On the sets of uniqueness of a distribution function of $\left\{\xi(p / q)^{n}\right\}$

by
S. D. Adhikari (Allahabad), P. Rath (Allahabad)
and N. Saradha (Mumbai)

1. Introduction. Let $\xi>0$ and $\theta>1$ be real numbers. The distribution of the sequence $\left(\left\{\xi \theta^{n}\right\}\right)_{n \geq 0}$, where $\{x\}$ denotes the fractional part of x, is one of the intriguing problems in number theory.

For a fixed θ, it is known (Weyl [13]) that the sequence $\left\{\xi \theta^{n}\right\}$ is uniformly distributed in $[0,1]$ for almost all ξ. Similarly, it is well known (Koksma [6], see also Boyd [1]) that for a fixed ξ, the sequence $\left\{\xi \theta^{n}\right\}$ is uniformly distributed in $[0,1]$ for almost all real $\theta>1$.

On the other hand, it is still not known whether $\left\{(3 / 2)^{n}\right\}$ is dense in $[0,1]$, let alone whether this sequence is uniformly distributed or not. However, Vijayaraghavan [12] showed that for any two integers $p>q \geq 2$ with $\operatorname{gcd}(p, q)=1,\left\{(p / q)^{n}\right\}$ has infinitely many limit points. But, as was remarked by him, a remark which is still valid today, it is striking that one cannot even decide whether $[0,1 / 2$) (or $[1 / 2,1)$) contains infinitely many limit points of the sequence $\left\{(3 / 2)^{n}\right\}$. Therefore, it would be interesting to have the following result:

$$
\limsup _{n \rightarrow \infty}\left\{(3 / 2)^{n}\right\}-\liminf _{n \rightarrow \infty}\left\{(3 / 2)^{n}\right\}>1 / 2
$$

which would imply that $\left\{(3 / 2)^{n}\right\}$ has limit points in both of the intervals $[0,1 / 2)$ and $[1 / 2,1)$.

In [3], Flatto, Lagarias and Pollington showed that for integers $p>q \geq 2$ with $\operatorname{gcd}(p, q)=1$,

$$
\limsup _{n \rightarrow \infty}\left\{\xi(p / q)^{n}\right\}-\liminf _{n \rightarrow \infty}\left\{\xi(p / q)^{n}\right\} \geq 1 / p
$$

for all real $\xi>0$.
An idea taken from a paper of Mahler [9] is an essential ingredient of the above paper. Mahler [9] had proved that the set of Z-numbers is at most countable, where a Z-number α is defined by the requirement that
$0 \leq\left\{\alpha(3 / 2)^{n}\right\}<1 / 2$ for all $n \geq 0$. The question of existence of a Z-number is still open and is closely related (see [9], [8]) to the $3 x+1$ problem. The connection between the sequence $\left\{(3 / 2)^{n}\right\}$ and Waring's problem is also well known (see [4], for example).

The questions taken up in this paper are mainly motivated by a paper of Strauch [10]. We refer to this paper for statements of several related conjectures and some results of Choquet [2] and Tijdeman [11] in those directions.

In order to state the problems considered in the present paper and their connection to Z-numbers, we shall need the concept of distribution functions of a sequence. We refer to [7] for details. A distribution function $g(x)$ is a real-valued, non-decreasing function defined on $[0,1]$ for which $g(0)=0$ and $g(1)=1$. Let $\Delta=\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence with $x_{n} \in[0,1)$. For any positive integer N and a subinterval $I \subset[0,1]$, we define the following counting function:

$$
A(I ; N ; \Delta)=\#\left\{x_{n} \mid 1 \leq n \leq N, x_{n} \in I\right\}
$$

A distribution function g is called a distribution function of the sequence Δ if there exists an increasing sequence of positive integers N_{1}, N_{2}, \ldots such that

$$
\lim _{k \rightarrow \infty} \frac{A\left([0, x) ; N_{k} ; \Delta\right)}{N_{k}}=g(x) \quad \text { for every } x \in[0,1]
$$

The sequence Δ is said to have the asymptotic distribution function g if

$$
\lim _{k \rightarrow \infty} \frac{A([0, x) ; k ; \Delta)}{k}=g(x) \quad \text { for every } x \in[0,1]
$$

We note that in terms of distribution functions, the following statement will clearly imply non-existence of Z-numbers:

Suppose $g(x)$ is a distribution function of $\left\{\xi(3 / 2)^{n}\right\}$. If $g(x)$ is constant for all x in an interval $I \subset[0,1]$, then $|I|<1 / 2$.

