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with almost prime orders
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Alina Carmen Cojocaru (Princeton, NJ)

1. Introduction. Let E be an elliptic curve defined over Q and of
conductor N . If Q is an algebraic closure of Q, then we can define a group
structure on E(Q). Let EndQ(E) be the endomorphism ring of E over Q. We
know that Z embeds into this ring, and that most of the time this embedding
is actually an isomorphism. If so, i.e. if Z ≃ EndQ(E), then we say that E
is without complex multiplication (or non-CM ). If Z is strictly contained in
EndQ(E), then EndQ(E) is an order O in an imaginary quadratic field K of
class number 1. In this case we say that E has complex multiplication by O
(or has CM by O) and that K is the CM field of E. Throughout this paper
we make the convention that a CM curve E has EndQ(E) isomorphic to the
full ring of integers OK of its CM field K.

If we restrict our attention to the group E(Q) of Q-rational points of E,
then we know by Mordell’s Theorem that this is a finitely generated abelian
group, hence we have a group isomorphism E(Q) ≃ Zr × E(Q)tors for some
non-negative integer r, called the rank of E over Q, and with E(Q)tors denot-
ing the torsion subgroup of E(Q). It is well known that a good understanding
of both r and E(Q)tors could be achieved by studying the reductions of E
modulo rational primes.

More precisely, for a prime p > 3 with p ∤ N , let Ep be the reduction of

E modulo p. This is an elliptic curve over Fp, the finite field with p elements,
whose group Ep(Fp) of Fp-rational points is finite, of cardinality

(1) #Ep(Fp) = p + 1 − ap

for an integer ap satisfying Hasse’s inequality

(2) |ap| < 2
√

p.
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The integers ap can be used to define an L-function associated to E, which,
by a famous conjecture of Birch and Swinnerton-Dyer, provides information
about the rank r of E. The groups Ep(Fp) can also be used to obtain a
precise description of E(Q)tors by combining a classical result of Nagell and
Lutz with the fact that E(Q)tors embeds into Ep(Fp) for almost all p.

More motivation for studying the groups Ep(Fp), as p varies, arises from
interesting analogies between natural questions about these groups and clas-
sical questions in number theory. For example, by noting that Ep(Fp) ≃
Z/dpZ × Z/dpepZ for some integers dp, ep uniquely determined by p and
E, one may ask: given a fixed integer d 6= 0, for how many primes p ≤ x
do we have dp = d? The particular case that dp = d = 1 (i.e. Ep(Fp) is
cyclic) has been studied extensively over the past 30 years (see [Co1] and
the references therein; also see [Co1] for general d). The question about
the cyclicity of Ep(Fp) may be viewed as a subproblem of an elliptic curve
version of Artin’s problem about primitive roots, formulated by Lang and
Trotter [LaTr] in 1977, and investigated in [GuMu]: given an elliptic curve
E over Q with rank ≥ 1, and given α ∈ E(Q) a point of infinite order,
for how many primes p ≤ x do we have Ep(Fp) = 〈α (mod p)〉? Clearly, if
#Ep(Fp) is prime, then Ep(Fp) = 〈α (mod p)〉 is satisfied for any α. Based
on this observation, N. Koblitz [Ko] formulated the stronger question: for
how many primes p is #Ep(Fp) prime? More precisely, with the convention
(kept throughout the paper) that p denotes a rational prime, we have:

Conjecture 1 (Koblitz, 1988 [Ko]). Let E be an elliptic curve defined

over Q, of conductor N , and such that the finitely many elliptic curves which

are Q-isogenous to E have a trivial Q-torsion group. Then there exists a

positive constant C(E), depending on E, such that , as x → ∞,

#{p ≤ x : p ∤ N, #Ep(Fp) = p + 1 − ap is a prime} ∼ C(E)
x

(log x)2
.

The motivation for this conjecture comes from elliptic curve cryptogra-
phy, for which one needs elliptic curves over finite fields such that the groups
of points of these curves have (large) prime orders. Heuristics similar to the
ones of Hardy and Littlewood on the twin prime conjecture led Koblitz to
the above formula.

No progress was made on Koblitz’s Conjecture until recently, when S. Ali
Miri and V. Kumar Murty [MiMu] exploited the similarity between the
primality of #Ep(Fp) = p + 1 − ap and that of p + 2. More precisely, they
carried out an elliptic curve version of the classical result that there are
infinitely many primes p such that p+2 has at most 4 distinct prime divisors,
described in [Bo, pp. 71–75] as an application of Selberg’s sieve. Their proof
deals only with non-CM elliptic curves, but could be easily modified to
handle CM elliptic curves as well. It makes use of an effective version of the
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Chebotarev Density Theorem, due to Lagarias and Odlyzko [LaOd], which
requires the assumption of GRH.

Theorem 2 (S. Ali Miri and V. Kumar Murty, 2001 [MiMu]). Let E
be a non-CM elliptic curve defined over Q, of conductor N , and such that

the finitely many elliptic curves which are Q-isogenous to E have a triv-

ial torsion group. Assume the Generalized Riemann Hypothesis (GRH) for

Dedekind zeta functions. Then there exists a positive constant C(E), de-

pending on E, such that , as x → ∞,

#{p ≤ x : p ∤ N, #Ep(Fp) has at most 16 distinct prime factors}
≥ C(E)

x

(log x)2
.

Currently, the best result about the number of primes p for which p + 2
is almost a prime is that there are infinitely many primes p for which p + 2
has at most 2 prime divisors (counted with multiplicities) and was obtained
by J. Chen using sieves with weights (see [Ch] or [HaRi, pp. 320–338]).
Chen’s method does not seem to be amenable to generalizations to treat
the situation of elliptic curves. The method of proof of the slightly weaker
result that there are infinitely many primes p for which p + 2 has at most 3
prime divisors (counted with multiplicities) [HaRi, pp. 247–252], based on
the weighted sieve of Richert [Ri], can, however, be generalized. Elaborating
on the ideas introduced in [MiMu], and using Richert’s sieve, an improved
Chebotarev Density Theorem due to Murty, Murty and Saradha [MuMuSa],
and a reduction method due to Serre [Se2], J. Steuding and A. Weng [StWe]
showed:

Theorem 3 (J. Steuding and A. Weng, 2005 [StWe]). Let E be an el-

liptic curve defined over Q, of conductor N , and such that the finitely many

elliptic curves which are Q-isogenous to E have a trivial Q-torsion group.

Assume GRH for Dedekind zeta functions.

