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The equation x + y = α in multiplicatively

dependent unknowns

by

P. Habegger (Basel)

1. Introduction and results. In this paper we give essentially optimal
upper bounds for the height of multiplicatively dependent algebraic solutions
of the inhomogeneous linear equation x + y = α in two unknowns x and y
where α is any non-zero algebraic number. Furthermore we will study the
case where α ≥ 2 is a rational power of a non-zero integer and derive a
better bound for the height of the solution. We will also see that this bound
is best possible in the case where α ≥ 2 is a rational power of 2 and even that
the maximal height value is isolated if α is also assumed to be an integer.
Furthermore for non-zero rational α we give a bound independent of α for
the number of solutions of x + y = α if the unknowns are algebraic units in
the union of all number fields which have unit group of rank 1.

Two non-zero elements x, y of a field are called multiplicatively dependent

if there are r, s ∈ Z not both zero such that

(1) xrys = 1.

When τ is algebraic then H(τ) will denote the absolute Weil height of τ
(see Section 2).

Let α be a non-zero algebraic number. We will show in Theorem 1 that
the heights of multiplicatively dependent algebraic numbers x, y satisfying

(2) x + y = α

are effectively bounded in terms of the height of α. More precisely:

Theorem 1. Let α be a non-zero algebraic number , and let x, y be non-

zero multiplicatively dependent algebraic numbers with x + y = α. Then

max{H(x), H(y)} ≤ 2H(α)2,(3)

min{H(x), H(y)} ≤ 2H(α).(4)
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The general strategy in the proof of Theorem 1 is the following: Given
non-zero algebraic numbers x, y, α as in Theorem 1, there are integers r, s not
both zero such that xrys = 1. Define the rational function f = T r(T − α)s

and let d be the degree of f . Note that f(x) = ±1. For any algebraic τ not
a pole of f we will derive a lower bound for H(f(τ))H(τ)−d in terms of
H(α) and d. By substituting τ = x we will get an upper bound for H(x)
independent of r, s, and d. Here it will be essential that the lower bound has
optimal dependence on d; we will achieve this through careful estimates of
certain positive local minima, together with the use of the product formula
to avoid zero values.

Let Q denote the field of algebraic numbers. Theorem 1 makes explicit
a special case of

Theorem ([BMZ99, p. 1120]). Let C be a closed absolutely irreducible

curve in Gn
m, n ≥ 2, defined over Q and not contained in a translate of a

proper subtorus of Gn
m. Then the algebraic points of C which lie in the union

of all proper algebraic subgroups of Gn
m form a set of bounded Weil height.

Indeed, (2) defines a line C in G2
m which is not contained in a translate

of a proper subtorus because α 6= 0. And any proper algebraic subgroup of
G2

m is contained in some set (1). Finally, the Weil height used in [BMZ99]
was the expression H(x)H(y) ≥ max{H(x), H(y)}.

In the special case α = 1 we get

max{H(x), H(y)} ≤ 2.

This result has already been proved by Cohen and Zannier with different
methods in [CZ00, Theorem 1]. It is easily seen to be sharp after setting
x = y = 1/2. More generally, pick any φ ∈ Q with φ ≥ 0 and set x =
y = 2−φ−1, α = 2−φ. Then x + y = α. Further, by using the standard
properties of the height function stated in the next section one obtains
min{H(x), H(y)} = 2φ+1 = 2H(α). So upper bounds for H(x), H(y) have
to be at least linear in H(α) and (4) is sharp. We ask: can the bound for the
height in (3) be improved? If so, is the upper bound linear in H(α)? The
next theorem gives a positive answer to the first question. It is proved using
simple ideas from diophantine approximation.

Theorem 2. Let α be a non-zero algebraic number , and let x, y be non-

zero multiplicatively dependent algebraic numbers with x + y = α. Then

max{H(x), H(y)} ≤ 14H(α) log(3H(α)).(5)

Note that the estimate given in Theorem 2 is asymptotically much better
for H(α) → ∞ than the one given in Theorem 1, even though it is worse for
small H(α) < 31.
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Still the logarithm in (5) seems a bit disturbing, as it does not answer
the second question posed above. In fact a linear inequality like

max{H(x), H(y)} ≤ CH(α)

with an absolute constant C is impossible—even if x, y, and α are restricted
to Q—as the following theorem shows.

