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1. Introduction. In this paper we consider symmetric diophantine sys-
tems consisting of two or three simultaneous symmetric equations of the
type

(1.1) f(x1, x2, x3) = f(y1, y2, y3),

where f(x1, x2, x3) is a linear, quadratic or cubic form in the three variables
x1, x2, and x3. The author had given solutions of several such diophantine
systems in an earlier paper [1]. The present paper therefore focuses on those
systems that cannot be solved by the methods given earlier. Throughout
the paper we shall use L’s, Q’s and C’s to denote linear, quadratic and
cubic forms in the variables indicated. Further, all the forms occurring in
the paper will be assumed to be defined over the field Q of rational numbers.

When the given diophantine system consists of a pair of simultaneous
equations of type (1.1) of degrees not exceeding 3, except for the case when
both equations are cubic, any other such diophantine system can be solved
by the methods described in [1]. In this paper we consider the diophantine
system consisting of two simultaneous symmetric equations, that is, the
system

(I)

{

C1(x1, x2, x3) = C1(y1, y2, y3),

C2(x1, x2, x3) = C2(y1, y2, y3),

and we obtain a necessary and sufficient condition for the solvability of this
system.

When the given diophantine system consists of three simultaneous equa-
tions of type (1.1) of degrees ≤ 2, the methods described in [1] yield the
complete solution if the system consists of two linear and one quadratic
equation, or one linear and two quadratic equations. Further, the complete
solution of a system of three linear equations of type (1.1) is readily obtained.
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In this paper we therefore consider the following diophantine systems:

(II)











L1(x1, x2, x3) = L1(y1, y2, y3),

L2(x1, x2, x3) = L2(y1, y2, y3),

C(x1, x2, x3) = C(y1, y2, y3),

(III)











L(x1, x2, x3) = L(y1, y2, y3),

Q(x1, x2, x3) = Q(y1, y2, y3),

C(x1, x2, x3) = C(y1, y2, y3),

(IV)











L(x1, x2, x3) = L(y1, y2, y3),

C1(x1, x2, x3) = C1(y1, y2, y3),

C2(x1, x2, x3) = C2(y1, y2, y3),

(V)











Q1(x1, x2, x3) = Q1(y1, y2, y3),

Q2(x1, x2, x3) = Q2(y1, y2, y3),

Q3(x1, x2, x3) = Q3(y1, y2, y3),

(VI)











Q1(x1, x2, x3) = Q1(y1, y2, y3),

Q2(x1, x2, x3) = Q2(y1, y2, y3),

C(x1, x2, x3) = C(y1, y2, y3),

(VII)











Q(x1, x2, x3) = Q(y1, y2, y3),

C1(x1, x2, x3) = C1(y1, y2, y3),

C2(x1, x2, x3) = C2(y1, y2, y3),

(VIII)











C1(x1, x2, x3) = C1(y1, y2, y3),

C2(x1, x2, x3) = C2(y1, y2, y3),

C3(x1, x2, x3) = C3(y1, y2, y3).

As all the diophantine systems considered in this paper consist of homo-
geneous equations only, any rational solution can be multiplied throughout
by a suitable constant to obtain a solution in integers. It therefore suffices
if we consider the solvability of these systems in rational numbers. Further,
for all of these diophantine systems, we will generally consider a solution to
be non-trivial if xj 6= yj for some j ∈ {1, 2, 3}. We now consider, one by one,
each of the diophantine systems mentioned above.

2. The diophantine system (I). We first consider the system (I),
that is,

C1(x1, x2, x3) = C1(y1, y2, y3),(2.1)

C2(x1, x2, x3) = C2(y1, y2, y3).(2.2)
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A particular case, arising from an unsolved problem mentioned by Guy [4,
p. 142], is the system

(2.3)
x3

1
+ x3

2
+ x3

3
= y3

1
+ y3

2
+ y3

3
,

x1x2x3 = y1y2y3,

for which several parametric solutions have already been obtained ([2], [3,
p. 101]).

We will first show that if one non-trivial solution of (I) is known, it
can, in general, be used to derive another non-trivial solution. Next we will
obtain a necessary and sufficient condition for the solvability of this system.
A specific example, together with an additional symmetric linear equation,
illustrating the application of the solvability condition for this system, will
be given in Section 5.

Let xj = ξj, yj = ηj , j = 1, 2, 3, be a known non-trivial solution of the
system (I) so that Ci(ξ1, ξ2, ξ3) = Ci(η1, η2, η3), i = 1, 2. To obtain another
non-trivial solution, we write

(2.4) xj = ξjθ +Xj, yj = ηjθ +Xj , j = 1, 2, 3,

where X1, X2, X3 and θ are arbitrary parameters with θ 6= 0. Substituting
these values of xj , yj , j = 1, 2, 3, in (2.1) and (2.2), transposing all the terms
to one side, and removing the factor θ from both equations, we get the
equations

(2.5)
θ

2

{( 3
∑

j=1

ξj
∂

∂Xj

)2

−

( 3
∑

j=1

ηj
∂

∂Xj

)2}

Ci(X1, X2, X3)

+

{ 3
∑

j=1

(ξj − ηj)
∂

∂Xj

}

Ci(X1, X2, X3) = 0, i = 1, 2.

We can find a new non-trivial solution of (I) if the two values of θ obtained
from the two equations (2.5) are equal. These two values may be written
as Qi(X1, X2, X3)/Li(X1, X2, X3), i = 1, 2, where the forms Li(X1, X2, X3),
Qi(X1, X2, X3), i = 1, 2, are determined by the two equations (2.5), and for
the two values to be equal, we must choose X1, X2, X3 such that

(2.6) L1(X1, X2, X3)Q2(X1, X2, X3) = L2(X1, X2, X3)Q1(X1, X2, X3).

Equation (2.6) represents a cubic curve in the projective plane, and a ra-
tional point on it can be determined by solving the two linear equations
Li(X1, X2, X3) = 0, i = 1, 2. This rational point can, in general, be used to
obtain another rational point on the curve (2.6), and hence we can derive
another non-trivial solution of the system (I).