(i) If E is non-CM , then there exists a positive constant C(E), depend-

ing on E, such that , as x → ∞,

#{p ≤ x : p ∤ N, #Ep(Fp) has at most 8 prime factors} ≥ C(E)
x

(log x)2
.

(ii) If E has CM by the full ring of integers of an imaginary quadratic

field , then there exists a positive constant C(E), depending on E,
such that , as x → ∞,

#{p ≤ x : p ∤ N, #Ep(Fp) has at most 3 prime factors} ≥ C(E)
x

(log x)2
.

We emphasize that in Theorem 3, the prime factors of #Ep(Fp) are
counted with multiplicities.
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Certainly one would like to have unconditional results, which we succeed
in proving if E is a curve with CM. This is the content of our main theorem
below:

Theorem 4. Let E be a CM elliptic curve defined over Q, of conduc-

tor N , and such that the finitely many elliptic curves which are Q-isogenous

to E have a trivial Q-torsion group. Then, without any unproven hypothe-

ses, there exists a positive constant C(E), depending on E, such that , as

x → ∞,

#{p ≤ x : p ∤ N, #Ep(Fp) has at most 5 prime factors} ≥ C(E)
x

(log x)2
.

In [MiMu], Miri and Murty showed in addition to Theorem 2 that, if
GRH holds and if E is non-CM, then for almost all primes p the group
Ep(Fp) has log log p distinct prime factors. The ideas used in the proof of
Theorem 4 can be used to prove the aforementioned result in the case that
E is with CM and without assuming GRH. Moreover, a careful look at
the proof given by Miri and Murty reveals that in the non-CM case we do
not need to assume the full strength of GRH, but a quasi-GRH, defined
as follows. Let K be a number field and let 1/2 ≤ θ < 1; we say that the
Dedekind zeta function ζK(s) of K satisfies the θ-quasi-GRH if ζK(s) has a
zero-free region of s ∈ C, Re(s) > θ. We show:

Theorem 5. Let E be an elliptic curve defined over Q, of conductor N .

If E is non-CM , we assume that the Dedekind zeta functions satisfy the

θ-quasi-GRH for some arbitrary 1/2 ≤ θ < 1. Let ν(n) denote the number

of distinct prime factors of an integer n. Then, as x → ∞,
∑

p≤x
p∤N

(ν(p + 1 − ap) − log log p)2 = ON

(
x log log x

log x

)
.

The implied ON -constant depends on the conductor N of E.

Here is an immediate consequence of this result:

Corollary 6. Let E be an elliptic curve defined over Q, of conduc-

tor N . If E is non-CM , assume the θ-quasi-GRH for Dedekind zeta func-

tions for some arbitrary 1/2 ≤ θ < 1. Let ε > 0. Then, except possibly

for

ON,ε

(
x

(log x)(log log x)2ε

)

of the primes p ≤ x, the number ν(#Ep(Fp)) of distinct prime factors of

#Ep(Fp) satisfies

log log p − (log log p)1/2+ε < ν(#Ep(Fp)) < log log p + (log log p)1/2+ε.
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Another immediate consequence is as follows. Let E be an elliptic curve
defined over Q, of conductor N . If E is non-CM, assume the θ-quasi-GRH
for Dedekind zeta functions for some arbitrary 1/2 ≤ θ < 1. Then

#{p ≤ x : p ∤ N, #Ep(Fp) is prime} ≪N
x

(log x)(log log x)
.

The implied ≪N -constant depends on the conductor N of E.

One could ask if it is possible to obtain an upper bound of the right
order of magnitude for the number of primes p ≤ x for which #Ep(Fp) is
prime. We can do so by using Selberg’s sieve and the ideas employed in the
proofs of the previous theorems. We obtain:

Proposition 7. Let E be an elliptic curve defined over Q, of conduc-

tor N . If E is non-CM , assume the θ-quasi-GRH for Dedekind zeta func-

tions for some arbitrary 1/2 ≤ θ < 1. Then

#{p ≤ x : p ∤ N, #Ep(Fp) is prime} ≪N
x

(log x)2
.

Also, if E is non-CM we have, unconditionally ,

#{p ≤ x : p ∤ N, #Ep(Fp) is prime} ≪N
x

(log x)(log log log x)
.

The implied ≪N -constants depend on the conductor N of E.

As a corollary, we obtain an elliptic curve analogue of Brun’s Theorem
about the convergence of the sum of reciprocals of twin primes:

Corollary 8. Let E be an elliptic curve defined over Q, of conduc-

tor N . If E is non-CM , assume the θ-quasi-GRH for Dedekind zeta func-

tions for some arbitrary 1/2 ≤ θ < 1. Then

B(E) :=
∑

p∤N
#Ep(Fp) prime

1

p
< ∞.

The constant B(E) has been computed for a few particular elliptic
curves E in [La].

2. Divisors of #Ep(Fp)

2.1. A general sieve problem. Let E be an elliptic curve defined over
Q and of conductor N . We keep the notation introduced in Section 1, and
we recall that our principal goal in this paper is to count rational primes
p ∤ N for which #Ep(Fp) = p + 1 − ap is a prime or an “almost” prime
(that is, it has a bounded number of prime factors). Our general strategy
is to formulate this as a sieve problem, and then to use appropriate sieve
methods to tackle it.
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More precisely, we set

A := {p ≤ x : p ∤ N},
P := {l : l a rational prime},

Aln := {p ∈ A : p 6= l, ln | p + 1 − ap} for each l ∈ P, n ∈ N,

and the sieve problem consists of estimating, from above and below, the
cardinality

S(A,P, z) := #
(
A \

⋃

l∈P
l<z

Al

)
,

or the cardinality of a variant of the above set, where z = z(x) is a parameter
to be chosen in each case. As in any sieve problem, the main necessary
ingredient is a good estimate for the cardinalities of the condition sets Aln .

Before continuing, let us note that for supersingular primes p of E (that
is, primes for which ap = 0), the problem of investigating the primality of
#Ep(Fp) (or of #Ep(Fp)/2) is the same as the classical twin prime problem.
Therefore, to remain in a genuine elliptic curve setting, our investigations
should be restricted to primes p of ordinary reduction for E (that is, primes
for which ap 6= 0). In the case of an elliptic curve E without CM, most
of the primes are of ordinary reduction, that is, there are only ON (x3/4)
supersingular primes ≤ x (see [El, pp. 25–26]). Hence in this case it is
unnecessary to distinguish between supersingular and ordinary primes in our
sievings. If E is with CM, then by results of Deuring [De], half of the primes
are supersingular, half are ordinary. To be more precise, the supersingular
primes of E are the primes inert in the CM field K of E, and the ordinary
primes of E are the primes splitting completely in K. Therefore in the CM
case the data for the sieve problem that we should actually investigate is:

Ao := {p ≤ x : p ∤ N, ap 6= 0},
P := {l : l a rational prime},

Ao
ln := {p ∈ Ao : p 6= l, ln | p + 1 − ap} for each l ∈ P, n ∈ N.