Theorem 3. For each pair of reals θ, Θ with 0 < θ < 1 and Θ > 1, there

are non-zero α ∈ Q with H(α) > Θ, and non-zero multiplicatively dependent

x, y ∈ Q with x + y = α such that

max{H(x), H(y)} > θ
H(α) log(3H(α))

(log log(3H(α)))2
.

So the bound given in Theorem 2 is optimal in the sense that it cannot
be replaced by c(ε)H(α)(log(3H(α)))1−ε for some ε > 0 (and similarly the
bound given in Theorem 3 cannot be replaced by c(ε)H(α)(log(3H(α)))1+ε).

Until now we have considered any non-zero algebraic α, but if we restrict
α to special values, then we are able to improve (5) to a linear bound.

Theorem 4. Let α = nφ where n is a positive integer and φ a positive

rational , and suppose that α ≥ 2. Then for all non-zero multiplicatively

dependent algebraic numbers x, y with x + y = α we have

(6) max{H(x), H(y)} ≤ 2H(α)

with equality if and only if α is a rational power of 2 and x = 2α or y = 2α.

We already know that inequality (6) holds for α = 1 by our Theorem 1
or by the result of Cohen and Zannier. So (6) is valid for every non-zero
integer α.

Once we have a sharp upper bound, say B(α) for max{H(x), H(y)} as
in Theorem 4, it is an interesting problem to determine if this upper bound
is isolated in the sense that there exists ε(α) > 0 such that either

(7) H(x) = B(α) or H(x) ≤ B(α) − ε(α).

This kind of problem was first studied by Cohen and Zannier ([CZ00, Propo-
sition 1]) who proved isolation for α = 1 with B(α) = 2. They use Bilu’s
Equidistribution Theorem and up to now no one has published an explicit
ε(1). We will give an effective result if α = 2φ with φ ∈ N.

Theorem 5. Let α = 2φ where φ is a positive integer. Then for all

non-zero multiplicatively dependent algebraic numbers x, y with x + y = α
we have either

(8) max{H(x), H(y)} = 2H(α) or max{H(x), H(y)} ≤ 1.98H(α).

Theorem 5 shows not only that our ε(α) in (7) can be chosen independent
of α, but that it can even be chosen such that ε(α) → ∞ if H(α) → ∞.
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We move on to an application. Given M ⊂ Q we define SM (α) to be the
set of pairs (x, y) ∈ M2 which satisfy (2) and where x, y are also required to
be units in the ring of algebraic integers. Equations of this type are called
unit equations and have been studied extensively for example if M = K is
a number field. In this case it is a well known result that SK(α) is finite
and even #SK(α) ≤ c(K), i.e. the cardinality is bounded independently
of α. For example Evertse ([Eve84, Theorem 1]) shows that #SK(α) ≤
3 · 72[K:Q]+r where r is the number of real embeddings of K. Further bounds
for #SK(α) have been obtained by Beukers and Schlickewei ([BS96, Theo-
rem 1.1]).

Now let K be a number field with unit group of rank 1 and α ∈ Q∗. If
x and y solve the unit equation, then they are multiplicatively dependent
and so by Theorem 1 their height is bounded effectively in terms of H(α).
Define F to be the union of all number fields with unit group of rank 1.
Then the same argument just given leads to an effective height bound for
x, y with (x, y) ∈ SF (α). In both cases Dirichlet’s Unit Theorem shows that
the degrees of x and y do not exceed 4. So Northcott’s Theorem implies that
SK(α) and SF (α) are finite sets. In fact we will prove a uniform result in
the spirit of Evertse.

Theorem 6. Let α be a non-zero rational number and K a number

field with unit group of rank 1 and F as above. Then #SK(α) ≤ 292 and

#SF (α) ≤ 755 · 106.