We will now obtain a necessary and sufficient condition for the solvability
of (I). We note that if the simultaneous equations Ci(x1, x2, x3) = 0, i = 1, 2,
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have an integer solution, say, xj = ξj, j = 1, 2, 3, then a solution of (I) is
given by xj = ξj, yj = kξj, j = 1, 2, 3, where k is an arbitrary rational
number. All such solutions of (I) are readily determined. For all non-trivial
solutions, we must have xj 6= yj for some j ∈ {1, 2, 3}, and we assume
at present that x1 6= y1. Further, the relations x1/y1 = x2/y2 = x3/y3

imply that yj = kxj, j = 1, 2, 3, and all such solutions have already been
determined. Thus for other non-trivial solutions, we cannot have both x1y2−
x2y1 = 0 and x1y3 − x3y1 = 0; we therefore assume that x1y2 − x2y1 6= 0.
To obtain solutions of (I) such that x1 6= y1 and x1y2 − x2y1 6= 0, we write

(2.7)

x1 = a1X1 + a1mX2,

x2 = a2X1 + (a2m+ 1)X2,

x3 = a3X1 + a3mX2 +X3,

y1 = −a1X1 + a1mX2,

y2 = −a2X1 + (a2m+ 1)X2,

y3 = −a3X1 + a3mX2 +X3,

where a1, a2, a3, X1, X2, X3 and m are arbitrary parameters with X1 6= 0,
X2 6= 0. With these values of xj , yj , equations (2.1) and (2.2) reduce to

(2.8) 2Ci(a1, a2, a3)X
2

1 + 6Ci(a1, a2, a3)m
2X2

2

+2mLi(X2, X3)X2 +Qi(X2, X3) = 0, i = 1, 2,

where the forms Li(X2, X3), Qi(X2, X3), i = 1, 2, are given by

(2.9)

Li(X2, X3) =
3

∑

r=2

Xr
∂

∂xr

( 3
∑

j=1

aj
∂

∂xj

)2

Ci,

Qi(X2, X3) =

(

X2

∂

∂x2

+X3

∂

∂x3

)2( 3
∑

j=1

aj
∂

∂xj

)

Ci.

A rational solution of the simultaneous equations (2.8) will exist if the fol-
lowing condition, obtained by eliminating m from the two equations (2.8),
is satisfied:

(2.10) 4{C2(a1, a2, a3)L1(X2, X3) − C1(a1, a2, a3)L2(X2, X3)}
2X2

1

= − 3{C1(a1, a2, a3)Q2(X2, X3) − C2(a1, a2, a3)Q1(X2, X3)}
2

− 2{L1(X2, X3)Q2(X2, X3) − L2(X2, X3)Q1(X2, X3)}

×{C2(a1, a2, a3)L1(X2, X3) − C1(a1, a2, a3)L2(X2, X3)}.

When rational values of a1, a2, a3, X1, X2, andX3 are chosen such that (2.10)
is satisfied, the two equations (2.8) are simultaneously satisfied by the same
rational value of m, and substituting these values of a1, a2, a3, X1, X2, X3

and m in (2.7), we get a rational solution of the diophantine system (I).

We have thus shown that a sufficient condition for the solvability of (I)
with x1 6= y1 and x1y2 − x2y1 6= 0 is that there exist rational values of
a1, a2, a3, X1, X2, and X3 such that (2.10) is satisfied. We will now show
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that this condition is also necessary. Let xj = ξj , yj = ηj , j = 1, 2, 3, be
any arbitrary solution of (I) with x1 6= y1 and x1y2 − x2y1 6= 0 so that
Ci(ξ1, ξ2, ξ3) = Ci(η1, η2, η3), i = 1, 2, and also ξ1 6= η1, ξ1η2 − ξ2η1 6= 0.
For each j = 1, 2, 3, we replace xj by ξj and yj by ηj in (2.7), and solve the
resulting equations for a1, a2, a3, X1, X2, X3 and m to get

a1 = ξ1 − η1, a2 = ξ2 − η2, a3 = ξ3 − η3, m =
ξ1 + η1

2(ξ1η2 − ξ2η1)
,

(2.11)

X1 =
1

2
, X2 =

ξ1η2 − ξ2η1

ξ1 − η1

, X3 =
ξ1η3 − ξ3η1

ξ1 − η1

,

where we note that neitherX1 norX2 is 0. Since Ci(ξ1, ξ2, ξ3)=Ci(η1, η2, η3),
i = 1, 2, it follows that the values given by (2.11) satisfy (2.8) and hence also
(2.10). This shows that (2.10) is a necessary and sufficient condition for the
existence of non-trivial solutions of (I) with x1 6= y1 and x1y2 − x2y1 6= 0.

By substituting

X1 = σX3/[2{C2(a1, a2, a3)L1(̺, 1) − C1(a1, a2, a3)L2(̺, 1)}], X2 = ̺X3,

condition (2.10) may be written as follows:

(2.12) σ2 =
4

∑

r=0

φr(a1, a2, a3)̺
r

where φr(a1, a2, a3), r = 0, . . . , 4, are forms of degree 8 in a1, a2 and a3.
We note that in view of our assumptions x1 6= y1 and x1y2 − x2y1 6= 0,
for any given diophantine system, we will actually have six conditions of
the type (2.12), and the solution of any one of these equations will lead
to a solution of the given system. To solve an equation of type (2.12), we
assign numerical trial values to the parameters a1, a2, a3 when the quartic
equation (2.12) represents an elliptic curve, and so we can efficiently perform
a search for rational points on this curve using a computer program such
as APECS, a package written in Maple specifically for working with elliptic
curves. If for some numerical values of a1, a2, a3, we can find a rational point
on the elliptic curve (2.12), and this curve is of positive rank, we can find
infinitely many rational points on this curve, and hence obtain infinitely
many solutions of the system (I).

An alternative necessary and sufficient condition for the solvability of (I)
with x1 6= y1 and x1y2 − x2y1 6= 0 may be obtained by writing

(2.13) x3 = px1 + qx2, y3 = py1 + qy2,

so that the system (I) reduces to

(I′)

{

C ′

1
(x1, x2) = C ′

1
(y1, y2),

C ′

2
(x1, x2) = C ′

2
(y1, y2),
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where the coefficients of the binary cubic forms C ′

i(x1, x2), i = 1, 2, are
polynomials in p and q. To solve (I), it is clearly sufficient to solve (I′)
for some rational values of p and q. Conversely, if (I) has a solution with
x1y2−x2y1 6= 0, there exist rational numbers p and q such that the relations
(2.13) are satisfied, and hence there exists a solution of (I′). A necessary and
sufficient condition for the solvability of (I′), and hence of (I), obtained by
applying a theorem given by Choudhry [3, pp. 94–95], may be written as

(2.14) σ2 =

4
∑

r=0

ψr(p, q)̺
r

where ψr(p, q), r = 0, . . . , 4, are polynomials of degree 8 in p, q determined
by the aforesaid theorem, and there must exist rational numbers p, q, ̺ and σ
satisfying (2.14). While this condition is similar to the first condition (2.12)
obtained above, we prefer the condition (2.12) as it can be applied, with
minor changes, to other diophantine systems such as (IV).

