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1. Introduction. Let ξ > 0 and θ > 1 be real numbers. The distribution
of the sequence ({ξθn})n≥0, where {x} denotes the fractional part of x, is
one of the intriguing problems in number theory.
For a fixed θ, it is known (Weyl [13]) that the sequence {ξθn} is uniformly

distributed in [0, 1] for almost all ξ. Similarly, it is well known (Koksma
[6], see also Boyd [1]) that for a fixed ξ, the sequence {ξθn} is uniformly
distributed in [0, 1] for almost all real θ > 1.
On the other hand, it is still not known whether {(3/2)n} is dense in

[0, 1], let alone whether this sequence is uniformly distributed or not. How-
ever, Vijayaraghavan [12] showed that for any two integers p > q ≥ 2 with
gcd(p, q) = 1, {(p/q)n} has infinitely many limit points. But, as was re-
marked by him, a remark which is still valid today, it is striking that one
cannot even decide whether [0, 1/2) (or [1/2, 1)) contains infinitely many
limit points of the sequence {(3/2)n}. Therefore, it would be interesting to
have the following result:

lim sup
n→∞

{(3/2)n} − lim inf
n→∞

{(3/2)n} > 1/2,

which would imply that {(3/2)n} has limit points in both of the intervals
[0, 1/2) and [1/2, 1).
In [3], Flatto, Lagarias and Pollington showed that for integers p > q ≥ 2

with gcd(p, q) = 1,

lim sup
n→∞

{ξ(p/q)n} − lim inf
n→∞

{ξ(p/q)n} ≥ 1/p

for all real ξ > 0.
An idea taken from a paper of Mahler [9] is an essential ingredient of

the above paper. Mahler [9] had proved that the set of Z-numbers is at
most countable, where a Z-number α is defined by the requirement that
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0 ≤ {α(3/2)n} < 1/2 for all n ≥ 0. The question of existence of a Z-number
is still open and is closely related (see [9], [8]) to the 3x + 1 problem. The
connection between the sequence {(3/2)n} and Waring’s problem is also well
known (see [4], for example).

The questions taken up in this paper are mainly motivated by a paper
of Strauch [10]. We refer to this paper for statements of several related
conjectures and some results of Choquet [2] and Tijdeman [11] in those
directions.

In order to state the problems considered in the present paper and their
connection to Z-numbers, we shall need the concept of distribution functions
of a sequence. We refer to [7] for details. A distribution function g(x) is a
real-valued, non-decreasing function defined on [0, 1] for which g(0) = 0 and
g(1) = 1. Let ∆ = (xn)

∞
n=1 be a sequence with xn ∈ [0, 1). For any positive

integer N and a subinterval I ⊂ [0, 1], we define the following counting
function:

A(I;N ;∆) = #{xn | 1 ≤ n ≤ N, xn ∈ I}.

A distribution function g is called a distribution function of the sequence
∆ if there exists an increasing sequence of positive integers N1, N2, . . . such
that

lim
k→∞

A([0, x);Nk;∆)

Nk
= g(x) for every x ∈ [0, 1].

The sequence ∆ is said to have the asymptotic distribution function g if

lim
k→∞

A([0, x); k;∆)

k
= g(x) for every x ∈ [0, 1].

We note that in terms of distribution functions, the following statement will
clearly imply non-existence of Z-numbers:

Suppose g(x) is a distribution function of {ξ(3/2)n}. If g(x) is constant
for all x in an interval I ⊂ [0, 1], then |I| < 1/2.

Thus the study of distribution functions of {ξ(p/q)n} becomes relevant.
In [10], Strauch studied distribution functions of {ξ(3/2)n}. For a distribu-
tion function g of a given sequence, we call a setX ⊂ [0, 1] a set of uniqueness
of g if defining g on X uniquely determines it in all of [0, 1]. In other words,
if g1 and g2 are any two distribution functions of the sequence which agree
on X, then they agree on [0, 1]. Strauch [10] proved the following theorem.

Theorem A. Let

I1 = [0, 1/3], I2 = [1/3, 2/3], I3 = [2/3, 1].

Then for any i, j with 1 ≤ i 6= j ≤ 3, the set X = Ii∪Ij is a set of uniqueness
of any distribution function g of {ξ(3/2)n}.
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As an application of this result, Strauch showed (see Section 5 of [10])
that the distribution function g given by

g(x) =

{

x for x ∈ [0, 2/3],

x2 − (2/3)x+ 2/3 for x ∈ [2/3, 1],

is not a distribution function of {ξ(3/2)n} for any ξ.