The first inequality is merely a numerical improvement of a special case
of Evertse’s bound which leads to #SK(α) ≤ 3 · 78 = 17294403. The second
result is best possible in the sense that if F is replaced by F ′, which is the
union of all number fields with unit group of rank 2, then SF ′(α) is infinite.
Indeed, let a ∈ Z and let x be a zero of the polynomial T (1−T )(a−T )−1 ∈
Z[T ] which is easily seen to be irreducible. Then x and 1−x are units. Clearly
there are infinitely many such x as a runs over all rational integers. This is
not a contradiction to the theorem above because for a large enough x lies
in a cubic number field with unit group of rank 2.

In Section 2 we introduce notation used throughout the paper and state
the required results on lower bounds for the height of values of special ratio-
nal functions. In Section 3 we prove the statements made in Section 2. These
results are then used in Section 4 to prove Theorems 1 and 2. In Section
5 we prove Theorem 3 by construction. Finally, in Sections 6, 7, and 8 we
prove Theorems 4, 5, and 6 respectively.

I thank Professor D. W. Masser for many helpful comments and dis-
cussions. I would also like to thank the referee for carefully reading the
manuscript and giving valuable suggestions.
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2. Notation and auxiliary results on rational functions. First we
introduce the notation used throughout the paper. Let K be a number field
with ring of algebraic integers OK , and define MK to be the set of absolute
values of K such that their restriction to Q is the usual p-adic absolute value
or the standard complex absolute value. If v ∈ MK extends w ∈ MQ we will
write v |w. An extension v ∈ MK of the standard complex absolute value will
be called an infinite prime, or v |∞ for short. All other v ∈ MK will be called
finite primes. It is well known that there are one-to-one correspondences
between infinite primes and embeddings K → C up to complex conjugation
on the one hand, and between finite primes and non-zero prime ideals of OK

on the other hand. For v ∈ MK define dv = [Kv : Qv] for the completions Kv,
Qv of K, Q with respect of v. Then we have the product formula ([Lan83,
pp. 19–20]) ∏

v∈MK

|τ |dv

v = 1 for any τ ∈ K∗ = K\{0}.

For integers n it is sometimes useful to define

δv(n) = max{1, |n|v}.
For τ ∈ K, the height of τ is defined as

H(τ) =
∏

v∈MK

max{1, |τ |dv/[K:Q]
v }.

This definition is independent of the field K containing τ ([HS00, p. 176])
and the height function is thus defined on the algebraic closure Q.

For the reader’s convenience we recall some basic properties of the height
function:

(i) H(τn) = H(τ)|n| for all τ ∈ Q
∗

and n ∈ Z ([Lan83, p. 51]).
(ii) H(τ) = 1 if and only if τ ∈ Q is a root of unity or zero.
(iii) H(ζτ) = H(τ) if τ ∈ Q and ζ is a root of unity.
(iv) H(τµ) ≤ H(τ)H(µ) if τ, µ ∈ Q ([Lan83, p. 51]).
(v) H(τ + µ) ≤ 2H(τ)H(µ) if τ, µ ∈ Q.
(vi) H(τ) = max{|a|, |b|} if τ = a/b ∈ Q, a ∈ Z, b ∈ N, and (a, b) = 1

([Lan83, p. 52]).
(vii) For C, D ∈ R there exist only finitely many τ ∈ Q with H(τ) ≤ C

and [Q(τ) : Q] ≤ D.

Property (ii) is often referred to as Kronecker’s Theorem ([HS00, B.2.3.1,
p. 178]). Property (iii) follows directly from the fact that |ζ| = 1 if ζ is a root
of unity and |·| is any absolute value. And (v) is a consequence of the estimate
max{1, |τ + µ|v} ≤ δv(2) max{1, |τ |v}max{1, |µ|v}. Finally, property (vii) is
a special case of Northcott’s Theorem ([HS00, B.2.3, p. 177]).