Thus the study of distribution functions of $\left\{\xi(p / q)^{n}\right\}$ becomes relevant. In [10], Strauch studied distribution functions of $\left\{\xi(3 / 2)^{n}\right\}$. For a distribution function g of a given sequence, we call a set $X \subset[0,1]$ a set of uniqueness of g if defining g on X uniquely determines it in all of $[0,1]$. In other words, if g_{1} and g_{2} are any two distribution functions of the sequence which agree on X, then they agree on $[0,1]$. Strauch [10] proved the following theorem.

Theorem A. Let

$$
I_{1}=[0,1 / 3], \quad I_{2}=[1 / 3,2 / 3], \quad I_{3}=[2 / 3,1]
$$

Then for any i, j with $1 \leq i \neq j \leq 3$, the set $X=I_{i} \cup I_{j}$ is a set of uniqueness of any distribution function g of $\left\{\xi(3 / 2)^{n}\right\}$.

As an application of this result, Strauch showed (see Section 5 of [10]) that the distribution function g given by

$$
g(x)= \begin{cases}x & \text { for } x \in[0,2 / 3] \\ x^{2}-(2 / 3) x+2 / 3 & \text { for } x \in[2 / 3,1]\end{cases}
$$

is not a distribution function of $\left\{\xi(3 / 2)^{n}\right\}$ for any ξ.
In this paper, in our first theorem, we extend Theorem A as follows.
THEOREM 1. Suppose g is a distribution function of $\left\{\xi(p / q)^{n}\right\}$ where $p>q>1$ are positive integers with $\operatorname{gcd}(p, q)=1$. Let

$$
I_{i}=\left(\frac{i-1}{p}, \frac{i}{p}\right) \quad \text { and } \quad J_{i}=[0,1]-I_{i} \quad \text { for } 1 \leq i \leq p
$$

Further, assume that $p \geq q^{2}-q$ if $j / q \in I_{i}$ for some j with $1 \leq j<q$. Then $X=J_{i}$ for $1 \leq i \leq p$ is a set of uniqueness of g.

It follows that if $q=2$, then for every odd integer $p, X=J_{i}$ is a set of uniqueness of any distribution function of $\left\{\xi(p / 2)^{n}\right\}$.

As a consequence, in the spirit of the example given by Strauch, we obtain (see Section 4) a whole class of distribution functions which are not distribution functions of the sequence $\left\{\xi(p / q)^{n}\right\}$ for any $\xi>0$.

Determining the existence of the asymptotic distribution function of sequences of the form $\left\{\xi \theta^{n}\right\}$ is rather difficult. As we have mentioned before, work of Weyl [13] establishes that for almost all $\xi,\left\{\xi \theta^{n}\right\}$ is uniformly distributed in $[0,1]$ and hence has the asymptotic distribution function $g(x)=x$. In the other direction, Helson and Kahane [5] established the existence of uncountably many ξ such that $\left\{\xi \theta^{n}\right\}$ does not have an asymptotic distribution function where $\theta>1$ is any fixed real number. Therefore, for positive integers p, q as in Theorem 1 , the sequence $\left\{\xi(p / q)^{n}\right\}$, for uncountably many ξ, has no asymptotic distribution function and hence is not uniformly distributed. However, for each such ξ, Theorem 1 (with notations as in the theorem) rules out the possibility of all but finitely many elements of the sequence $\left\{\xi(p / q)^{n}\right\}$ lying in a single interval I_{i} for some fixed $i, 1 \leq i \leq p$. Indeed, otherwise any distribution function (there exists at least one, by Helly's selection principle; see [7, Theorem 7.1], for instance) $g(x)$ of such $\left\{\xi(p / q)^{n}\right\}$ satisfies

$$
g(x)= \begin{cases}0 & \text { for } x \in[0,(i-1) / p] \\ 1 & \text { for } x \in[i / p, 1]\end{cases}
$$

and therefore by our Theorem $1,\left\{\xi(p / q)^{n}\right\}$ will then have exactly one distribution function which will have to be its asymptotic distribution function (see [7], for instance).

Our next theorem is the following.

Theorem 2. Suppose g is a distribution function of $\left\{\xi(p / q)^{n}\right\}$ with p, q as in Theorem 1. Then any interval $[a, a+(p-1) / p] \subset[0,1]$ of length $(p-1) / p$ is a set of uniqueness of g.