Finally, we note that if C2(x1, x2, x3) = x1x2x3, parametric solutions of
(I) can easily be obtained by writing x1 = pX1, x2 = qX2, x3 = X1 +X2,
y1 = pY1, y2 = qY2, y3 = Y1 + Y2, when the system reduces to

C(X1, X2) = C(Y1, Y2),

X1X2(X1 +X2) = Y1Y2(Y1 + Y2),

and a solution of this system for arbitrary p and q is obtained by applying
Lemma 1 given in [3, p. 93].

3. The diophantine system (II). We now consider the system (II),
that is,

L1(x1, x2, x3) = L1(y1, y2, y3),(3.1)

L2(x1, x2, x3) = L2(y1, y2, y3),(3.2)

C(x1, x2, x3) = C(y1, y2, y3).(3.3)

The two linear equations (3.1) and (3.2) may be solved to obtain

(3.4) yj = xj + ξjm, j = 1, 2, 3,

where ξj are integers and m is an arbitrary parameter. Substituting these
values of yj , j = 1, 2, 3, in (3.3), and removing the factor m, we get a
homogeneous quadratic equation of the type

(3.5) Q(x1, x2, x3,m) = 0,

in four variables x1, x2, x3 and m. Necessary and sufficient conditions for the
solvability of (3.5) are well known [5, pp. 49–51], and when these conditions
are satisfied, its complete solution can be effectively determined. If (3.5)
has no non-zero solutions, the system (II) has only the trivial solutions
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xj = yj , j = 1, 2, 3, corresponding to m = 0. If, however, (3.5) has a non-
zero solution, we can find its complete solution in parametric terms, and
hence we obtain the complete solution of the system (II).

We also note that when C(x1, x2, x3) = x1x2x3, equation (3.3) may be
replaced by the three linear equations

(3.6) x1 = α1y1, x2 = α2y2, α1α2x3 = y3,

where α1, α2 are arbitrary rational parameters, and the complete solution
of the diophantine system may be found by solving the five linear equations
(3.1), (3.2) and (3.6) in the six variables x1, x2, x3, y1, y2 and y3.

4. The diophantine system (III). We next consider the system (III),
that is,

L(x1, x2, x3) = L(y1, y2, y3),(4.1)

Q(x1, x2, x3) = Q(y1, y2, y3),(4.2)

C(x1, x2, x3) = C(y1, y2, y3).(4.3)

A parametric solution of this system is given in [1, pp. 297–298]. This solu-
tion is, however, not complete. We now show that in cases where the cubic
form C(x1, x2, x3) is a product of three linearly independent linear forms
in the variables x1, x2, x3, or can effectively be replaced by another cubic
form that is a product of three such linear forms, it is possible to obtain
the complete solution of the above diophantine system. In such cases, the
system may be reduced, by a suitable invertible linear transformation, to
the following system (III′):

L1(X1, X2, X3) = L1(Y1, Y2, Y3),(4.4)

Q1(X1, X2, X3) = Q1(Y1, Y2, Y3),(4.5)

X1X2X3 = Y1Y2Y3.(4.6)

All solutions of this system with X1X2X3 = Y1Y2Y3 = 0 are readily ob-
tained by solving equations (4.4) and (4.5) together with two linear equations
Xu = 0, u ∈ {1, 2, 3}, Yv = 0, v ∈ {1, 2, 3}. This gives us a maximum of
nine two-parameter solutions which together give the complete non-trivial
solution of (III′) with X1X2X3 = 0.

We will now obtain all non-trivial solutions of (III′) with X1X2X3 6= 0.
There is no loss of generality in assuming that one of the variables, say X3,
is not identically the same as the linear form L1(X1, X2, X3). The complete
non-trivial solution of (III′) with X1X2X3 6= 0 and X3 = Y3 is obtained by
solving (4.4), (4.5) together with the equations X1X2 = Y1Y2, X3 = Y3 as
described in [1, p. 293].
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We will now obtain the complete non-trivial solution of (III′) with
X1X2X3 6= 0 and X3 6= Y3. To obtain such solutions, we write

(4.7)

X1 = (λµ+ 1)α1,

X2 = α2,

X3 = (µ+ 1)α3,

Y1 = (µ+ 1)α1,

Y2 = (λµ+ 1)α2,

Y3 = α3,

where α1, α2, α3 are arbitrary non-zero integer parameters, while λ and µ
are arbitrary rational parameters with µ 6= 0. With these values of Xj , Yj,
j = 1, 2, 3, equation (4.6) is identically satisfied while equations (4.4) and
(4.5) reduce, respectively, to the following equations:

(4.8) L1((λ− 1)α1,−λα2, α3) = 0,

and

(4.9) µ{Q1(λα1, 0, α3) −Q1(α1, λα2, 0)} +

(

∂Q1

∂X1

)

Xj=αj

(λ− 1)α1

−

(

∂Q1

∂X2

)

Xj=αj

λα2 +

(

∂Q1

∂X3

)

Xj=αj

α3 = 0.

Equation (4.8) is a linear equation in λ which has a unique solution
λ0 given by λ0 = L1(α1, 0,−α3)/L1(α1,−α2, 0). With λ = λ0, we solve
equation (4.9) for µ to get a unique solution µ0 which may be written as
µ0 = F1(α1, α2, α3)/F2(α1, α2, α3), where Fi(α1, α2, α3), i = 1, 2, are forms
of degree four in the parameters α1, α2, α3. With these values of λ and µ, a
solution of (III′) may now be obtained using (4.7), and it may be written as

(4.10)

X1 = ̺{L1(α1, 0,−α3)F1(αj) + L1(α1,−α2, 0)F2(αj)}α1,

X2 = ̺L1(α1,−α2, 0)F2(αj)α2,

X3 = ̺{L1(α1,−α2, 0)(F1(αj) + F2(αj))}α3,

Y1 = ̺{L1(α1,−α2, 0)(F1(αj) + F2(αj))}α1,

Y2 = ̺{L1(α1, 0,−α3)F1(αj) + L1(α1,−α2, 0)F2(αj)}α2,

Y3 = ̺L1(α1,−α2, 0)F2(αj)α3,

where α1, α2, α3 are arbitrary non-zero integer parameters, while ̺ is an
arbitrary rational parameter.