Let f = f(T ) be a rational function with algebraic coefficients and let
τ ∈ Q. We are interested in how H(f(τ)) depends on H(τ) and f (provided τ
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is not a pole of f). Recall that the degree of f is defined as max{deg P, deg Q}
for any two coprime polynomials P , Q with f = P/Q. Classically it is known
that

(9) C ≤ H(f(τ))

H(τ)deg f
≤ C ′

with positive constants C, C ′ that are independent of τ (for example it
follows easily from the [Lan83, Theorem 1.8, p. 81]).

As pointed out in the introduction we are particularly interested in a
sharp lower bound of (9) for certain rational functions. The first function
we will investigate has the form f = T r(T −α)s with α a non-zero algebraic
number. Its degree is |r| + |s| if rs ≥ 0, and max{|r|, |s|} if rs < 0.

Proposition 1. Let r, s be integers and α a non-zero algebraic number

and define the rational function f = T r(T − α)s of degree d. Put

e(f) =






2|s| − |r| (rs < 0, |r| < |s|),
|r| (rs < 0, |r| ≥ |s|),
|r| + |s| (rs ≥ 0).

Then for all algebraic τ 6= 0, α we have

(10)
H(f(τ))

H(τ)d
≥ 1

2d

1

H(α)e(f)
≥ 1

2d

1

H(α)2d
.

The exponent e(f) in (10) looks strange, but in fact it is best possible
for each value of r and s 6= 0.

We will also study lower bounds for certain types of polynomials.

Proposition 2. Let m, n be integers with n > m ≥ 0, let β be an

algebraic number , and define the polynomial P = Tn + βTm. Put θ = m/n.

Then for all algebraic τ we have

(11)
H(P (τ))

H(τ)n
≥ 1 − θ

2

1

H(β)1/(1−θ)
≥ 1

2n

1

H(β)n
.

Furthermore, if n = m > 0 and β 6= −1, then

H(P (τ))

H(τ)n
≥ 1

2n

1

H(β)n
.

If β is a root of unity, then Proposition 2 reduces to H(P (τ))H(τ)−n ≥
(2n)−1. In Proposition 3 we use diophantine approximation to get a lower
bound independent of n. This improvement comes at a price: the denomi-
nator on the left-hand side of (11) has to be replaced by X/log X for large
X = H(τ)n. So strictly speaking we are not in the situation of (9) anymore.
Nevertheless Proposition 3 is essential for the proof of Theorem 2.

Proposition 3. Let m, n be integers with n > m ≥ 0, let ζ be a root of

unity , and define the polynomial P = Tn + ζTm. Then for all algebraic τ
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we have
H(P (τ))

H(τ)n
max{1, log(H(τ)n)} ≥ 1

2e

with e = 2.71828 . . . .

Compare this lower bound with the easy upper bound

H(P (τ)) = H(τm(τn−m + ζ)) ≤ 2H(τm)H(τn−m) = 2H(τ)n.

By combining the previous inequality with the inequality from Proposition 3,
we will deduce the following amusing consequence for the logarithmic height
h(τ) = log H(τ).

Corollary. For σ ∈ Q and φ ∈ Q with 0 ≤ φ ≤ 1 take any determina-

tion of σφ. Then

|h(σ + σφ) − h(σ)| ≤ 1 + log 2 + log max{1, h(σ)}.

3. Proofs of Propositions 1–3 and Corollary. Our general strategy
in estimating the heights H(f(τ)) where f and τ are defined as in Propo-
sition 1 is to consider each local factor separately. In the first step we will
consider the case rs ≥ 0. It will actually suffice to suppose r ≥ 0 and s ≥ 0,
so that f is a polynomial. Because some results proved below remain valid in
a more general context we will work with an arbitrary field K containing α
and τ equipped with an absolute value |·|. Recall that in general, an absolute
value | · | on a field K satisfies the triangle inequality |x+y| ≤ |x|+ |y| for all
x, y ∈ K, and that it is called ultrametric if it satisfies |x+y| ≤ max{|x|, |y|}
for all x, y ∈ K.

For an absolute value | · | we define

mf (τ) =
max{1, |τ |r|τ − α|s}

max{1, |τ |d}(12)

with d = deg f = r + s. The subscript f will be omitted if it is clear from
the context what function is meant.

