
(iii) As 2 ‖h(Cl(Q(i,

√
π))) (by Lemma 6) and Q(

√
i,
√

π)/Q(i,
√

π) is

unramified, Q(
√

i,
√

π) must be the 2-class field of Q(i,
√

π). By [5], (1 + i)

splits completely in Q(i,
√

iπ) and (1 + i) is ramified in Q(i,
√

π). Hence the

prime p ⊆ OQ(i,
√

π) above (1 + i) splits completely in Q(
√

i,
√

π); so p must

be principal. Since NQ(i)/Q(π) ≡ 1 (mod8), the prime (π) splits completely

in Q(
√

i); hence the prime p1 ⊆ OQ(i,
√

π) above (π) splits completely in

Q(
√

i,
√

π); so p1 is also principal. The theorem now follows from Proposition
1.

Remark 6. In the remaining case, 8 | a and a + b ≡ ±1 (mod8), there
seems to be no simple answer. For example, for some π of this kind it is true
that i ∈ NQ(i,

√
π)/Q(i)(O∗

Q(i,
√

π)
) and for some π this is false.
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[1] G. Gras, Sur les l-classes d’idéaux dans les extensions cycliques relatives de degré
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