In this paper, in our first theorem, we extend Theorem A as follows.

Theorem 1. Suppose g is a distribution function of {ξ(p/q)n} where
p > q > 1 are positive integers with gcd(p, q) = 1. Let

Ii =

(

i− 1

p
,
i

p

)

and Ji = [0, 1]− Ii for 1 ≤ i ≤ p.

Further , assume that p ≥ q2− q if j/q ∈ Ii for some j with 1 ≤ j < q. Then
X = Ji for 1 ≤ i ≤ p is a set of uniqueness of g.

It follows that if q = 2, then for every odd integer p, X = Ji is a set of
uniqueness of any distribution function of {ξ(p/2)n}.

As a consequence, in the spirit of the example given by Strauch, we
obtain (see Section 4) a whole class of distribution functions which are not
distribution functions of the sequence {ξ(p/q)n} for any ξ > 0.

Determining the existence of the asymptotic distribution function of se-
quences of the form {ξθn} is rather difficult. As we have mentioned be-
fore, work of Weyl [13] establishes that for almost all ξ, {ξθn} is uniformly
distributed in [0, 1] and hence has the asymptotic distribution function
g(x) = x. In the other direction, Helson and Kahane [5] established the
existence of uncountably many ξ such that {ξθn} does not have an asymp-
totic distribution function where θ > 1 is any fixed real number. Therefore,
for positive integers p, q as in Theorem 1, the sequence {ξ(p/q)n}, for un-
countably many ξ, has no asymptotic distribution function and hence is
not uniformly distributed. However, for each such ξ, Theorem 1 (with no-
tations as in the theorem) rules out the possibility of all but finitely many
elements of the sequence {ξ(p/q)n} lying in a single interval Ii for some fixed
i, 1 ≤ i ≤ p. Indeed, otherwise any distribution function (there exists at
least one, by Helly’s selection principle; see [7, Theorem 7.1], for instance)
g(x) of such {ξ(p/q)n} satisfies

g(x) =

{

0 for x ∈ [0, (i− 1)/p],

1 for x ∈ [i/p, 1],

and therefore by our Theorem 1, {ξ(p/q)n} will then have exactly one dis-
tribution function which will have to be its asymptotic distribution function
(see [7], for instance).

Our next theorem is the following.
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Theorem 2. Suppose g is a distribution function of {ξ(p/q)n} with p, q
as in Theorem 1. Then any interval [a, a + (p− 1)/p] ⊂ [0, 1] of length
(p− 1)/p is a set of uniqueness of g.

We observe that, restricting to the case p = 3, q = 2, the above theorem
describes a different class of sets of uniqueness of distribution functions of
{ξ(3/2)n} not covered by Theorem A of Strauch.

2. Preliminaries. Let ∆θ,ξ = {ξθ
n} be any sequence as described in

the introduction. As remarked before, the set D of distribution functions of
∆θ,ξ is non-empty. Let ϕ : [0, 1] → [0, 1] be such that for every x ∈ [0, 1],
ϕ−1([0, x)) is expressible as the union of finitely many disjoint subintervals
Ii(x) of [0, 1] with endpoints αi(x) ≤ βi(x). For example, if ϕ(x) = {2x},
then

ϕ−1([0, x)) = [0, x/2) ∪

[

1

2
,
x+ 1

2

)

.

For any distribution function g(x) we put

gϕ(x) =
∑

i

(g(βi(x))− g(αi(x))).

For any sequence ∆ = (xn)
∞
n=1, xn ∈ [0, 1] and ϕ : [0, 1]→ [0, 1] as above, if

ϕ(∆) denotes the sequence (ϕ(xn))
∞
n=1, then we have (see [10, Proposition]):

Lemma 1. Let g(x) be a distribution function of ∆ associated with
the sequence of indices N1, N2, . . . . Suppose each term xn is repeated only
finitely many times. Then ϕ(∆) has the distribution function gϕ for the
same sequence of indices N1, N2, . . . . Further , every distribution function
of ϕ(∆) has this form.