Lemma 1. Suppose r, s ≥ 0. Let | · | be an ultrametric absolute value on

a field K. Then for any τ ∈ K,

mf (τ) ≥ 1

max{1, |α|}d
.

Proof. The case |τ | ≤ 1 is trivial because then max{1, |τ |r|τ − α|s} ≥
1 ≥ max{1, |α|}−d. So let |τ | > 1. Now the assertion can be proved by a
simple study of cases. First consider |α| < |τ |. This implies |τ − α| = |τ |,
so m(τ) = 1. Next if |α| = |τ | we get m(τ) = max{|α|−d, |α|−s|τ − α|s}
≥ |α|−d = max{1, |α|d}−1. Finally, if |α| > |τ | we conclude that m(τ) =
max{|τ |−d, |α/τ |s} ≥ 1 because |α/τ | > 1.
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We now treat the case that our absolute value is not ultrametric but
satisfies the weaker triangle inequality. In that case, we obtain an estimate
slightly worse than that of Lemma 1.

Lemma 2. Suppose r, s ≥ 0. Let | · | be an absolute value on a field K.

Then for any τ ∈ K,

mf (τ) ≥ 1

(1 + |α|)d
≥ 1

2d max{1, |α|}d
.

Proof. First assume |τ | ≤ 1 + |α|; then

m(τ) ≥ 1

max{1, |τ |}d
≥ 1

(1 + |α|)d
≥ 1

2d max{1, |α|}d

as desired. If on the other hand |τ | ≥ 1+ |α| ≥ 1 then |τ −α| ≥ 1 so one has

m(τ) =
|τ − α|s
|τ |s =

∣∣∣∣1 − α

τ

∣∣∣∣
s

≥
(

1 −
∣∣∣∣
α

τ

∣∣∣∣

)s

≥
(

1 − |α|
1 + |α|

)s

=
1

(1 + |α|)s
≥ 1

(1 + |α|)d
,

which suffices.

We will now cover the non-polynomial case of Proposition 1, that is, the
one with rs < 0. Recalling the definition of mf (τ) in (12) with K = C and
with | · | being the standard absolute value, and taking for example r = 2
and s = −1, we obtain, for large τ ,

mf (τ) =
|τ |2/|τ − α|

|τ |2 = |τ − α|−1.

Therefore unfortunately limτ→∞ mf (τ) = 0, so m cannot be bounded away
from 0 as in Lemma 2.

So we redefine mf in this case. Our motivation comes from the calculation

H(f(τ))[K:Q] =
∏

v∈MK

|τ − α|−sdv

v

∏

v∈MK

max{1, |τ |rv|τ − α|sv}dv(13)

=
∏

v∈MK

max{|τ |rv, |τ − α|−s
v }dv

where we have applied the product formula for the number field K if τ 6= α.

Now if we assume r ≥ 0 and set t = −s ≥ 0, then the new definition

(14) mf (τ) =
max{|τ |r, |τ − α|t}

max{1, |τ |d} with d = deg f = max{r, t}

will do the trick.
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Lemma 3. Suppose r ≥ 0 ≥ s = −t and if t > 0 let ε = 1 − r/t. Let | · |
be an ultrametric absolute value on a field K. Then for any τ ∈ K,

mf (τ) ≥
{

max{1, |α|}−εd if r < t and |α| = |τ | > 1,

max{1, |α|−1}−d otherwise.

Proof. As in the proof of Lemma 1 the proof is just a study of different
cases.

Assume |τ | 6= |α|. Then one has |τ − α| = max{|τ |, |α|} and hence

m(τ) =
max{|τ |r, |τ |t, |α|t}

max{1, |τ |d} .

If |τ | ≥ 1 then clearly m(τ) ≥ 1 so let |τ | < 1. Then

m(τ) ≥ |α|t ≥ 1

max{1, |α|−1}t
≥ 1

max{1, |α|−1}d

as desired.

Now assume |τ | = |α|. Here

m(τ) ≥ |α|r
max{1, |α|d} .

If |α| ≤ 1 then

m(τ) ≥ |α|r ≥ 1

max{1, |α|−1}d

as above.