2.2. Chebotarev conditions. Now let us see what estimates we can obtain
for the cardinalities of the condition sets Aln and Ao

ln . As explained in [Ko,
pp. 159–163], for primes l 6= p the congruence ln | p + 1 − ap translates into
a Chebotarev condition for p. Then one could use the Chebotarev Density
Theorem to estimate #Aln and #Ao

ln . We shall elaborate on this remark in
what follows.

Let l be a rational prime and n a positive integer. Let E[ln] be the group
of ln-division points of E. We recall that we have a group isomorphism
E[ln] ≃ Z/lnZ×Z/lnZ, and that, by adjoining to Q the x- and y-coordinates
of the points in E[ln], we obtain a finite Galois extension Q(E[ln]) of Q.
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Moreover, we can define a natural representation

φln : Gal(Q(E[ln])/Q) → GL2(Z/lnZ),

which has the important properties that it is injective and that

det Frobp(Q(E[ln])/Q) ≡ p (mod ln),

tr Frobp(Q(E[ln])/Q) ≡ ap (mod ln)

for any prime p ∤ lN , where Frobp(Q(E[ln])/Q) denotes the Artin symbol
of p in Q(E[ln])/Q, and where we view Gal(Q(E[ln])/Q) as a subgroup of
GL2(Z/lnZ) (here det and tr denote the determinant and trace of a matrix).
Consequently, the primes p ∤ lN for which p + 1 − ap ≡ 0 (mod ln) are the
ones for which Frobp(Q(E[ln])/Q) is contained in the conjugacy set (i.e. a
finite union of conjugacy classes) of Gal(Q(E[ln])/Q) consisting of elements
with at least one eigenvalue equal to 1.

The Chebotarev Density Theorem allows us to count primes p ≤ x whose
Artin symbol in a finite Galois extension L of Q lies in a given conjugacy set
C of the Galois group G of L/Q. Stated rigorously, it says that, as x → ∞,

#{p ≤ x : Frobp(L/Q) ⊆ C} ∼ #C

#G
li x,

where li x denotes the logarithmic integral
∫ x
2

1
log t dt. (Here, for two func-

tions f, g : D ⊆ R → R with D infinite and g 6= 0 we say that f ∼ g if
limx→∞ f(x)/g(x) = 1.)

Combining the Chebotarev Density Theorem with the previous remark
we see that

#Aln = δ(ln) lix + Rln and #Ao
ln = δo(ln) lix + Ro

ln

for some “densities” δ(ln), δo(ln), and some “error terms” Rln , Ro
ln .

Since from classical theory we have information about the image of the
representation φln , the precise sizes of the densities δ(ln), δo(ln) can be easily
calculated by counting 2×2 matrices with one eigenvalue equal to 1. Indeed,
we recall:

Proposition 9. Let E be an elliptic curve defined over Q and of con-

ductor N .

(i) If E is non-CM , then there exists a positive constant A(E), depend-

ing on E, such that for any integer d coprime to A(E) we have

Gal(Q(E[d])/Q) ≃ GL2(Z/dZ).

(ii) If E has CM by the ring of integers OK of an imaginary quadratic

field K, then for any integer d coprime to 6N we have

Gal(Q(E[d])/K) ≃ (OK/dOK)∗.
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For proofs of (or more details on) these results, we refer the reader to
[Co2], [Ru, p. 187], and [Se1].

From here we deduce that for integers d composed of sufficiently large
primes, the densities δ(d) and δo(d) are multiplicative in d. Moreover, we
can calculate the following explicit formulae:

Proposition 10. Let E be an elliptic curve defined over Q and of con-

ductor N . Let l be a rational prime and n a positive integer.

(i) If E is non-CM , then

δ(ln) = 1/ln + O(1/ln+1).

(ii) If E has CM by the ring of integers OK of an imaginary quadratic

field K, then

δo(ln) =





1/2ln+1 + O(1/ln+2) if l is inert in K and n odd ,

1/2ln + O(1/ln+1) if l is inert in K and n even,

(n + 1)/2ln + O(1/ln+1) if l splits completely in K,

1/2ln + O(1/ln+1) if l ramifies in K.

For explanations on how to obtain these estimates we refer the reader to
[MiMu] and [StWe]. As we will see in Section 2.4, part (ii) of this proposition
is actually an immediate consequence of Lemma 14.

More effort is required to find satisfactory estimates for the error terms.
We shall discuss this in more detail in the next section.

2.3. Conditional estimates for Rd, R
o
d. In [StWe, pp. 345–347], Steuding

and Weng obtained estimates for Rl, R
o
l and Rl2 , R

o
l2 by using effective ver-

sions of the Chebotarev Density Theorem due to R. Murty, K. Murty and
N. Saradha [MuMuSa, p. 265, p. 268], together with a “reduction method”
of Serre [Se2, Section 2.6]. Implicit in their analyzes are also estimates for
Rln , Ro

ln for any n ≥ 1. We record their estimates for general Rd, R
o
d below.

Proposition 11. Let E be an elliptic curve defined over Q and of con-

ductor N . Let d be a positive integer. Assume GRH for Artin L-functions.

(i) If E is without CM , then

Rd = O(d3/2x1/2 log(dNx)).

(ii) If E has CM by the full ring of integers of an imaginary quadratic

field , then

Ro
d = O(d1/2x1/2 log(dNx)).

The implied O-constants are absolute.

Remark 12. Using the effective versions of the Chebotarev Density
Theorem given by Lagarias and Odlyzko [LaOd], we can easily obtain es-
timates for the error terms Rd, R

o
d under the assumption of more relaxed
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formulations of GRH, as follows. Let 1/2 ≤ θ < 1. Under the θ-quasi-GRH
for the Dedekind zeta functions of the division fields of an elliptic curve E
defined over Q and of conductor N , we obtain:

(i) if E is without CM, then

Rd = O(d3xθ log(dNx));

(ii) if E has CM, then

Ro
d = O(dxθ log(dNx)).

The implied O-constants are absolute.

Remark 13. Using the results in [LaOd], we can also obtain uncon-

ditional estimates for the error terms Rd, R
o
d, as long as d is very small

compared to x. More precisely, if d ≪ log log x and if A > 0 is an arbitrary
real number, then:

(i) if E is without CM, we have

Rd = OA

(
d3 x

(log x)A

)
;

(ii) if E has CM, we have

Ro
d = OA

(
d

x

(log x)A

)
.