In this paper, we take ϕ(x) = ϕt(x) = {tx} with t an integer > 1. Then

gϕ(x) = g

(

x

t

)

+g

(

x+ 1

t

)

+ · · ·+g

(

x+ t− 1

t

)

−g

(

1

t

)

−· · ·−g

(

t− 1

t

)

.

The next lemma is analogous to Theorem 1 of [10].

Lemma 2. Every distribution function g of {ξ(p/q)n} satisfies gϕp(x) =
gϕq(x) for x ∈ [0, 1].

Proof. We have {q{x}} = {qx}. Hence

{q{ξ(p/q)n}} = {ξ(pn/qn−1)} = {pξ(p/q)n−1} = {p{ξ(p/q)n−1}}.

Thus ϕq({ξ(p/q)
n}) and ϕp({ξ(p/q)

n−1}) form the same sequence and the
conclusion follows by Lemma 1.
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3. Proof of the theorems

Proof of Theorem 1. We assume that g(x) is a distribution function of
{ξ(p/q)n} which is known on Ji for some i, 1 ≤ i ≤ p. We need to show
that g(x) can be determined on Ii. From Lemma 2, we have

q−1
∑

i=0

g

(

x+ i

q

)

−

q−1
∑

i=1

g

(

i

q

)

=

p−1
∑

i=0

g

(

x+ i

p

)

−

p−1
∑

i=1

g

(

i

p

)

.(1)

We consider the following two cases.

Case I: The interval Ii does not contain j/q for any j, 1≤ j ≤ q − 1.
There exists j, 1≤j≤q−1, such that

j − 1

q
<
i− 1

p
<
i

p
<
j

q
.

We note that for any x ∈ [0, 1], on the left hand side of (1) all the summands
other than g((x+ j − 1)/q) are known and similarly, all the summands on
the right hand side of (1) are known except g((x+ i− 1)/p). Let r = pj−qi,
so that 0 < r < p− q. If

x ∈ S1 :=

[

0,
p− q − r

p

]

,

then
x+ j − 1

q
≤
i− 1

p

and so for such x, g((x+ j − 1)/q) is known. Now, from (1), g((x+ i− 1)/p)
gets known when x ∈ [0, (p− q − r)/p]. Thus, g(x) gets known in

R1 :=

[

i− 1

p
,
i− 1

p
+
p− q − r

p2

]

.

Recursively, in the nth step we take

x ∈ Sn :=

[

0,
p− q − r

p
+
q(p− q − r)

p2
+ · · ·+

qn−1(p− q − r)

pn

]

so that g(x) gets known in

Rn :=

[

i− 1

p
,
i− 1

p
+
p− q − r

p2

(

1 +
q

p
+ · · ·+

qn−1

pn−1

)]

.

Letting n→∞, we see that g(x) gets known in
[

i− 1

p
,
i− 1

p
+
p− q − r

p(p− q)

]

.(2)

Similarly, we observe that for

x ∈ S′1 :=

[

p− r

p
, 1

]

,
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we have
x+ j − 1

q
≥
i

p

and hence by (1), g(x) gets known in

R′1 :=

[

i− 1

p
+
p− r

p2
,
i

p

]

.

Therefore, by a similar recursive argument, we take x in

S′n :=

[(

p− q − r

p
+
q(p− q − r)

p2
+· · ·+

qn−2(p− q − r)

pn−1

)

+
(p− r)qn−1

pn
, 1

]

,

at the nth step for n ≥ 2, so that g(x) gets known in

R′n :=

[

i− 1

p
+
p− q − r

p2

(

1 +
q

p
+ · · ·+

qn−2

pn−2

)

+
qn−1(p− r)

pn+1
,
i

p

]

.

Thus, letting n→∞, we see that g(x) gets known in
[

i− 1

p
+
p− q − r

p(p− q)
,
i

p

]

.(3)

From (2) and (3), now g(x) is known over Ii.

Case II: Ii contains j/q for some j, 1 ≤ j ≤ q − 1. We have

i− 1

p
<
j

q
<
i

p
.

We assume that p ≥ q2 − q. Let r = qi − pj, so that 0 < r < q. First, we
wish to determine g(j/q). We note that for any x ∈ [0, 1],

g

(

x+ l

p

)

for 0 ≤ l ≤ i− 2, i ≤ l ≤ p− 1

and

g

(

x+ l

q

)

for 0 ≤ l ≤ j − 2, j + 1 ≤ l ≤ q − 1

are all known. Thus we need to know

g

(

x+ i− 1

p

)

, g

(

x+ j − 1

q

)

, g

(

x+ j

q

)

.