We observe that, restricting to the case $p=3, q=2$, the above theorem describes a different class of sets of uniqueness of distribution functions of $\left\{\xi(3 / 2)^{n}\right\}$ not covered by Theorem A of Strauch.
2. Preliminaries. Let $\Delta_{\theta, \xi}=\left\{\xi \theta^{n}\right\}$ be any sequence as described in the introduction. As remarked before, the set D of distribution functions of $\Delta_{\theta, \xi}$ is non-empty. Let $\varphi:[0,1] \rightarrow[0,1]$ be such that for every $x \in[0,1]$, $\varphi^{-1}([0, x))$ is expressible as the union of finitely many disjoint subintervals $I_{i}(x)$ of $[0,1]$ with endpoints $\alpha_{i}(x) \leq \beta_{i}(x)$. For example, if $\varphi(x)=\{2 x\}$, then

$$
\varphi^{-1}([0, x))=[0, x / 2) \cup\left[\frac{1}{2}, \frac{x+1}{2}\right)
$$

For any distribution function $g(x)$ we put

$$
g_{\varphi}(x)=\sum_{i}\left(g\left(\beta_{i}(x)\right)-g\left(\alpha_{i}(x)\right)\right)
$$

For any sequence $\Delta=\left(x_{n}\right)_{n=1}^{\infty}, x_{n} \in[0,1]$ and $\varphi:[0,1] \rightarrow[0,1]$ as above, if $\varphi(\Delta)$ denotes the sequence $\left(\varphi\left(x_{n}\right)\right)_{n=1}^{\infty}$, then we have (see [10, Proposition]):

Lemma 1. Let $g(x)$ be a distribution function of Δ associated with the sequence of indices N_{1}, N_{2}, \ldots Suppose each term x_{n} is repeated only finitely many times. Then $\varphi(\Delta)$ has the distribution function g_{φ} for the same sequence of indices N_{1}, N_{2}, \ldots Further, every distribution function of $\varphi(\Delta)$ has this form.

In this paper, we take $\varphi(x)=\varphi_{t}(x)=\{t x\}$ with t an integer >1. Then $g_{\varphi}(x)=g\left(\frac{x}{t}\right)+g\left(\frac{x+1}{t}\right)+\cdots+g\left(\frac{x+t-1}{t}\right)-g\left(\frac{1}{t}\right)-\cdots-g\left(\frac{t-1}{t}\right)$.

The next lemma is analogous to Theorem 1 of [10].
Lemma 2. Every distribution function g of $\left\{\xi(p / q)^{n}\right\}$ satisfies $g_{\varphi_{p}}(x)=$ $g_{\varphi_{q}}(x)$ for $x \in[0,1]$.

Proof. We have $\{q\{x\}\}=\{q x\}$. Hence

$$
\left\{q\left\{\xi(p / q)^{n}\right\}\right\}=\left\{\xi\left(p^{n} / q^{n-1}\right)\right\}=\left\{p \xi(p / q)^{n-1}\right\}=\left\{p\left\{\xi(p / q)^{n-1}\right\}\right\}
$$

Thus $\varphi_{q}\left(\left\{\xi(p / q)^{n}\right\}\right)$ and $\varphi_{p}\left(\left\{\xi(p / q)^{n-1}\right\}\right)$ form the same sequence and the conclusion follows by Lemma 1.

3. Proof of the theorems

Proof of Theorem 1. We assume that $g(x)$ is a distribution function of $\left\{\xi(p / q)^{n}\right\}$ which is known on J_{i} for some $i, 1 \leq i \leq p$. We need to show that $g(x)$ can be determined on I_{i}. From Lemma 2, we have

$$
\begin{equation*}
\sum_{i=0}^{q-1} g\left(\frac{x+i}{q}\right)-\sum_{i=1}^{q-1} g\left(\frac{i}{q}\right)=\sum_{i=0}^{p-1} g\left(\frac{x+i}{p}\right)-\sum_{i=1}^{p-1} g\left(\frac{i}{p}\right) \tag{1}
\end{equation*}
$$