The implied OA-constants depend only on A.

2.4. Unconditional estimates for Ro
d in the CM case. We emphasize that

Proposition 11 assumes the validity of GRH. An important question to ask
is whether we can eliminate this assumption. As will be explained below, we
are able to do so in the case of an elliptic curve with CM. The key lemma
that we rely on is:

Lemma 14. Let E be an elliptic curve defined over Q, of conductor N ,
and with CM by the full ring of integers OK of K. Let NK/Q(·) denote

the norm of K over Q. Let p ∤ N be a prime of ordinary reduction for E.

Write (p) = (πp)(πp) for the prime factorization of p in K, where πp, πp are

complex conjugate prime elements of OK of norm NK/Q(πp) = p. Let l 6= p
be another prime and n a positive integer.

(i) Assume that l is inert in K, that is, (l) = L for some prime ideal L
of OK with NK/Q(L) = l2. If n is odd , then the following assertions

are equivalent :

(a) ln |#Ep(Fp);
(b) ln+1 |#Ep(Fp);
(c) πp ≡ 1 (mod L(n+1)/2).

If n is even, then ln |#Ep(Fp) if and only if πp ≡ 1 (mod Ln/2).
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(ii) Assume that l splits completely in K, that is, (l) = LL for a prime

ideal L of OK with NK/Q(L) = l. Here L 6= L is the complex conju-

gate of L. Then ln |#Ep(Fp) if and only if πp ≡ 1 (mod LiLn−i) for

some 0 ≤ i ≤ n.

(iii) Assume that l ramifies in K, that is, (l) = L2 for some prime ideal

L of OK with NK/Q(L) = l. Then ln |#Ep(Fp) if and only if πp ≡
1 (mod Ln).

Proof. First let us recall that for ordinary primes p of an elliptic curve
E we have p + 1 − ap = (πp − 1)(πp − 1); if, in addition, E has CM by K,
then Q(πp) = K. Hence with p, E and K as in our lemma, NK/Q(πp − 1) =
p + 1− ap. The proof of the lemma is a straightforward consequence of this
observation.

(i) We are in the case that l is inert in K. First, consider the case when
n is odd. Assume that πp ≡ 1 (mod L(n+1)/2). By taking NK/Q(·), we obtain

ln+1 | p + 1− ap, and so ln | p + 1− ap. Now assume that ln | p + 1− ap. This
implies that Ln | (πp − 1)(πp − 1) in Q(πp) = K, or, in other words, that

(πp − 1)(πp − 1) = Ln(α)

for some α ∈ OK . Since L = L and (πp − 1) = (πp − 1), and since OK is a
Dedekind domain, we obtain

(πp − 1)(πp − 1) = Ln+1(β)

for some β ∈ OK , and moreover,

L(n+1)/2 | (πp − 1),

i.e. πp ≡ 1 (mod L(n+1)/2).

For n even, the proof proceeds along similar lines.

(ii) We are in the case that l splits completely in K. Assume that πp ≡
1 (mod LiLn−i) for some 0 ≤ i ≤ n. By taking NK/Q(·), we deduce that

ln | p + 1 − ap. Now assume that ln | p + 1 − ap. This implies that LnLn |
(πp − 1)(πp − 1) in Q(πp) = K, or that

(πp − 1)(πp − 1) = LnLn(α)

for some α ∈ OK . As in part (i), by using that (πp − 1) = (πp − 1) and that
OK is a Dedekind domain, we obtain

LiLn−i | (πp − 1)

for some 0 ≤ i ≤ n, hence πp ≡ 1 (mod LiLn−i).

(iii) Finally, we are in the case that l ramifies in K. Assume that πp ≡ 1
(mod Ln). By taking NK/Q(·), this gives us ln | p + 1− ap. Now assume that
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ln | p+1− ap. This implies that L2n | (πp − 1)(πp − 1) in Q(πp) = K, or that

(πp − 1)(πp − 1) = L2n(α)

for some α ∈ OK . Again, by keeping in mind that L = L, (πp − 1) = (πp−1)
and that OK is a Dedekind domain, we obtain

Ln | (πp − 1),

hence πp ≡ 1 (mod Ln).

Using this lemma and appealing to number field versions of the Siegel–
Walfisz Theorem, we could obtain unconditional estimates for Ro

d for positive
integers d lying in a short range relative to x (roughly this means that d
should be smaller than a power of log x). However, for our purposes it is
not necessary to estimate each error term individually, but as a sum of
the form

∑
d≤y |Ro

d| for some parameter y = y(x). It is desirable that y be
as close to x as possible. We will be able to estimate sums of this form,
unconditionally, by combining Lemma 14 with a number field version of
the Bombieri–Vinogradov Theorem, due to Huxley, which we record below.
Before, let us recall some standard notation. If ℘ is a prime ideal of the ring
of integers OK of a number field K, and k ≥ 1, we define the generalized

Euler function of ℘k by

ΦK(℘k) = NK/Q(℘)k

(
1 − 1

NK/Q(℘)

)
.

This definition is extended by multiplicativity to all non-zero ideals of OK .
Also, if I is an ideal of OK , we define the generalized von Mangoldt function

of I by ΛK(I) = log NK/Q(℘) if I = ℘k for some prime ideal ℘ of OK and
some k ≥ 1, and 0 otherwise.

Proposition 15 (Huxley [Hu, Thm. 1, p. 233]). Let K be a number field

of degree n. For each ideal I of OK , let h(I) denote the number of reduced

narrow ideal classes modulo I, and let ΦK(I) denote the generalized Euler

function of I. For a positive integer y and a narrow ideal class H modulo I,
let

Ψ(y, H) :=
∑

℘n∈H
NK/Q(℘n)≤y

ΛK(℘n),

where the sum is over prime ideal powers ℘n which lie in H and satisfy

NK/Q(℘n) ≤ y, and ΛK(℘n) is the generalized von Mangoldt function of ℘n.

Then for any A > 0 there exists B = B(A) > 0 such that

(3)
∑

NK/Q(I)≤x1/2/(log x)B

h(I)

ΦK(I)
max

H
max
y≤x

∣∣∣∣Ψ(y, H) − y

h(I)

∣∣∣∣ ≪A,K
x

(log x)A
,
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where the first maximum is over reduced narrow ideal classes modulo I. The

implied ≪A,K-constant depends only on A and K.