Finally, if |α| > 1 then m(τ) ≥ |α|r−d. The assertion is obvious if r = d,
so assume r < d = t; then one has

m(τ) ≥ |α|−εd =
1

max{1, |α|}εd
.

Lemma 4. Suppose r ≥ 0 ≥ s = −t, and if t > 0 let ε = 1− r/t. Let | · |
be an absolute value on a field K. Then for any τ ∈ K,

mf (τ) ≥
{

2−d max{1, |α|−1}−d max{1, |α|}−εd if r < t,

2−d max{1, |α|−1}−d otherwise.

Proof. We will show the slightly stronger statement

(15) m(τ) ≥
{

2−d max{1, |α|}−εd if r < t, 1/2 ≤ |τ/α| ≤ 2, |α| ≥ 1,

2−d max{1, |α|−1}−d otherwise.

First assume that |τ/α| < 1/2 or |τ/α| > 2. Then 1
2 max{|τ |, |α|} ≤

|τ − α|, and therefore,

m(τ) ≥ 2−t max{|τ |r, |τ |t, |α|t}
max{1, |τ |d} .
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If |τ | ≥ 1 then m(τ) ≥ 2−t ≥ 2−d and we are done. Assume that |τ | < 1.
Then

m(τ) ≥ 2−t|α|t ≥ 2−d max{1, |α|−1}−d,

which implies (15).

Now assume that 1/2 ≤ |τ/α| ≤ 2. If |τ | ≤ |α| then

m(τ) ≥ |τ |r
max{1, |α|d} ≥ 2−r |α|r

max{1, |α|d} ,

and if |τ | > |α| then

m(τ) ≥ 2−d |α|r
max{1, |α|d} ;

so in both cases we have m(τ) ≥ 2−d|α|r max{1, |α|}−d. If |α| < 1 then

m(τ) ≥ 2−d|α|r ≥ 2−d max{1, |α|−1}−d

as above. Suppose |α| ≥ 1. Then m(τ) ≥ 2−d|α|r−d. If r = d our assertion
is obvious. Finally, if r < d then t = d and we have

m(τ) ≥ 2−d|α|−εd = 2−d max{1, |α|}−εd.

Proof of Proposition 1. One may assume r ≥ 0 (apply property (i) if
necessary). Let K be any number field containing α and τ , and take any
v ∈ MK .

If s ≥ 0 then Lemmas 1 and 2 together imply

max{1, |τ |rv|τ − α|sv}
max{1, |τ |dv}

≥ 1

δv(2)d max{1, |α|v}d
.

Now in the case rs ≥ 0 the assertion of the proposition is proved by raising to
the dvth power, taking the product over all elements of MK and extracting
the [K : Q]th root.

If s < 0 set t = −s and if t 6= 0 set ε = 1 − r/t; then Lemmas 3 and 4
together imply

max{|τ |rv, |τ − α|tv}
max{1, |τ |dv}

≥
{

δv(2)−d max{1, |α|v}−εd max{1, |α|−1
v }−d if r < t,

δv(2)−d max{1, |α|−1
v }−d if r ≥ t.

Recall (13); now in the case rs ≤ 0 the assertion is proved by raising to the
dvth power, taking the product over all elements of MK and extracting the
[K : Q]th root.

We now turn to the proof of Proposition 2. It follows the same idea as
the proof of Proposition 1; that is, each factor in the height is estimated
separately. Again the following two lemmas hold in a more general context
where K is any field with an absolute value | · |. For θ ∈ (0, 1) and β, z ∈ K
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define

(16) m̂θβ(z) =
max{1, |z|θ/(1−θ)|z + β|}

max{1, |z|1/(1−θ)} .

The subscripts θ and β will be omitted if the context makes it clear what is
meant.

As in the previous section we shall estimate the finite part of the height
function first.

Lemma 5. Let | · | be an ultrametric absolute value on a field K. Then

for any z ∈ K,

m̂θβ(z) ≥ 1

max{1, |β|}1/(1−θ)
.