We consider the following two cases.
Case I: The interval I_{i} does not contain j / q for any $j, 1 \leq j \leq q-1$. There exists $j, 1 \leq j \leq q-1$, such that

$$
\frac{j-1}{q}<\frac{i-1}{p}<\frac{i}{p}<\frac{j}{q} .
$$

We note that for any $x \in[0,1]$, on the left hand side of (1) all the summands other than $g((x+j-1) / q)$ are known and similarly, all the summands on the right hand side of (1) are known except $g((x+i-1) / p)$. Let $r=p j-q i$, so that $0<r<p-q$. If

$$
x \in S_{1}:=\left[0, \frac{p-q-r}{p}\right]
$$

then

$$
\frac{x+j-1}{q} \leq \frac{i-1}{p}
$$

and so for such $x, g((x+j-1) / q)$ is known. Now, from $(1), g((x+i-1) / p)$ gets known when $x \in[0,(p-q-r) / p]$. Thus, $g(x)$ gets known in

$$
R_{1}:=\left[\frac{i-1}{p}, \frac{i-1}{p}+\frac{p-q-r}{p^{2}}\right] .
$$

Recursively, in the nth step we take

$$
x \in S_{n}:=\left[0, \frac{p-q-r}{p}+\frac{q(p-q-r)}{p^{2}}+\cdots+\frac{q^{n-1}(p-q-r)}{p^{n}}\right]
$$

so that $g(x)$ gets known in

$$
R_{n}:=\left[\frac{i-1}{p}, \frac{i-1}{p}+\frac{p-q-r}{p^{2}}\left(1+\frac{q}{p}+\cdots+\frac{q^{n-1}}{p^{n-1}}\right)\right] .
$$

Letting $n \rightarrow \infty$, we see that $g(x)$ gets known in

$$
\begin{equation*}
\left[\frac{i-1}{p}, \frac{i-1}{p}+\frac{p-q-r}{p(p-q)}\right] \tag{2}
\end{equation*}
$$

Similarly, we observe that for

$$
x \in S_{1}^{\prime}:=\left[\frac{p-r}{p}, 1\right]
$$

we have

$$
\frac{x+j-1}{q} \geq \frac{i}{p}
$$

and hence by (1), $g(x)$ gets known in

$$
R_{1}^{\prime}:=\left[\frac{i-1}{p}+\frac{p-r}{p^{2}}, \frac{i}{p}\right]
$$

Therefore, by a similar recursive argument, we take x in
$S_{n}^{\prime}:=\left[\left(\frac{p-q-r}{p}+\frac{q(p-q-r)}{p^{2}}+\cdots+\frac{q^{n-2}(p-q-r)}{p^{n-1}}\right)+\frac{(p-r) q^{n-1}}{p^{n}}, 1\right]$,
at the nth step for $n \geq 2$, so that $g(x)$ gets known in

$$
R_{n}^{\prime}:=\left[\frac{i-1}{p}+\frac{p-q-r}{p^{2}}\left(1+\frac{q}{p}+\cdots+\frac{q^{n-2}}{p^{n-2}}\right)+\frac{q^{n-1}(p-r)}{p^{n+1}}, \frac{i}{p}\right]
$$

Thus, letting $n \rightarrow \infty$, we see that $g(x)$ gets known in

$$
\begin{equation*}
\left[\frac{i-1}{p}+\frac{p-q-r}{p(p-q)}, \frac{i}{p}\right] \tag{3}
\end{equation*}
$$

From (2) and (3), now $g(x)$ is known over I_{i}.
CASE II: I_{i} contains j / q for some $j, 1 \leq j \leq q-1$. We have

$$
\frac{i-1}{p}<\frac{j}{q}<\frac{i}{p}
$$

We assume that $p \geq q^{2}-q$. Let $r=q i-p j$, so that $0<r<q$. First, we wish to determine $g(j / q)$. We note that for any $x \in[0,1]$,

$$
g\left(\frac{x+l}{p}\right) \quad \text { for } 0 \leq l \leq i-2, i \leq l \leq p-1
$$

and

$$
g\left(\frac{x+l}{q}\right) \quad \text { for } 0 \leq l \leq j-2, j+1 \leq l \leq q-1
$$

are all known. Thus we need to know

$$
g\left(\frac{x+i-1}{p}\right), \quad g\left(\frac{x+j-1}{q}\right), \quad g\left(\frac{x+j}{q}\right)
$$

We put $x=1-r / q$. Then

$$
\begin{equation*}
g\left(\frac{x+i-1}{p}\right)=g\left(\frac{q i-r}{p q}\right)=g\left(\frac{j}{q}\right) \tag{4}
\end{equation*}
$$