Remark 16. We will use Huxley’s result, together with partial summa-
tion, in the case that K is the CM field of a CM elliptic curve E defined
over Q. We recall that such a field is imaginary quadratic, of class number 1.
In this context (3) becomes

(4)
∑

NK/Q(I)≤x1/2/(log x)B

max
H

max
y≤x

∣∣∣∣Π(y, H) − li y

Φ(I)

∣∣∣∣ ≪A,K
x

(log x)A
,

where

Π(y, H) := #{(π) ∈ H : π a prime element in OK , NK/Q(π) ≤ y}.
We are ready to give unconditional estimates for

∑
d |Ro

d| in the case of
a CM elliptic curve.

Proposition 17. Let E be an elliptic curve defined over Q and of con-

ductor N . Assume that E has CM by the full ring of integers OK of an

imaginary quadratic field K. Then for any A > 0 there exists B = B(A) > 0
such that , as x → ∞,

∑

d≤x1/4/(log x)B

|Ro
d| ≪A,K

x

(log x)A
.

The implied ≪A,K-constant depends only on A and K.

Proof. First, let us set some notation. In what follows (as is the case
throughout the paper), l denotes a rational prime. We write a positive integer
d as

d = didrds,

where

di :=
∏

ln‖d
l inert in K

ln, dr :=
∏

ln‖d
l ramified in K

ln, ds :=
∏

ln‖d
l splits in K

ln,

and where by “splits” we mean “splits completely”. Also, ln ‖ d means that
ln | d, but ln+1 ∤ d.

For each rational prime l | d, we will use the notation:

1. if l | di,
(l) = L

for a prime ideal L of OK with NK/Q(L) = l2;

2. if l | dr,
(l) = L2

for a prime ideal L of OK with NK/Q(L) = l;
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3. if l | ds,

(l) = LL

for complex conjugate distinct prime ideals L, L of OK with NK/Q(L)

= NK/Q(L) = l.

Moreover, we denote by

ds = ln1
1 · · · lnν(ds)

ν(ds)

the prime factorization of ds, and we set

I(di) :=
∏

ln‖di

n odd

L(n+1)/2
∏

ln‖di
n even

Ln/2;

I(dr) :=
∏

ln‖dr

Ln;

Ii1,...,iν(ds)(ds) :=
∏

1≤j≤ν(ds)

L
ij
j L

nj−ij
j

for 0 ≤ i1 ≤ n1, . . . , 0 ≤ iν(ds) ≤ nν(ds).
Using Lemma 14, we see that

|Ro
d| ≤

∑

0≤i1≤n1

···
0≤iν(ds)≤nν(ds)

∣∣∣∣Π
s(x; I(di)I(dr)I

i1,...,iν(ds)(ds), 1)

− 1

2Φ(I(di)I(dr)I
i1,...,iν(ds)(ds))

lix

∣∣∣∣,

where for an ideal J of OK ,

Πs(x; J, 1) := #{(π) : π prime in OK ,

NK/Q(π) = p ≤ x for some rational prime p, π ≡ 1 (mod J)}.
Therefore, if y = y(x) is some positive real number, we have

(5)
∑

d≤y

|Ro
d| ≤

∑

I(d)

′
∣∣∣∣Π

s(x; I(di)I(dr)I
i1,...,iν(ds)(ds), 1)

− 1

2Φ(I(di)I(dr)I
i1,...,iν(ds)(ds))

lix

∣∣∣∣,

where the summation
∑′

I(d) is over ideals I(d) of the form

I(di)I(dr)I
i1,...,iν(ds)(ds)

of OK with d such that

NK/Q(I(d)) = didrds

∏

ln‖di

n odd

l ≤ y.
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For simplicity of notation, let |Rd| be the dth term in the sum on the right-
hand side of (5).

By (4), for any A > 0 there exists B = B(A) > 0 such that

(6)
∑

d
NK/Q(I(d))<x1/2/(log x)B

|Rd| ≪A,K
x

(log x)A
.

Now we choose

y :=
x1/4

(log x)B/2

and observe that all ideals of the form I(d) with d ≤ y have NK/Q(I(d)) ≤
x1/2/(log x)B. Combining this with (5) and (6) finishes the proof of the
proposition.

2.5. Unconditional upper bounds for #Ao
d in the CM case. We recall the

following result of Schaal:

Proposition 18 (Schaal, [Sc, Thm. 6, pp. 251–252]). Let K be a number

field of degree nK and discriminant dK , having r1 real embeddings into C and

2r2 complex conjugate embeddings into C. Let r := r1 +r2−1. Let αK be the

residue of the Dedekind zeta function of K at s = 1. Let I be an integral ideal

of K and let β ∈ OK be such that (β, I) = 1. Take M1, . . . , Mr1 ∈ [0,∞)
and P1, . . . , PnK ∈ (0,∞) with Pj = Pj+r2 for j = r1 + 1, . . . , r1 + r2. For

ω ∈ OK denote by ω(j) its jth conjugate. Consider the set

S := {ω ∈ OK : ω ≡ β (mod I), (ω) a prime ideal, ω satisfies (C)},
where conditions (C) are as follows:

(C)
Mj ≤ ω(j) ≤ Mj + Pj, ∀1 ≤ j ≤ r1,

|ω(j)| ≤ Pj , ∀r1 + 1 ≤ j ≤ nK .

If P := P1 · · ·PnK ≥ 2 and NK/Q(I) ≤ P/(log P )2r+2/nK , then

#S ≤ 2
23r2

αK |
√

dK | ·
P

Φ(I) log P
NK/Q(I)

{
1 + OK

((
log

P

NK/Q(I)

)−1/nK
)}

,

where the OK-constant above depends on K and is independent of I.

Combining this with Lemma 14 we obtain immediately:

Proposition 19. Let E be an elliptic curve defined over Q, of con-

ductor N , and with CM by the full ring of integers OK of an imaginary

quadratic field K (recall that it has class number 1). Let d ≤ (x/log x)1/2
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and write d = didrds as in the proof of Proposition 17. Then

#Ao
d ≪ ν(ds)∏

l|di

(l2 − 1) ·
∏

l|dr

l(l − 1) ·
∏

l|ds

(l − 1)
· x

log x
,

where l denotes a rational prime.