We will now prove that (4.10) gives the complete solution of system (III′)
with X1X2X3 6= 0 and X3 6= Y3. Let Xj = ξj , Yj = ηj , j = 1, 2, 3, be any
arbitrary solution of (III′) with X1X2X3 6= 0 and X3 6= Y3 so that

L(ξ1, ξ2, ξ3) = L(η1, η2, η3),

Q(ξ1, ξ2, ξ3) = Q(η1, η2, η3),(4.11)

ξ1ξ2ξ3 = η1η2η3,
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and also ξj 6= 0, ηj 6= 0, j = 1, 2, 3, and ξ3 − η3 6= 0. We shall show that
with suitably chosen values of the parameters α1, α2, α3 and ̺, the solution
(4.10) generates the arbitrarily chosen solution. We assign to α1, α2, α3 the
values α′

1
, α′

2
, α′

3
respectively where

(4.12) α′

1 = η1η3, α′

2 = ξ2ξ3, α′

3 = ξ3η3,

and we write

(4.13) λ1 =
ξ1ξ3 − η1η3

η1(ξ3 − η3)
, µ1 =

ξ3 − η3

η3

.

We now note that

(4.14)

(λ1µ1 + 1)α′

1
= ξ1ξ3,

α′

2
= ξ2ξ3,

(µ1 + 1)α′

3
= ξ2

3
,

(µ1 + 1)α′

1
= ξ3η1,

(λ1µ1 + 1)α′

2
= ξ3η2,

α′

3
= ξ3η3.

In view of (4.11) and (4.14), it follows that when we choose αj = α′

j , equa-
tions (4.8) and (4.9) are satisfied by taking λ = λ1 and µ = µ1. As was
observed earlier, these equations have unique solutions which we had taken
as λ0 and µ0. It follows that λ0 = λ1 and µ0 = µ1 and so we have

(4.15)

λ0 =
L1(α

′

1
, 0,−α′

3
)

L1(α′

1
,−α′

2
, 0)

=
ξ1ξ3 − η1η3

η1(ξ3 − η3)
,

µ0 =
F1(α

′

1
, α′

2
, α′

3
)

F2(α′

1
, α′

2
, α′

3
)

=
ξ3 − η3

η3

,

and hence there exist non-zero rational numbers k1 and k2 such that

(4.16)

L1(α
′

1
, 0,−α′

3
) = k1(ξ1ξ3 − η1η3),

L1(α
′

1
,−α′

2
, 0) = k1η1(ξ3 − η3),

F1(α
′

1
, α′

2
, α′

3
) = k2(ξ3 − η3),

F2(α
′

1
, α′

2
, α′

3
) = k2η3.

Now substituting αj = α′

j in (4.10), using the values of L1(α
′

1
, 0,−α′

3
),

L1(α
′

1
,−α′

2
, 0), F1(α

′

j), F2(α
′

j) given by (4.16), and taking

̺ =
1

k1k2ξ3η1η3(ξ3 − η3)
,

we find that the solution generated by (4.10) is precisely the given solution
Xj = ξj, Yj = ηj , j = 1, 2, 3. This completes the proof that (4.10) gives all
the solutions of system (III′) with X1X2X3 6= 0 and X3 6= Y3.

As an example, we consider the diophantine system

x1 + x2 + x3 = y1 + y2 + y3,(4.17)

x2

1 + 2x2

2 + 3x2

3 = y2

1 + 2y2

2 + 3y2

3 ,(4.18)

x3

1 + x3

2 + x3

3 = y3

1 + y3

2 + y3

3.(4.19)



338 A. Choudhry

To solve it, we replace (4.19) by

(4.20) (x1 + x2 + x3)
3 − (x3

1 + x3

2 + x3

3) = (y1 + y2 + y3)
3 − (y3

1 + y3

2 + y3

3),

which reduces to

(4.21) (x1 + x2)(x2 + x3)(x3 + x1) = (y1 + y2)(y2 + y3)(y3 + y1).

To solve equations (4.17), (4.18) and (4.21), we make the invertible linear
transformation

(4.22)

x1 = −X1 +X2 +X3,

x2 = X1 −X2 +X3,

x3 = X1 +X2 −X3,

y1 = −Y1 + Y2 + Y3,

y2 = Y1 − Y2 + Y3,

y3 = Y1 + Y2 − Y3,

so that (4.17) and (4.21) reduce to

(4.23) X1 +X2 +X3 = Y1 + Y2 + Y3, X1X2X3 = Y1Y2Y3,

while (4.18) reduces to

(4.24) 3X2

1 + 3X2

2 + 3X2

3 − 2X1X3 − 4X2X3

= 3Y 2

1 + 3Y 2

2 + 3Y 2

3 − 2Y1Y3 − 4Y2Y3.

We can now obtain all solutions of (4.23) and (4.24) as described above,
and hence obtain the complete solution of the system (4.17)–(4.19). All solu-
tions of this system with both sides of (4.21) being 0 are readily determined.
For instance, if α1, α2 and α3 are integers satisfying 3α2