Next we take

$$
g\left(\frac{x+j-1}{q}\right)=g\left(\frac{j}{q}-\frac{r}{q^{2}}\right)
$$

Since $j / q<i / p$, we have $j / q \leq i / p-1 / p q$. Hence using the assumption that $p \geq q^{2}-q$, we get

$$
\frac{j}{q}-\frac{r}{q^{2}} \leq \frac{i}{p}-\frac{1}{p q}-\frac{1}{p+q} \leq \frac{i}{p}-\frac{p+q+p q}{p q(p+q)} \leq \frac{i-1}{p} .
$$

Thus, $g((x+j-1) / q)$ is known. Next, we consider

$$
g\left(\frac{x+j}{q}\right)=g\left(\frac{j+1}{q}-\frac{r}{q^{2}}\right) .
$$

Since $j / q>(i-1) / p$, we have $j / q \geq i / p-1 / p+1 / p q$. Hence

$$
\frac{j+1}{q}-\frac{r}{q^{2}} \geq \frac{i}{p}-\frac{1}{p}+\frac{1}{p q}+\frac{1}{q}-\frac{q-1}{q^{2}} \geq \frac{i}{p}+\frac{p+q-q^{2}}{p q^{2}} \geq \frac{i}{p}
$$

Thus, $g((x+j) / q)$ is also known and hence from (4) and (1), $g(j / q)$ is determined. Let

$$
R=\left[\frac{r}{p}, 1-\frac{q-r}{p}\right]
$$

We note that for any $x \in R$, all the summands appearing in (1) other than $g((x+i-1) / p)$ are known and hence $g((x+i-1) / p)$ gets determined. Hence we find that $g(x)$ is determined in

$$
\begin{equation*}
S:=\left[\frac{i-1}{p}+\frac{r}{p^{2}}, \frac{i}{p}-\frac{q-r}{p^{2}}\right] . \tag{5}
\end{equation*}
$$

We check that $j / q \in S$ since $p \geq q^{2}-q$. Next, we consider x lying in the interval

$$
R_{1}^{(0)}:=\left[1+\frac{q r}{p^{2}}-\frac{q-r}{p}, 1\right]
$$

so that $g(x)$ gets determined in

$$
\begin{equation*}
S_{1}^{(0)}:=\left[\frac{i}{p}+\frac{q r}{p^{3}}-\frac{q-r}{p^{2}}, \frac{i}{p}\right] \tag{6}
\end{equation*}
$$

since $g(x)$ is determined over $S \cup J_{i}$.
Similarly, if we consider x lying in the interval

$$
R_{1}^{(1)}:=\left[0, \frac{r}{p}-\frac{q(q-r)}{p^{2}}\right]
$$

$g(x)$ gets determined in

$$
\begin{equation*}
S_{1}^{(1)}:=\left[\frac{i-1}{p}, \frac{i-1}{p}+\frac{r}{p^{2}}-\frac{q(q-r)}{p^{3}}\right] . \tag{7}
\end{equation*}
$$

Now, we proceed recursively as follows. For $n \geq 1$, let

$$
\begin{align*}
R_{2 n}^{(0)} & :=q S_{2 n-1}^{(0)}-j, & S_{2 n}^{(0)} & :=\frac{i-1}{p}+\frac{1}{p} R_{2 n}^{(0)} \\
R_{2 n+1}^{(0)} & :=q S_{2 n}^{(0)}-j+1, & S_{2 n+1}^{(0)} & :=\frac{i-1}{p}+\frac{1}{p} R_{2 n+1}^{(0)} \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
R_{2 n}^{(1)}:=q S_{2 n-1}^{(1)}-j+1, \quad S_{2 n}^{(1)}:=\frac{i-1}{p}+\frac{1}{p} R_{2 n}^{(1)} \tag{9}
\end{equation*}
$$

$$
R_{2 n+1}^{(1)}:=q S_{2 n}^{(1)}-j, \quad S_{2 n+1}^{(1)}:=\frac{i-1}{p}+\frac{1}{p} R_{2 n+1}^{(1)}
$$