We put x = 1− r/q. Then

g

(

x+ i− 1

p

)

= g

(

qi− r

pq

)

= g

(

j

q

)

.(4)

Next we take

g

(

x+ j − 1

q

)

= g

(

j

q
−
r

q2

)

.
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Since j/q < i/p, we have j/q ≤ i/p−1/pq. Hence using the assumption that
p ≥ q2 − q, we get

j

q
−
r

q2
≤
i

p
−
1

pq
−
1

p+ q
≤
i

p
−
p+ q + pq

pq(p+ q)
≤
i− 1

p
.

Thus, g((x+ j − 1)/q) is known. Next, we consider

g

(

x+ j

q

)

= g

(

j + 1

q
−
r

q2

)

.

Since j/q > (i− 1)/p, we have j/q ≥ i/p− 1/p+ 1/pq. Hence

j + 1

q
−
r

q2
≥
i

p
−
1

p
+
1

pq
+
1

q
−
q − 1

q2
≥
i

p
+
p+ q − q2

pq2
≥
i

p
.

Thus, g((x+ j)/q) is also known and hence from (4) and (1), g(j/q) is
determined. Let

R =

[

r

p
, 1−

q − r

p

]

.

We note that for any x ∈ R, all the summands appearing in (1) other
than g((x+ i− 1)/p) are known and hence g((x+ i− 1)/p) gets determined.
Hence we find that g(x) is determined in

S :=

[

i− 1

p
+
r

p2
,
i

p
−
q − r

p2

]

.(5)

We check that j/q ∈ S since p ≥ q2 − q. Next, we consider x lying in the
interval

R
(0)
1 :=

[

1 +
qr

p2
−
q − r

p
, 1

]

,

so that g(x) gets determined in

S
(0)
1 :=

[

i

p
+
qr

p3
−
q − r

p2
,
i

p

]

,(6)

since g(x) is determined over S ∪ Ji.

Similarly, if we consider x lying in the interval

R
(1)
1 :=

[

0,
r

p
−
q(q − r)

p2

]

,

g(x) gets determined in

S
(1)
1 :=

[

i− 1

p
,
i− 1

p
+
r

p2
−
q(q − r)

p3

]

.(7)
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Now, we proceed recursively as follows. For n ≥ 1, let

R
(0)
2n := qS

(0)
2n−1 − j, S

(0)
2n :=

i− 1

p
+
1

p
R
(0)
2n ,

R
(0)
2n+1 := qS

(0)
2n − j + 1, S

(0)
2n+1 :=

i− 1

p
+
1

p
R
(0)
2n+1,

(8)

and

R
(1)
2n := qS

(1)
2n−1 − j + 1, S

(1)
2n :=

i− 1

p
+
1

p
R
(1)
2n ,

R
(1)
2n+1 := qS

(1)
2n − j, S

(1)
2n+1 :=

i− 1

p
+
1

p
R
(1)
2n+1.

(9)

Letting n→∞, we see that the sequences

(S
(1)
2n+1), (S, S

(0)
2n ), (S

(1)
2n ), (S

(0)
2n+1)

cover respectively the intervals
[

i− 1

p
,
i− 1

p
+
pr − q(q − r)

p(p2 − q2)

]

,

[

i− 1

p
+
pr − q(q − r)

p(p2 − q2)
,
i

p
−
q − r

p2

]

,

[

i

p
−
q − r

p2
,
i

p
−
p(q − r)− qr

p(p2 − q2)

]

,

[

i

p
−
p(q − r)− qr

p(p2 − q2)
,
i

p

]

.

Proof of Theorem 2. Suppose g(x) is known for x ∈ [a, a + (p− 1)/p].
We have

0 ≤ a ≤
1

p
<
p− 1

p
≤ a+

p− 1

p
.

For all x ∈ [0, 1], since
i

p
≤
x+ i

p
≤
i+ 1

p
,

g((x+ i)/p) is known for 1 ≤ i ≤ p − 2. Also g(i/p) is known for all i =
1, . . . , p − 1. Similarly, on the left hand side of (1), all the summands are
known except g(x/q) and g((x+ q − 1)/q). Let

x ∈ A1 := [qa, pa].