1
+2α2

2
−5α2

3
= 0, then

(x1, x2, x3, y1, y2, y3) = (α1,−α1, α2, α2, α3,−α3) is a solution of the given
diophantine system. All non-trivial solutions of the system (4.17)–(4.19)
with both sides of (4.21) being non-zero are given by

x1 = ̺(3α3

1α
2

2 − 8α3

1α2α3 + 4α3

1α
2

3 − 3α2

1α
3

2 + 9α2

1α
2

2α3

− 4α2

1α
3

3 − 11α1α
2

2α
2

3 + 10α1α2α
3

3 + 5α3

2α
2

3 − 5α2

2α
3

3),

x2 = ̺(−3α3

1α
2

2 + 8α3

1α2α3 − 4α3

1α
2

3 + 3α2

1α
3

2 − 3α2

1α
2

2α3

− 6α2

1α2α
2

3 + 4α2

1α
3

3 − 6α1α
3

2α3 + 7α1α
2

2α
2

3 + 5α3

2α
2

3 − 5α2

2α
3

3),

x3 = ̺(3α3

1α
2

2 − 4α3

1α
2

3 − 3α2

1α
3

2 − 7α2

1α
2

2α3 + 8α2

1α2α
2

3

+4α2

1α
3

3 + 6α1α
3

2α3 + 3α1α
2

2α
2

3 − 10α1α2α
3

3 − 5α3

2α
2

3 + 5α2

2α
3

3),

y1 = ̺(−3α3

1α
2

2 + 6α3

1α2α3 − 4α3

1α
2

3 + 3α2

1α
3

2 + 3α2

1α
2

2α3

− 8α2

1α2α
2

3 + 4α2

1α
3

3 − 10α1α
3

2α3 + 9α1α
2

2α
2

3 + 5α3

2α
2

3 − 5α2

2α
3

3),

y2 = ̺(3α3

1α
2

2 − 4α3

1α
2

3 − 3α2

1α
3

2 − 9α2

1α
2

2α3 + 10α2

1α2α
2

3

+4α2

1α
3

3 + 10α1α
3

2α3 − 3α1α
2

2α
2

3 − 8α1α2α
3

3 − 5α3

2α
2

3 + 5α2

2α
3

3),

y3 = ̺(3α3

1α
2

2 − 6α3

1α2α3 + 4α3

1α
2

3 − 3α2

1α
3

2 + 5α2

1α
2

2α3

− 4α2

1α
3

3 − 7α1α
2

2α
2

3 + 8α1α2α
3

3 + 5α3

2α
2

3 − 5α2

2α
3

3),

where α1, α2 and α3 are arbitrary parameters while ̺ is an arbitrary rational
number.



Symmetric diophantine systems 339

5. The diophantine system (IV). We now consider the system (IV),
that is,

L(x1, x2, x3) = L(y1, y2, y3),(5.1)

C1(x1, x2, x3) = C1(y1, y2, y3),(5.2)

C2(x1, x2, x3) = C2(y1, y2, y3).(5.3)

A special case of this system was solved in [1, pp. 301–302]. To solve the
general system (IV), we will follow the same procedures as in the case of (I)
and just make the required changes to take into account the additional linear
equation. Thus given a non-trivial solution xj = ξj , yj = ηj , j = 1, 2, 3,
of (IV), we use the substitutions (2.4), and proceeding as before, obtain
the cubic curve (2.6). We note that the values of xj , yj , j = 1, 2, 3, given
by (2.4) satisfy equation (5.1) for arbitrary values of X1, X2 and X3 since
L(ξ1, ξ2, ξ3) = L(η1, η2, η3), and hence, as in the case of (I), we can, in
general, find new solutions of (IV) by determining rational points on the
cubic curve (2.6).

Further, as in the case of (I), for the existence of non-trivial solutions of
(IV) with x1 6= y1 and x1y2 − x2y1 6= 0, a necessary and sufficient condition
of the type (2.12) may be obtained where, in view of the additional equation
(5.1), the parameters a1, a2, a3 must be chosen to satisfy the linear condition
L(a1, a2, a3) = 0.

As a specific example, we consider the diophantine system

x1 + x2 + x3 = y1 + y2 + y3,

x3

1 + 2x3

2 + 3x3

3 = y3

1 + 2y3

2 + 3y3

3 ,(5.4)

x3

1 + x3

2 + x3

3 = y3

1 + y3

2 + y3

3.

A necessary and sufficient condition for the solvability of this system, ob-
tained as above, is that there exist integers a1 and a2 such that the equation

σ2 = − 3a2

2(2a1 + a2)
2(a2

1 + a1a2 + a2

2)
2̺4(5.5)

− 12a3

2(2a1 + a2)(a
2

1 + a1a2 + a2

2)(a1 + a2)
2̺3

− 18a2

2(a1 + a2)(2a
5

1 + 2a4

1a2 + 2a3

1a
2

2 + 3a2

1a
3

2 + 3a1a
4

2 + a5

2)̺
2

− 12a2

2(2a
3

1 + a3

2)(a1 + a2)
3̺− 3(a1 + a2)

2(2a3

1 + a3

2)
2,

is satisfied by rational values of ̺ and σ. Taking a1 = 1, a2 = −2, equation
(5.5) reduces to a quadratic equation whose parametric solution leads to the
following parametric solution of the system (5.4):

(5.6)

x1 = −α2
1
+ 4α1α2 − 4α2

2
,

x2 = −α2
1
− 8α1α2 + 4α2

2
,

x3 = α2
1
+ 4α1α2 + 4α2

2
,

y1 = −α2
1
− 4α1α2 − 4α2

2
,

y2 = −α2
1
+ 8α1α2 + 4α2

2
,

y3 = α2
1
− 4α1α2 + 4α2

2
.

This is not the complete solution of (5.4). To get more solutions, it was
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found by trial that when we take a1 = 7, a2 = −8, equation (5.5) represents
an elliptic curve of rank 3, and the infinitely many rational points on this
curve yield infinitely many numerical solutions of (5.4), one such solution
being (x1, x2, x3, y1, y2, y3) = (168,−83, 242,−98, 221, 204).

6. The diophantine system (V). We now consider the system (V),
that is,

Q1(x1, x2, x3) = Q1(y1, y2, y3),(6.1)

Q2(x1, x2, x3) = Q2(y1, y2, y3),(6.2)

Q3(x1, x2, x3) = Q3(y1, y2, y3).(6.3)

We write

(6.4) xj = Xj + Yj , yj = Xj − Yj , j = 1, 2, 3,

so that the given diophantine system may be replaced by

L11(X1, X2, X3)Y1 + L12(X1, X2, X3)Y2 + L13(X1, X2, X3)Y3 = 0,

L21(X1, X2, X3)Y1 + L22(X1, X2, X3)Y2 + L23(X1, X2, X3)Y3 = 0,(6.5)

L31(X1, X2, X3)Y1 + L32(X1, X2, X3)Y2 + L33(X1, X2, X3)Y3 = 0,

where the forms Lij(X1, X2, X3), i = 1, 2, 3, j = 1, 2, 3, are given by

(6.6) Lij(X1, X2, X3) =

(

∂Qi

∂xj

)

x1=X1,x2=X2,x3=X3

.