Letting $n \rightarrow \infty$, we see that the sequences

$$
\left(S_{2 n+1}^{(1)}\right), \quad\left(S, S_{2 n}^{(0)}\right), \quad\left(S_{2 n}^{(1)}\right), \quad\left(S_{2 n+1}^{(0)}\right)
$$

cover respectively the intervals

$$
\begin{aligned}
& {\left[\frac{i-1}{p}, \frac{i-1}{p}+\frac{p r-q(q-r)}{p\left(p^{2}-q^{2}\right)}\right], \quad\left[\frac{i-1}{p}+\frac{p r-q(q-r)}{p\left(p^{2}-q^{2}\right)}, \frac{i}{p}-\frac{q-r}{p^{2}}\right],} \\
& {\left[\frac{i}{p}-\frac{q-r}{p^{2}}, \frac{i}{p}-\frac{p(q-r)-q r}{p\left(p^{2}-q^{2}\right)}\right], \quad\left[\frac{i}{p}-\frac{p(q-r)-q r}{p\left(p^{2}-q^{2}\right)}, \frac{i}{p}\right] .}
\end{aligned}
$$

Proof of Theorem 2. Suppose $g(x)$ is known for $x \in[a, a+(p-1) / p]$. We have

$$
0 \leq a \leq \frac{1}{p}<\frac{p-1}{p} \leq a+\frac{p-1}{p}
$$

For all $x \in[0,1]$, since

$$
\frac{i}{p} \leq \frac{x+i}{p} \leq \frac{i+1}{p}
$$

$g((x+i) / p)$ is known for $1 \leq i \leq p-2$. Also $g(i / p)$ is known for all $i=$ $1, \ldots, p-1$. Similarly, on the left hand side of (1), all the summands are known except $g(x / q)$ and $g((x+q-1) / q)$. Let

$$
x \in A_{1}:=[q a, p a] .
$$

Then, for such an x,

$$
a \leq \frac{x}{q} \leq \frac{p a}{q}=a+\frac{(p-q) a}{q} \leq a+\frac{p-1}{p}
$$

Hence for $x \in[q a, p a], g(x / q)$ is known. Further, for $x \in[q a, p a]$, since $a \leq 1 / p$, we have

$$
\frac{x+q-1}{q} \leq \frac{a p+q-1}{q}=a+a \frac{p-q}{q}+\frac{q-1}{q} \leq a+\frac{p-1}{p}
$$

so that

$$
a \leq \frac{x+q-1}{q} \leq a+\frac{p-1}{p}
$$

and hence $g((x+q-1) / q)$ is known.

Finally, for $x \in[q a, p a], g((x+p-1) / p)$ is known since

$$
a \leq \frac{q a+p-1}{p} \leq \frac{x+p-1}{p} \leq a+\frac{p-1}{p} .
$$

Thus, for $x \in[q a, p a]$, all the entries in (1) are known except for $g(x / p)$. Hence by (1), $g(x / p)$ gets known when $x \in[q a, p a]$. But $x \in[q a, p a]$ implies $x / p \in[q a / p, a]$. Thus $g(x)$ is now known in the interval $B_{1}:=[q a / p, a+$ $(p-1) / p]$. Recursively, after n steps, taking $x \in A_{n}:=\left[(q / p)^{n-1} q a, p a\right]$, $g(x)$ gets known for any x in the interval $B_{n}=\left[(q / p)^{n} a, a+(p-1) / p\right]$. Since $(q / p)^{n} a \rightarrow 0$ as $n \rightarrow \infty$, we see that by this process $g(x)$ gets known over the interval $[0, a+(p-1) / p]$. Now, by using Theorem $1, g(x)$ is known in $[0,1]$.
4. Remarks. We note that by the technique which is used to prove Theorem 1, one can derive the following general result.

If $g_{1}(x)$ and $g_{2}(x)$ are any two distribution functions satisfying (1) and $g_{1}(x)=g_{2}(x)$ for $x \in J_{i}$ for some $i, 1 \leq i \leq p\left(J_{i}\right.$ is as defined in the statement of Theorem 1), then $g_{1}(x)=g_{2}(x)$ for all $x \in[0,1]$.