Then, for such an x,

a ≤
x

q
≤
pa

q
= a+

(p− q)a

q
≤ a+

p− 1

p
.

Hence for x ∈ [qa, pa], g(x/q) is known. Further, for x ∈ [qa, pa], since
a ≤ 1/p, we have

x+ q − 1

q
≤
ap+ q − 1

q
= a+ a

p− q

q
+
q − 1

q
≤ a+

p− 1

p
,

so that

a ≤
x+ q − 1

q
≤ a+

p− 1

p

and hence g((x+ q − 1)/q) is known.
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Finally, for x ∈ [qa, pa], g((x+ p− 1)/p) is known since

a ≤
qa+ p− 1

p
≤
x+ p− 1

p
≤ a+

p− 1

p
.

Thus, for x ∈ [qa, pa], all the entries in (1) are known except for g(x/p).
Hence by (1), g(x/p) gets known when x ∈ [qa, pa]. But x ∈ [qa, pa] implies
x/p ∈ [qa/p, a]. Thus g(x) is now known in the interval B1 := [qa/p, a +
(p− 1)/p]. Recursively, after n steps, taking x ∈ An := [(q/p)

n−1qa, pa],
g(x) gets known for any x in the interval Bn = [(q/p)

na, a + (p− 1)/p].
Since (q/p)na → 0 as n → ∞, we see that by this process g(x) gets known
over the interval [0, a+(p− 1)/p]. Now, by using Theorem 1, g(x) is known
in [0, 1].

4. Remarks. We note that by the technique which is used to prove
Theorem 1, one can derive the following general result.

If g1(x) and g2(x) are any two distribution functions satisfying (1) and
g1(x) = g2(x) for x ∈ Ji for some i, 1 ≤ i ≤ p (Ji is as defined in the
statement of Theorem 1), then g1(x) = g2(x) for all x ∈ [0, 1].

Now, as was remarked in the introduction, we can construct a whole
class of distribution functions which are not distribution functions of the
sequence {ξ(p/q)n} for any ξ > 0. Indeed, if we consider any function

g1(x) =

{

x for x ∈ [0, (p− 1)/p],

h(x) for x ∈ [(p− 1)/p, 1],

where h : [(p− 1)/p, 1]→ [(p− 1)/p, 1] is any non-decreasing function other
than the identity map with h((p− 1)/p) = (p− 1)/p and h(1) = 1, then
g1(x) is clearly a distribution function. However, g1(x) cannot be a distri-
bution function for the sequence {ξ(p/q)n} for any ξ > 0, for the following
reason. First of all, by the consequence of Lemma 2, to be a distribution
function for {ξ(p/q)n}, g1 must satisfy (1). Therefore, by the above result,
taking g2(x) = x, x ∈ [0, 1] (which clearly satisfies (1)) and observing that
g1 and g2 agree on the interval [0, (p − 1)/p], we have g1(x) = g2(x) for all
x ∈ [0, 1], a contradiction to the choice of h.
We now pose a question related to a conjecture of Strauch [10], which

says that every measurable set X ⊂ [0, 1] having measure at least 2/3 is a
set of uniqueness of any distribution function of {ξ(3/2)n} for any ξ > 0.
Since Strauch also showed that each of the sets Y = [2/9, 1/3] ∪ [1/2, 1]
and Z = [0, 1/2] ∪ [2/3, 7/9] is a set of uniqueness of any such distribution
function and both Y and Z are of measure 11/18 < 2/3, in light of our
Theorem 2, it would be interesting to know whether there exists an interval I
of measure less than 2/3 such that I is a set of uniqueness of any distribution
function of {ξ(3/2)n}.
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Finally, we observe that the following generalization of the above men-
tioned result of Strauch is not difficult to establish.

Let q < p and pq > p2− q2 (and hence p < 2q). Then Y1 := [0, 1−1/q]∪
[1−1/p, 1− q/p2] or Z1 := [q/p

2, 1/p]∪ [1/q, 1] is a set of uniqueness of any
distribution function of {ξ(p/q)n} where the measure of each of the sets Y1
and Z1 is 1 + 1/p− 1/q − q/p

2 < 1− 1/p.

We note that the above result as well as our Theorem 1 include the
case p = 3, q = 2. However, when q ≥ 3, the cases where we assume that
p ≥ q(q − 1) in Theorem 1 are mutually exclusive from those considered in
the above statement which requires p < 2q.
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