Proof. The case where |z| ≤ 1 is trivial because then m̂(z) ≥ 1. If |z| > 1
we split into three cases. First if |β| < |z| then m̂(z) = 1. Next if |β| = |z|
then m̂(z) = max{|z|−1/(1−θ), |1 + β/z|} ≥ |z|−1/(1−θ) = |β|−1/(1−θ). And
finally, if |β| > |z| then m̂(z) = |β|/|z| > 1.

Finally, we will give an estimate of the factors in the infinite part of the
height function in the next lemma.

Lemma 6. Let |·| be an absolute value on a field K. Then for any z ∈ K,

m̂θβ(z) ≥ 1 − θ

2

1

max{1, |β|}1/(1−θ)
.

Proof. We split up the proof into two parts, the first one being when

(17)
1 − θ

2
|z|1/(1−θ) max{1, |β|}−1/(1−θ) ≤ 1.

But then one has

m̂(z) ≥ 1

max{1, |z|}1/(1−θ)
≥ 1 − θ

2

1

max{1, |β|}1/(1−θ)
,

which is just the assertion. Now assume that (17) does not hold. This is
equivalent to saying that |z| > φµ with

φ =

(
2

1 − θ

)1−θ

and µ = max{1, |β|}.

Obviously one has |z| > 1 and therefore

m̂(z) ≥ |z|θ/(1−θ)|z + β|
|z|1/(1−θ)

=
|z + β|
|z| ≥ 1 − |β|

|z| ≥ 1 − µ

|z|

> 1 − 1

φ
≥

(
1 − 1

φ

)
1

µ1/(1−θ)
.
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So the lemma is proven if the inequality

(18) 1 −
(

1 − θ

2

)1−θ

= 1 − 1

φ
≥ 1 − θ

2

holds. Set ξ = 1 − θ; then (18) is equivalent to

(19) g(ξ) ≤ 1 for all ξ ∈ (0, 1), where g(ξ) =

(
ξ

2

)ξ

+
ξ

2
.

Note that defining g(0) = 1 makes the map continuous on [0, 1] and

d2g

dξ2
=

(
ξ

2

)ξ(
(log(ξ/2) + 1)2 +

1

ξ

)
> 0

for ξ ∈ (0, 1). So g is convex, which implies (19) because g(0) = g(1) = 1.

Note that Lemma 6 is in some cases an improvement of Lemma 2. Indeed,
recall the definition of f and assume r ≥ 0 and s > 0 so d = r + s > 0. Set
θ = r/d and ξ = 1 − θ = s/d. Then Lemma 6 with β = −α, in conjunction
with (12), (16), implies

mf (z) = m̂θα(z)d(1−θ) ≥
(

1 − θ

2

)d(1−θ) 1

max{1, |α|}d

and the latter is larger than (2max{1, |α|})−d if and only if (ξ/2)ξ > 1/2,
that is, ξ < 1/2.

We now prove Proposition 2. Let K be a number field containing β, τ
and let v ∈ MK . The case m = 0 follows directly from property (v) of the
height function so one may assume θ = m/n > 0. First consider n > m;
then

max{1, |τn + βτm|v}
max{1, |τ |nv}

=
max{1, |z|θ/(1−θ)

v |z + β|v}
max{1, |z|1/(1−θ)

v }
for z = τn−m. Now apply Lemmas 5 and 6, raise to the dvth power, take
the product over all elements of MK and then the [K : Q]th root to prove
the first inequality of (11). The second inequality follows immediately from
the fact that 1/(1 − θ) ≤ n.

Finally, if n = m and β 6= −1 then standard height properties imply

H(P (τ))

H(τ)n
≥ 1

H(1 + β)
≥ 1

2H(β)
.

To prove Proposition 3 we will apply diophantine approximation to
Proposition 2. This idea came up in a private correspondence of Bombieri–
Masser–Zannier in June 2002.

Set θ = m/n. The case m = 0 can be dismissed as trivial so we may
assume θ ∈ (0, 1). We would like to apply diophantine approximation to θ
to create a new polynomial with small degree.
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Recall that for any Q > 1 there exists a pair p, q ∈ Z such that

|θq − p| ≤ 1/Q and 0 < q < Q.