3. Proof of Theorem 4

3.1. Richert’s sieve with weights. The proof of Theorem 4 is an applica-
tion of the weighted sieve of Richert [HaRi, Thm. 9.1, p. 243, Lemma 9.1,
pp. 246–247], which we recall below:

Proposition 20 (Richert’s weighted sieve). Let A be a finite set of

(not necessarily positive and not necessarily distinct) integers. Let P be an

infinite set of rational primes. For each prime l ∈ P, let Al := {a ∈ A : a ≡ 0
(mod l)}. Write

#A = X + R1 and #Al = δ(l)X + Rl

for each l ∈ P, where X is some approximation to #A, δ(l)X is some ap-

proximation to #Al, and R1, Rl are the remainders in these approximations.

Let d denote squarefree positive integers composed of primes of P and let

δ(d) :=
∏

l|d

δ(l), Ad :=
⋂

l|d

Al, Rd := #Ad − δ(d)X.

For z > 0, let

P (z) :=
∏

l∈P
l<z

l, W (z) :=
∏

l|P (z)

(1 − δ(l)).

Assume that :

(Ω1) there exists A1 ≥ 0 such that 0 ≤ δ(l) ≤ 1 − 1/A1 for all l ∈ P;

(Ω2(1, L)) there exist L ≥ 1 and A2 ≥ 1 such that , if 2 ≤ w ≤ z, then

−L ≤
∑

w≤p≤z

δ(p) log p − log
z

w
≤ A2;

(R(1, α)) there exist 0 < α < 1 and A3, A4 ≥ 1 such that , if X ≥ 2, then

∑

d<Xα/(log X)A4

3ν(d)|Rd| ≤ A3
X

(log X)2
.

Assume also that there exist u, v, λ ∈ R and A5 ≥ 1 such that

1

α
< u < v,

2

α
≤ v ≤ 4

α
, 0 < λ < A5.
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Set

W(A,P, v, u, λ) :=
∑

a∈A
(a,P (X1/v))=1

(
1 − λ

∑

X1/v≤l<X1/u

l|a, l∈P

(
1 − u

log l

log X

))
.

Then there exists a constant c = c(A1, . . . , A5, u, v, α) > 0 such that

W(A,P, v, u, λ) ≥ X · W (X1/v) ·
(

f(α, v, u, λ) − cL

(log X)1/14

)
,

where

f(α, v, u, λ) :=
2eγ

αv

(
log(αv − 1) − λαu log

v

u
+ λ(αu − 1) log

αv − 1

αu − 1

)

and γ is Euler’s constant.

3.2. An infinitude of primes p with ν(#Ep(Fp)) absolutely bounded. Let
E be an elliptic curve defined over Q, of conductor N , such that the finitely
many elliptic curves Q-isogenous to E have a trivial torsion group. We
assume that E has CM by the full ring of integers OK of an imaginary
quadratic field K. With notation as in Section 1, we want to count the
primes p ∤ N with ap 6= 0 for which #Ep(Fp) = p + 1 − ap has a bounded
(and small) number of prime divisors. We do so by applying Proposition 20
to the sieve problem (Ao,P,Ao

ln) introduced in Section 2.
To apply the sieve we need to verify assumptions (Ω1), (Ω2(1, L)) and

(R(1, α)). As in [StWe, pp. 347, 350], it is straightforward to verify (Ω1)
and (Ω2(1, L)). The difficulty lies in verifying (R(1, α)), for which estimates
for Ro

l are needed. In [StWe], the authors used GRH. If α is chosen appro-
priately, we are able to verify (R(1, α)) without any unproven hypotheses,
by using Proposition 17.

Let

α :=
1

4.05

and let B = B(2) be given by Proposition 17. The Cauchy–Buniakowski–
Schwarz inequality gives us

(7)
∑

d≤x1/4/(log x)B

3ν(d)|Ro
d|

≤
( ∑

d≤x1/4/(log x)B

32ν(d)

d

)1/2( ∑

d≤x1/4/(log x)B

d|Ro
d|2

)1/2
.

By elementary methods,

∑

d≤x1/4/(log x)B

32ν(d)

d
≤

∑

d≤x1/4/(log x)B

τ(d)2 log 3/log 2

d
≪ (log x)β
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for some β > 0, where τ(·) is the divisor function (i.e. τ(d) =
∑

δ|d δ). Now

note that, by Proposition 19, d|Ro
d| ≪ x. Hence

∑

d≤x1/4/(log x)B

3ν(d)|Ro
d| ≪ x1/2(log x)β

( ∑

d≤x1/4/(log x)B

|Ro
d|

)1/2
.

Proposition 17 can now be invoked for the last sum, leading to
∑

d≤x1/4/(log x)B

3ν(d)|Ro
d| ≪

x

(log x)2
.

This verifies (R(1, α)).

To apply the sieve, let u, v, λ, A5 ∈ R be such that

(8)
1

α
< u < v,

2

α
≤ v ≤ 4

α
, 0 < λ ≤ A5.

Later on we will specify precise values of these parameters. Richert’s weighted
sieve gives

W(A,P, v, u, λ) ≥ X · W (X1/v)

(
f(α, v, u, λ) − C

(log X)1/14

)

for some constant C > 0, where

X :=
1

2
li x.

As explained in [StWe, pp. 348, 350], we have

W (X1/v) ≫E
1

log X

∏

l prime
χ(l)=0

(
1 − 1

(l − 1)2

)
(9)

×
∏

l prime
χ(l) 6=0

(
1 − χ(l)

l2 − l − 1

(l − χ(l))(l − 1)2

)
,

where χ(·) is the quadratic character associated to the CM field of E. Thus

W(A,P, v, u, λ) ≫E
x

(log x)2

(
f(α, v, u, λ) − C

(log x)1/15

)
.(10)

Now we proceed along the lines of the proof of [HaRi, Thm. 9.2, pp.
247–252]. Let p be a prime counted in W(A,P, v, u, λ) and whose weight

wt(p) := 1 − λ
∑

X1/v≤l<X1/u

l|#Ep(Fp)

(
1 − u

log l

log X

)

is positive. By the definition of W(A,P, v, u, λ), for such p we deduce that
#Ep(Fp) has no prime divisors l < X1/v. However, #Ep(Fp) may have prime
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divisors l ≥ X1/u. It is easy to see that

wt(p) ≤ 1 − λν(#Ep(Fp)) +
λu

log X

∑

l|#Ep(Fp)

log l.

By using Hasse’s bound, we see that the quantity on the right is

≤ 1 − λν(#Ep(Fp)) +
λu(2 log 2 + log x)

log x
.

Since wt(p) is positive, we must have

ν(#Ep(Fp)) ≤
1

λ
+ u.

Now we choose u, v, λ such that (8) is satisfied, the integral part [1/λ+u] is
minimal, and f(α, v, u, λ) > 0 (note that there is no unique choice of these
parameters). For example choose

(11) u := 4.1, λ := 0.53, v := 16.