Now, as was remarked in the introduction, we can construct a whole class of distribution functions which are not distribution functions of the sequence $\left\{\xi(p / q)^{n}\right\}$ for any $\xi>0$. Indeed, if we consider any function

$$
g_{1}(x)= \begin{cases}x & \text { for } x \in[0,(p-1) / p] \\ h(x) & \text { for } x \in[(p-1) / p, 1]\end{cases}
$$

where $h:[(p-1) / p, 1] \rightarrow[(p-1) / p, 1]$ is any non-decreasing function other than the identity map with $h((p-1) / p)=(p-1) / p$ and $h(1)=1$, then $g_{1}(x)$ is clearly a distribution function. However, $g_{1}(x)$ cannot be a distribution function for the sequence $\left\{\xi(p / q)^{n}\right\}$ for any $\xi>0$, for the following reason. First of all, by the consequence of Lemma 2, to be a distribution function for $\left\{\xi(p / q)^{n}\right\}, g_{1}$ must satisfy (1). Therefore, by the above result, taking $g_{2}(x)=x, x \in[0,1]$ (which clearly satisfies (1)) and observing that g_{1} and g_{2} agree on the interval $[0,(p-1) / p]$, we have $g_{1}(x)=g_{2}(x)$ for all $x \in[0,1]$, a contradiction to the choice of h.

We now pose a question related to a conjecture of Strauch [10], which says that every measurable set $X \subset[0,1]$ having measure at least $2 / 3$ is a set of uniqueness of any distribution function of $\left\{\xi(3 / 2)^{n}\right\}$ for any $\xi>0$. Since Strauch also showed that each of the sets $Y=[2 / 9,1 / 3] \cup[1 / 2,1]$ and $Z=[0,1 / 2] \cup[2 / 3,7 / 9]$ is a set of uniqueness of any such distribution function and both Y and Z are of measure $11 / 18<2 / 3$, in light of our Theorem 2, it would be interesting to know whether there exists an interval I of measure less than $2 / 3$ such that I is a set of uniqueness of any distribution function of $\left\{\xi(3 / 2)^{n}\right\}$.

Finally, we observe that the following generalization of the above mentioned result of Strauch is not difficult to establish.

Let $q<p$ and $p q>p^{2}-q^{2}$ (and hence $\left.p<2 q\right)$. Then $Y_{1}:=[0,1-1 / q] \cup$ $\left[1-1 / p, 1-q / p^{2}\right]$ or $Z_{1}:=\left[q / p^{2}, 1 / p\right] \cup[1 / q, 1]$ is a set of uniqueness of any distribution function of $\left\{\xi(p / q)^{n}\right\}$ where the measure of each of the sets Y_{1} and Z_{1} is $1+1 / p-1 / q-q / p^{2}<1-1 / p$.

We note that the above result as well as our Theorem 1 include the case $p=3, q=2$. However, when $q \geq 3$, the cases where we assume that $p \geq q(q-1)$ in Theorem 1 are mutually exclusive from those considered in the above statement which requires $p<2 q$.

References

[1] D. W. Boyd, Transcendental numbers with badly distributed powers, Proc. Amer. Math. Soc. 23 (1969), 424-427.
[2] G. Choquet, Construction effective de suites $\left\{k(3 / 2)^{n}\right\}$. Étude des mesures (3/2)stables, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), A69-A74.
[3] L. Flatto, J. C. Lagarias and A. D. Pollington, On the range of fractional parts $\left\{\xi(p / q)^{n}\right\}$, Acta Arith. 70 (1995), 125-147.
[4] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, London, 1979.
[5] H. Helson and J.-P. Kahane, A Fourier method in diophantine problems, J. Anal. Math. 15 (1965), 245-262.
[6] J. F. Koksma, Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins, Compositio Math. 2 (1935), 250-258.
[7] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
[8] J. C. Lagarias, The $3 x+1$ problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23; Organic Mathematics (Burnaby, BC, 1995), CMS Conf. Proc. 20, Amer. Math. Soc., Providence, 1997, 305-334.
[9] K. Mahler, An unsolved problem on the powers of $\frac{3}{2}$, J. Austral. Math. Soc. 8 (1968), 313-321.
[10] O. Strauch, On distribution functions of $\xi(3 / 2)^{n} \bmod 1$, Acta Arith. 81 (1997), 25-35.
[11] R. Tijdeman, Note on Mahler's 3/2-problem, Norske Vid. Selsk. Skr. 16 (1972), 1-4.
[12] T. Vijayaraghavan, On the fractional parts of the powers of a number (I), J. London Math. Soc. 15 (1940), 159-160.
[13] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.

Harish-Chandra Research Institute Chhatnag Road, Jhusi
Allahabad 211 019, India
E-mail: adhikari@mri.ernet.in rath@mri.ernet.in

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road Mumbai 400 005, India E-mail: saradha@math.tifr.res.in