The equations (6.5) may be considered as three linear equations in the vari-
ables Y1, Y2, and Y3 and they will have a non-zero solution if and only if

(6.7)

∣

∣

∣

∣

∣

∣

∣

L11(X1, X2, X3) L12(X1, X2, X3) L13(X1, X2, X3)

L21(X1, X2, X3) L22(X1, X2, X3) L23(X1, X2, X3)

L31(X1, X2, X3) L32(X1, X2, X3) L33(X1, X2, X3)

∣

∣

∣

∣

∣

∣

∣

= 0.

Equation (6.7) represents a cubic curve in the projective plane and any
rational point (X1, X2, X3) on this curve would lead, on solving the equa-
tions (6.5), and using the relations (6.4), to a solution of the given diophan-
tine system. In general, the cubic curve (6.7) is of genus 1 and it may have
infinitely many or a finite number (possibly zero) of rational points. We also
note that no algorithm is known that will always find a rational point on
an arbitrary curve of genus 1. If in a particular case, the cubic equation
(6.7) represents a curve of genus 0, its complete solution can be determined,
and this leads, as indicated, to a complete solution of the given diophantine
system. If, however, (6.7) represents a curve of genus 1, even though there is
no algorithm that works in all cases, we may still search for rational points
on the curve, for instance by using a computer program such as APECS,
and obtain either all the finitely many rational points on the curve (6.7), or,
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if (6.7) represents an elliptic curve of positive rank, we may possibly obtain
infinitely many rational points on it. These rational points (X1, X2, X3) can
then be used to obtain solutions of the given diophantine system.

Finally, we note that when one of the quadratic formsQi(xj), sayQ1(xj),
has only two variables, say, x1 and x2, it is easily seen that the forms
L1j(X1, X2, X3), j = 1, 2, 3, are independent of X3, and hence (0, 0, 1) is
a rational point on the curve (6.7). In general, this rational point may be
used to find infinitely many points on the cubic curve (6.7) by using the
tangent and chord method, and we thus obtain infinitely many solutions
of (V).

7. The diophantine system (VI). We now consider the system (VI),
that is,

Q1(x1, x2, x3) = Q1(y1, y2, y3),(7.1)

Q2(x1, x2, x3) = Q2(y1, y2, y3),(7.2)

C(x1, x2, x3) = C(y1, y2, y3).(7.3)

We will first show that if a non-trivial solution of this system is known,
we can, in general, use it to find another solution. If xj = ξj , yj = ηj ,
j = 1, 2, 3, is the known non-trivial solution, we have Q1(ξj) = Q1(ηj),
Q2(ξj) = Q2(ηj), and C(ξj) = C(ηj). In (7.1)–(7.3), we now substitute

(7.4) xj = ajθ + ξj, yj = ajθ + ηj , j = 1, 2, 3,

where a1, a2, a3 and θ are arbitrary parameters with θ 6= 0. In each of these
equations, we transpose all the terms to one side and remove the factor θ,
so that equations (7.1)–(7.3) now reduce respectively to the following equa-
tions:

3
∑

j=1

{(

∂Q1

∂xj

)

xj=ξj

−

(

∂Q1

∂xj

)

xj=ηj

}

aj = 0,(7.5)

3
∑

j=1

{(

∂Q2

∂xj

)

xj=ξj

−

(

∂Q2

∂xj

)

xj=ηj

}

aj = 0,(7.6)

and

(7.7)
θ

2

[{ 3
∑

j=1

(

aj
∂

∂xj

)2

C

}

xj=ξj

−

{ 3
∑

j=1

(

aj
∂

∂xj

)2

C

}

xj=ηj

]

+

{ 3
∑

j=1

(

aj
∂C

∂xj

)}

xj=ξj

−

{ 3
∑

j=1

(

aj
∂C

∂xj

)}

xj=ηj

= 0.

We solve the linear equations (7.5) and (7.6) to obtain a non-zero solution
for a1, a2 and a3, and with these values of a1, a2 and a3, we may, in general,
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solve equation (7.7) to get a non-zero solution for θ, and thus obtain a
new solution of (VI) using (7.4). There are certain solutions of (VI) that
do not lead to a new solution using the above procedure. These include
solutions of the type xj = αj , yj = −αj , j = 1, 2, 3, where C(α1, α2, α3) = 0.
Such solutions are found by simply solving the single diophantine equation
C(x1, x2, x3) = 0, and, strictly speaking, cannot be regarded as non-trivial
solutions of the system (VI).

We will now obtain a necessary and sufficient condition for the solvability
of (VI). In (7.1)–(7.3), we substitute

(7.8) yj = xj + ajm, j = 1, 2, 3,

where a1, a2, a3 and m are arbitrary parameters with m 6= 0. Now on trans-
posing all the terms of (7.1) and (7.2) to one side, and removing the factorm,
we get two homogeneous linear equations in x1, x2, x3 and m, and similarly
(7.3) reduces to a homogeneous quadratic equation in x1, x2, x3 andm. Elim-
inating x2 and x3 from these three equations, we get a quadratic equation
in x1 and m which may be written as Q(x1,m) = 0, where

(7.9) Q(x1,m) = φ0(a1, a2, a3)x
2

1 + φ1(a1, a2, a3)x1m+ φ2(a1, a2, a3)m
2,

and φj(a1, a2, a3), j = 0, 1, 2, are forms of degree 5, 6 and 7 respectively
in the parameters a1, a2 and a3. A necessary and sufficient condition for
the solvability of the quadratic equation Q(x1,m) = 0, and hence for the
solvability of the diophantine system (VI), is that the discriminant of the
quadratic formQ(x1,m) is a perfect square. This discriminant has the square
of a quadratic form in a1, a2, a3 as a factor, and so this factor may be re-
moved. Thus a necessary and sufficient condition for the solvability of (VI)
is that there exist integers a1, a2, a3 and ̺ such that

(7.10) φ(a1, a2, a3) = ̺2,

where φ(a1, a2, a3), a form of degree eight in a1, a2, a3, is obtained by re-
moving the squared factor from the discriminant of Q(x1,m).

As a specific example, we consider the diophantine system

x2

1 + x2

2 = y2

1 + y2

2 ,

x2

1 + x2

3 = y2

1 + y2

3 ,(7.11)

x3

1 + x3

2 + x3

3 = y3

1 + y3

2 + y3

3.