We deduce that the primes p of positive weight wt(p) which are counted in
W(A,P, v, u, λ) satisfy the constraint ν(#Ep(Fp)) ≤ 5. Since wt(p) ≤ 1, we
conclude from (9) and (10) that, as x → ∞,

#{p ≤ x : p ∤ N, ap 6= 0, ν(#Ep(Fp)) ≤ 5}

≫E

∏

l prime
χ(l)=0

(
1 − 1

(l − 1)2

)
·

∏

l prime
χ(l) 6=0

(
1 − χ(l)

l2 − l − 1

(l − χ(l))(l − 1)2

)
x

(log x)2
.

3.3. A refined argument. In what follows we refine the above argument
to obtain infinitely many ordinary primes p such that Ω(#Ep(Fp)) ≤ 5,
where for a natural number n we denote by Ω(n) the number of all prime
factors of n (counted with multiplicities). We need to show that the number
of ordinary primes p ≤ x with (#Ep(Fp), P (X1/v)) = 1, having positive
weight in W(A,P, v, u, λ) and for which there exists a prime X1/v ≤ l <
X1/u such that l2 |#Ep(Fp), is small, i.e. is o(x/(log x)2). Again we want to
prove this unconditionally, and for this we rely on Lemma 14.

Let
∑′

p be the sum over primes p ≤ x, p ∤ N , ap 6= 0, with

(#Ep(Fp), P (X1/v)) = 1

and for which there exists a prime X1/v ≤ l < X1/u such that l2 |#Ep(Fp).



Reductions of an elliptic curve 283

By interchanging summations and using Lemma 14 with n = 2 we obtain:

(12)
∑

p

′ ∑

X1/v≤l<X1/u

l2|#Ep(Fp)

1 ≪
∑

X1/v≤l<X1/u

∑

p6=l
l2|#Ep(Fp)

′
1 + O

(
x1/u

log x

)

≪
∑

X1/v≤l<X1/u

#{p ≤ x : p ∤ lN, ap 6= 0, πp ≡ 1 (mod l)}

+
∑

X1/v≤l<X1/u

(l)=LL, L6=L

#{p ≤ x : p ∤ lN, ap 6= 0, πp ≡ 1 (mod L2)}

+
∑

X1/v≤l<X1/u

(l)=LL, L6=L

#{p ≤ x : p ∤ lN, ap 6= 0, πp ≡ 1 (mod L2)} + O

(
x1/u

log x

)
.

Proposition 18 of Schaal and elementary estimates can be invoked now to
estimate the number of ordinary primes p having πp congruent to 1 (mod l),
1 (mod L2) and 1 (mod L2). Since NK/Q(l) = NK/Q(L2) = NK/Q(L2) = l2 ≤
X2/u, we deduce that (12) is

≪K
x

log x

∑

X1/v≤l<X1/u

1

l2
+ O

(
x1/u

log x

)
≪K

x1−1/v

(log x)2
+

x1/u

log x
= o

(
x

(log x)2

)
,

where we have also made use of our choice of u and v. Thus the primes p
in question do not contribute to our final lower bound for W(A,P, v, u, λ).
This shows that

#{p ≤ x : p ∤ N, ap 6= 0, Ω(#Ep(Fp)) ≤ 5}

≫E

∏

l prime
χ(l)=0

(
1 − 1

(l − 1)2

)
·

∏

l prime
χ(l) 6=0

(
1 − χ(l)

l2 − l − 1

(l − χ(l))(l − 1)2

)
x

(log x)2
,

which completes the proof of Theorem 4.

4. Proof of Theorem 5. In this section we prove Theorem 5 by using
Turán’s normal order method. These investigations actually go back to a
general formalism of the normal order method due to K. Murty and R. Murty
[MuMu1]. We keep the convention that p and l denote rational primes. We
proceed along classical lines and show that

∑

p≤x

(ν(p + 1 − ap) − log log x)2 = O

(
x log log x

log x

)
,
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under a quasi-GRH if E is non-CM. A standard argument can be used to
show that the above implies

∑

p≤x
p∤N

ap 6=0

(ν(p + 1 − ap) − log log p)2 = O

(
x log log x

log x

)
,

which is exactly what is claimed in the statement of Theorem 5.

We recall that a classical theorem of Erdős [Er] asserts that

(13)
∑

p≤x

(ν(p + 1) − log log p)2 = O

(
x log log x

log x

)
.

Therefore, in view of Deuring’s formula for the number of supersingular
primes of a CM elliptic curve E, for such E it remains to treat only ordinary
primes p.

The classical starting observation is that for positive integers n ≤ x and
for y = xδ with 0 < δ < 1/2 we have

ν(n) = νy(n) + O(1),

where νy(n) denotes the number of distinct prime divisors of n which are
≤ y. Therefore

∑

p≤x
p∤N

′
ν(p + 1 − ap) =

∑

p≤x
p∤N

′
νy(p + 1 − ap) + O

(
x

log x

)
,

∑

p≤x
p∤N

′
ν2(p + 1 − ap) =

∑

p≤x
p∤N

′
ν2

y(p + 1 − ap)

+
∑

p≤x
p∤N

′
O(νy(p + 1 − ap)) + O

(
x

log x

)
,

where
∑′ means that we run over all primes p ∤ N if E is non-CM, and only

over primes p ∤ N with ap 6= 0 if E has CM.

By interchanging summations and by using the notation introduced in
Section 2, we obtain

∑

p≤x
p∤N

′
νy(p + 1 − ap) = lix

∑

l≤y

δ′(l) +
∑

l≤y

R′
l + O

(
y

log y

)
,

∑

p≤x
p∤N

′
ν2

y(p + 1 − ap) = lix
∑

l1,l2≤y
l1 6=l2

δ′(l1l2) +
∑

l1,l2≤y
l1 6=l2

R′
l1l2 +

∑

p≤x
p∤N

′
νy(p + 1 − ap),
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where, for an integer d, δ′(d) = δ(d) and R′
d = Rd if E is non-CM, and

δ′(d) = δo(d) and R′
d = Ro

d if E has CM.

First let us consider the case of an elliptic curve E without CM. In this
case we assume that there exists some 1/2 ≤ θ < 1 such that the Dedekind
zeta functions of the division fields of E satisfy a θ-quasi-GRH. We choose

y :=
x(1−θ)/8

(log x)1/4

and then the sums
∑

l1 6=l2<y Rl1l2 can be estimated under the θ-quasi-GRH
by using Remark 12. More precisely,

∑

l≤y

Rl =
∑

l≤y

O(l3xθ log(lNx)) = O(y4xθ log(Nx)) = ON

(
x

log x

)
,

and similarly,
∑

l1,l2≤y
l1 6=l2

Rl1l2 =
∑

l1,l2≤y
l1 6=l2

O(l31l
3
2x

θ log(l1l2Nx))

= O(y8xθ log(Nx)) = ON

(
x

log x

)
.

For the sums
∑

l≤y δ(l) and
∑

l1 6=l2≤y δ(l1l2) we use the formulae given

in Proposition 10. Also, we recall that for sufficiently large l1, l2, the density
δ(l1l2) is multiplicative. We obtain

∑

p≤x
p∤N

νy(p + 1 − ap) = (lix)(log log y) + ON

(
x

log x

)

= (lix)(log log x) + ON

(
x

log x

)
;

∑

p≤x
p∤N

ν2
y(p + 1 − ap) = (lix)(log log y)2 + (lix)(log log x) + O

(
x

log x

)

= (lix)(log log x)2 + ON

(
x log log x

log x

)
.

By putting these estimates together we deduce that

∑

p≤x
p∤N

(ν(p + 1 − ap) − log log x)2 = ON

(
x log log x

log x

)
.

Now let us assume that we are in the case of an elliptic curve with CM
by the full ring of integers of an imaginary quadratic field K. This time we
assume no unproven hypotheses. Let A > 0 and let B = B(A) be as given
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by Proposition 17. We choose

y :=
x1/4

(log x)B

so that the sums
∑

l≤y Ro
l and

∑
l1 6=l2<y Ro

l1l2
can be estimated uncondi-

tionally. For the sums
∑

l≤y δo(l) and
∑

l1 6=l2≤y δo(l1l2) we use the formulae
given in Proposition 10, also recalling the multiplicativity property of δo(·).
More precisely, by splitting the sums according to whether l, l1, and l2 are
inert, split completely or ramify in K, and by invoking elementary estimates
such as Mertens’ Theorem, we obtain

∑

p≤x
p∤N

ap 6=0

νy(p + 1 − ap) =
lix

2

∑

l≤y
l inert in K

1

l2 − 1
+

lix

2

∑

l≤y
l splits in K

2l − 3

(l − 1)2

+ OA,K

(
x

(log x)A

)

=
(lix)(log log x)

2
+ OK,N

(
x

log x

)
.

Similarly, and also relying on the above estimate, we obtain
∑

p≤x
p∤N

ap 6=0

ν2
y(p + 1 − ap) = li x

∑

l1,l2≤y
l1 6=l2

δo(l1l2) +
(lix)(log log x)

2
+ OK,N

(
x

log x

)

=
(lix)(log log x)2

2
+ OK,N

(
x log log x

log x

)
.

We put everything together and deduce that
∑

p≤x
p∤N

ap 6=0

(ν(p + 1 − ap) − log log x)2 = OK,N

(
x log log x

log x

)
.

The dependence of the OK,N -constant on K can be absorbed into a constant
depending only on N , since there are only nine possibilities for the fields K
(recall that K is an imaginary quadratic field of class number 1).

From here and (13) it is an easy exercise to deduce Corollary 6.

5. Proof of Proposition 7. Let l denote rational primes and n positive
integers. We consider the sieve problems (A,P,Aln) if E is non-CM, and
(Ao,P,Ao

ln) if E has CM, and apply Selberg’s sieve (see [CoMu, Thm. 7.2.1

and Lemma 7.2.3]). Let δ̃(·) be the completely multiplicative function de-

fined by δ̃(l) = δ(l) for all l ∈ P. Let z = z(x) be a parameter to be chosen
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in each case. We observe that

#{p ≤ x : p ∤ N, #Ep(Fp) a prime} ≤ z + S(A,P, z),

#{p ≤ x : p ∤ N, ap 6= 0, #Ep(Fp) a prime} ≤ z + S(Ao,P, z),

where S(A,P, z) = #(A\⋃
l|P (z) Al) and S(Ao,P, z) = #(Ao \⋃

l|P (z) Ao
l ).

First let us consider the case when E is without CM. We assume that
for some 1/2 ≤ θ < 1, the Dedekind zeta functions of the division fields of E
satisfy the θ-quasi-GRH. Then, by using part (i) of Remark 12 in Selberg’s
sieve we obtain

S(A,P, z) ≤ X
∑
d≤z

d|P (z)

δ̃(d)
+ O

( ∑

d1,d2≤z
d1,d2|P (z)

|R[d1,d2]|
)

≪ x

(log z)(log x)
+ z8xθ log(Nx).

We choose

z :=
x(1−θ)/8

(log x)3/8

and derive the desired upper bound

#{p ≤ x : p ∤ N, #Ep(Fp) a prime} ≪N
x

(log x)2
.

To obtain an unconditional result, we rely on part (i) of Remark 13 to deduce

S(A,P, z) ≪ x

(log z)(log x)
+ z8 x

(log x)A

for any A > 0, and with z := c log log x for a suitable absolute constant c.
This implies that

#{p ≤ x : p ∤ N, #Ep(Fp) a prime} ≪ x

(log x)(log log log x)
.

Now let us assume that E has CM by the full ring of integers of an
imaginary quadratic field K. Let B = B(2) be given by Proposition 17, and
choose

z :=
x1/8

(log x)B/2
.

By using Proposition 17 to estimate the sums
∑

d1,d2≤z |Ro
[d1,d2]

| we obtain

S(Ao,P, z) ≪ x

(log z)(log x)
+

x

(log x)2
≪ x

(log x)2
,

which leads to the desired upper bound

#{p ≤ x : p ∤ N, ap 6= 0, #Ep(Fp) a prime} ≪ x

(log x)2
.
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Corollary 8 is obtained by the partial summation technique combined
with the above upper bounds.

6. Concluding remarks. By assuming, in addition to GRH, a Pair
Correlation Conjecture (PCC) on the zeroes of Artin L-functions, we could
actually prove that in the non-CM case we have

(14) #{p ≤ x : p ∤ N, #Ep(Fp) has at most 3 prime factors}
≥ C(E)

x

(log x)2
.

This is a consequence of the improved effective versions of the Chebotarev
Density Theorem due to K. Murty and R. Murty [MuMu2]. Namely, under
GRH and PCC one would obtain, in the non-CM case,

Rd = ON (d1/2x1/2 log(dx)).

Then, using this estimate in the Richert’s sieve, one gets (14). In the CM case
the assumption of PCC does not seem to lead to any further improvements,
because of the “almost abelian” nature of the division fields involved.
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