A necessary and sufficient condition for the solvability of this system, ob-
tained as above, is given by

(7.12) −3a1a2a3(a1a2 + a2a3 + a3a1)(a
3

1 + a3

2 + a3

3) = ̺2,

which, on substituting a3 = −a1 − a2, reduces to

(7.13) 9a2

1a
2

2(a1 + a2)
2(a2

1 + a1a2 + a2

2) = ̺2,
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and taking

a1 = −α2

1 − 2α1α2, a2 = α2

1 − α2

2, a3 = 2α1α2 + α2

2,

the condition (7.12) is satisfied, which leads to the parametric solution

(7.14)

x1 = α4
1
+ α3

1
α2 + 2α2

1
α2

2
+ 4α1α

3
2
+ α4

2
,

x2 = −α4
1
− 3α3

1
α2 − 5α2

1
α2

2
− α1α

3
2
+ α4

2
,

x3 = −α4
1
− 4α3

1
α2 − 2α2

1
α2

2
− α1α

3
2
− α4

2
,

y1 = −α4
1
− 5α3

1
α2 − 4α2

1
α2

2
+ α4

2
,

y2 = α4
1
− α3

1
α2 − 5α2

1
α2

2
− 3α1α

3
2
− α4

2
,

y3 = −α4
1
+ 4α2

1
α2

2
+ 5α1α

3
2
+ α4

2
,

of the diophantine system (7.11).

8. The diophantine system (VII). We now consider the system
(VII), that is,

Q(x1, x2, x3) = Q(y1, y2, y3),(8.1)

C1(x1, x2, x3) = C1(y1, y2, y3),(8.2)

C2(x1, x2, x3) = C2(y1, y2, y3).(8.3)

As in the case of (I), we may assume without loss that for a non-trivial
solution of this system, x1 6= y1 and x1y2 − x2y1 6= 0. To solve this system,
we use the substitutions (2.7) so that equation (8.1) reduces to

(8.4) 2Q(a1, a2, a3)mX2 +

{(

X2

∂

∂x2

+X3

∂

∂x3

)( 3
∑

j=1

aj
∂

∂xj

)

Q

}

= 0,

while equations (8.2) and (8.3) yield the two equations (2.8). Eliminating m
and X3 from (2.8) and (8.4), we obtain an equation that may be written as

(8.5) φ0(a1, a2, a3)X
4

1 + φ1(a1, a2, a3)X
2

1X
2

2 + φ2(a1, a2, a3)X
4

2 = 0,

where φj(a1, a2, a3), j = 0, 1, 2, are forms of degrees 28, 26 and 24 respec-
tively in the parameters a1, a2, a3. If for certain rational values of a1, a2, a3,
equation (8.5) has a rational non-zero solution for X1, X2, we can solve
(2.8) and (8.4) to obtain rational solutions for m and X3, and hence ob-
tain a non-trivial solution of (VII). Conversely, if there exists a solution
xj = ξj , yj = ηj , j = 1, 2, 3, of (VII) such that ξ1 6= η1, ξ1η2 − ξ2η1 6= 0, it
is easily seen, as in the case of (I), that when the values of the parameters
a1, a2, a3, X1, X2, X3 and m are chosen as in (2.11), equations (2.8) and (8.4)
are satisfied, and hence (8.5) must also be satisfied by these values of the
parameters. A necessary and sufficient condition for the solvability of (8.5),
and hence of (VII), is that there exist integers a1, a2, a3 such that either of
the following two conditions is satisfied:
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(i) φ0(aj) = 0 and −φ1(aj)φ2(aj) is a non-zero perfect square;
(ii) φ1(aj)

2 − 4φ0(aj)φ2(aj) is a perfect square and one of the two val-
ues of 2φ0(aj)[−φ1(aj) ± {φ2

1
(aj) − 4φ0(aj)φ2(aj)}

1/2] is a non-zero
perfect square.

In any given case, a computer program may easily be written to search for
integers a1, a2, a3 satisfying one or the other of the conditions given above.

As a specific example, we consider the system

x2

1 + 2x2

2 + x2

3 = y2

1 + 2y2

2 + y2

3 ,

x3

1 + x3

2 + x3

3 = y3

1 + y3

2 + y3

3,(8.6)

x1x2x3 = y1y2y3.

We obtain equation (8.5) for this system, and note that taking a3 = −a1−a2,
the left-hand side of this equation has two linear factors, which equated to
zero lead to trivial solutions of (8.6), and hence removing these factors, the
condition (8.5) reduces in this case to

(8.7) (a1 + a2)(2a
2

1 + 2a1a2 + 3a2

2)
2X2

1 − (13a2

1 + 13a1a2 − 3a2

2)a1X
2

2 = 0.

Now on writing

(8.8) a2 = −a1̺/3, X2 = (−̺3 + 5̺2 − 12̺+ 18)a1X1/(3σ),

equation (8.7) reduces to

(8.9) σ2 = ̺3 + 10̺2 − 78̺+ 117,

which represents an elliptic curve of rank 1, a point of infinite order being
(̺, σ) = (−6, 27). We can thus find infinitely many rational points on the
curve (8.9), and hence obtain infinitely many solutions of the system (8.6),
two such solutions being

(x1, x2, x3, y1, y2, y3) = (5, 1,−6, 2,−5, 3),

(x1, x2, x3, y1, y2, y3) = (−2871, 2491, 380, 423,−2755, 2332).

All such solutions will satisfy the additional relation

(8.10) x1 + x2 + x3 = y1 + y2 + y3,

since we had taken a3 = −a1 − a2 in (8.5). To obtain solutions of (8.6)
such that (8.10) does not hold, we must find solutions of (8.5) by trial.
One such solution with (a1, a2, a3) = (7, 6,−4) is (x1, x2, x3, y1, y2, y3) =
(10, 20, 9,−18,−4, 25).
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9. The diophantine system (VIII). Finally, we consider the system
(VIII), that is,

C1(x1, x2, x3) = C1(y1, y2, y3),(9.1)

C2(x1, x2, x3) = C2(y1, y2, y3),(9.2)

C3(x1, x2, x3) = C3(y1, y2, y3).(9.3)

As in the case of (I), we assume without loss that x1 6= y1 and x1y2 − x2y1

6= 0, and by writing

(9.4) x3 = px1 + qx2, y3 = py1 + qy2,

we reduce (VIII) to the following equivalent system (VIII′):

C ′

1(x1, x2) = C ′

1(y1, y2),(9.5)

C ′

2(x1, x2) = C ′

2(y1, y2),(9.6)

C ′

3(x1, x2) = C ′

3(y1, y2),(9.7)

where the coefficients in the binary cubic forms C ′

i(x1, x2) are polynomials
in p and q. It is easy to determine whether there exist rational values of
p and q such that the forms C ′

1
(x1, x2), C

′

2
(x1, x2) and C ′

3
(x1, x2) are lin-

early dependent. If such values can be determined, the diophantine system
reduces to just two simultaneous symmetric cubic equations of (VIII′), and
a necessary and sufficient condition for the solvability of such a system has
been obtained in [3, pp. 94–95]. A noteworthy example of such a reduction
of (VIII) to two cubic equations arises for the system

C1(x1, x2, x3) = C1(y1, y2, y3),(9.8)

x3

1 + x3

2 + x3

3 = y3

1 + y3

2 + y3

3 ,(9.9)

x1x2x3 = y1y2y3,(9.10)

in which case the substitutions x3 = −x1 − x2, y3 = −y1 − y2 reduce both
(9.9) and (9.10) to the equation x1x2(x1 +x2) = y1y2(y1 +y2) and solutions
of the system may be found as described in [3].

We will now obtain a necessary and sufficient condition for the solvability
of (VIII′) when the forms C ′

i(x1, x2) are linearly independent. It follows from
(9.5) and (9.6) that, for any t,

(9.11) C ′

2(t, 1)C ′

1(x1, x2) − C ′

1(t, 1)C ′

2(x1, x2)

= C ′

2(t, 1)C ′

1(y1, y2) − C ′

1(t, 1)C ′

2(y1, y2),

and similarly from (9.5) and (9.7), we derive

(9.12) C ′

3(t, 1)C ′

1(x1, x2) − C ′

1(t, 1)C ′

3(x1, x2)

= C ′

3(t, 1)C ′

1(y1, y2) − C ′

1(t, 1)C ′

3(y1, y2).
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It is also easily seen that when the two equations (9.11) and (9.12) have a
solution that is valid for all values of t, then this solution also satisfies the
system (VIII′). Thus, we have reduced (VIII′) to the system of equations
(9.11) and (9.12) which must have a solution valid for all values of t.

It follows from (9.11) and (9.12) that, for all values of t,

(9.13) {C ′

2(t, 1)C ′

1(x1, x2) − C ′

1(t, 1)C ′

2(x1, x2)}

×{C ′

3
(t, 1)C ′

1
(y1, y2) − C ′

1
(t, 1)C ′

3
(y1, y2)}

−{C ′

3
(t, 1)C ′

1
(x1, x2) − C ′

1
(t, 1)C ′

3
(x1, x2)}

×{C ′

2
(t, 1)C ′

1
(y1, y2) − C ′

1
(t, 1)C ′

2
(y1, y2)} = 0.

It is easily seen that the left-hand side of (9.13) has the factors x1y2 −
x2y1, x1 − tx2, y1 − ty2, and C ′

1
(t, 1). Since x1y2 − x2y1 6= 0 and none of the

other three factors can be 0 for all values of t, we may remove these factors
from the left-hand side of (9.13) to get an equation which may be written
as follows:

(9.14) t{y1L1(x1, x2) + y2L2(x1, x2)} + y1L3(x1, x2) + y2L4(x1, x2) = 0,

where Li(x1, x2), i = 1, 2, 3, 4, are linear forms in x1 and x2 whose coefficients
are functions of p and q. Since (9.14) must be satisfied by any solution of
(VIII′) for all values of t, it follows that the following two equations must
be simultaneously satisfied by any solution of (VIII′):

(9.15)
y1L1(x1, x2) + y2L2(x1, x2) = 0,

y1L3(x1, x2) + y2L4(x1, x2) = 0.

Eliminating y1 and y2 from (9.15), we get an equation

(9.16) Q(x1, x2) = 0,

where Q(x1, x2) is a binary quadratic form with coefficients that are func-
tions of p and q. It follows that a necessary condition for the solvability of
(VIII′) is that the discriminant φ(p, q) of the quadratic form Q(x1, x2) must
be a perfect square. If there exist rational numbers p and q such that φ(p, q)
is a perfect square, then with these values of p and q, the complete solution
of the equations (9.15) is readily determined and may be written as

(9.17) x1 = m1ξ1, x2 = m1ξ2, y1 = m2η1, y2 = m2η2,

where ξ1, ξ2, η1 and η2 are fixed integers while m1 and m2 are arbitrary
parameters. Substituting the values of p, q, x1, x2, y1 and y2 in (9.5)–(9.7),
we get three simple equations

(9.18) m3

1C
′

i(ξ1, ξ2) = m3

2C
′

i(η1, η2), i = 1, 2, 3,

and if these equations are simultaneously satisfied for certain integer values
ofm1 andm2, we obtain a solution of (VIII). Thus, a necessary and sufficient
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condition for the solvability of (VIII) is that there exist rational numbers p
and q such that the discriminant φ(p, q) obtained above is a perfect square
and, at the same time, the resulting equations (9.18) have a solution in
integers for m1 and m2.

As an example, we consider the diophantine system

x3

1 + x3

2 = y3

1 + y3

2,

x3

1 + x3

3 = y3

1 + y3

3,(9.19)

x1x2x3 = y1y2y3.

Since this system is unaltered if we interchange x2, x3 as well as y2, y3, we
need to search only for solutions with x1 6= y1 and x1y2 − x2y1 6= 0. We
write x3 = px1 + qx2, y3 = py1 + qy2, and obtain three equations of the
type (VIII′). If we take either p = 0, or q = 0, we obtain solutions that can
only be considered as trivial solutions of (9.19), for instance, of the type
(x1, x2, x3, y1, y2, y3) = (0, α, α, α, 0, 0) where α is arbitrary. When pq 6= 0,
the three equations of type (VIII′) are linearly independent, and proceeding
as above, we obtain an equation of the type (9.16) which in this case reduces
to

(9.20) p2x2

1 + pqx1x2 + q2x2

2 = 0.

The only rational solution of this equation with pq 6=0 is x1 =0, x2 =0, which
leads to trivial solutions of (9.19). It follows that (9.19) has no essentially
non-trivial solutions.
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