For a reference see [Cas57, p. 1]. Because θ ∈ (0, 1) one has

θq − p ≤ 1/Q so p ≥ θq − 1/Q > θq − 1 > −1

and thus p ≥ 0; and furthermore

p − qθ ≤ 1/Q so p ≤ 1/Q + qθ < 1 + qθ < 1 + q,

which implies p ≤ q.
Now choose any u ∈ Q

∗
with uq = τn. Set k = mq − np and choose a

β ∈ Q
∗

with βq = ζτk. Note that (βup)q = βqupq = ζτk+np = ζτmq, so
τm = ηβup for some root of unity η. Now

P (τ) = τn + ζτm = uq + ξβup

for a root of unity ξ = ζη. If p = q and ξβ = −1 then P (τ) = 0 so τn−m = −ζ
so τ is a root of unity and the required result follows trivially. If p < q or
ξβ 6= −1 we can apply Proposition 2 to get

H(P (τ))

H(τ)n
=

H(uq + ξβup)

H(u)q
≥ 1

2qH(ξβ)q
≥ 1

2QH(β)q

=
1

2QH(τ)|k|
≥ 1

2QH(τ)n/Q

because |k| = n|θq − p|. Therefore one has

(20) H(P (τ)) ≥ H(τn)1−1/Q

2Q

for each Q > 1. Because the lower bound is continuous, Q = 1 is also
allowable. Optimization of the right-hand side leads to the choice

Q0 = max{1, log H(τn)} ≥ 1.

Inserting Q0 into (20) gives the bound

H(P (τ)) ≥
{

H(τn)(2e log H(τn))−1 if H(τn) > e,

1/2 otherwise,

≥ H(τn)

2emax{1, log H(τn)}
as desired.

To prove the Corollary we note that the bound h(σ + σφ)− h(σ) ≤ log 2
has already been shown in Section 2. For the corresponding lower bound
we note that the case φ = 1 is covered by elementary height properties; so
assume φ < 1. Choose m, n ∈ Z with φ = m/n; then there is τ ∈ Q

∗
and ζ

a root of unity with σ = τn and σφ = ζτm. We apply Proposition 3 to get

h(σ + σφ) − h(σ) ≥ −1 − log 2 − log max{1, h(σ)},
thus concluding the proof.
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4. Proofs of Theorems 1 and 2. The proof of Theorem 1 is a simple
task with the help of Proposition 1. Let for example xrys = 1 with r, s ∈ Z
not both zero. Apply Proposition 1 to ±1 = xr(x−α)s and ±1 = ys(y−α)r

using H(±1) = 1. At least one of the two cases satisfies the conditions
for e(f) = deg f and the other will always work with e(f) ≤ 2 deg f . For
example if |r| ≥ |s| then H(x) ≤ 2H(α).

We now prove Theorem 2. Let for example xrys = 1 with r, s ∈ Z
not both zero and assume r ≥ 0 and H(x) ≥ H(y). If necessary apply
Proposition 1 as in the proof of Theorem 1 to reduce to the case |r| < |s|
and rs < 0. Set n = |s| and m = |r|; then there exists τ ∈ Q

∗
with x = τn

and y = ζτm for some root of unity ζ. Hence we have P (τ) = α with
P = Tn + ζTm. Now Proposition 3 implies

(21) H(α) ≥ ϕ(H(x)) with ϕ(z) =
z

2emax{1, log z} ,

ϕ being understood as a continuous map on [1,∞). Note that ϕ is increasing,
which can be easily verified by restricting it to [1, e] and [e,∞). Theorem 2
follows once we have shown that

(22) ϕ(z0) ≥ H(α) with z0 = 14H(α) log(3H(α)).

Indeed, (21) combined with (22) leads to ϕ(z0) ≥ ϕ(H(x)) and further to
z0 ≥ H(x) because ϕ is increasing.

Since z0 > e the inequality (22) is equivalent to

(23)
7

e
log(3w) − log(14w) − log log(3w) ≥ 0 with w = H(α),

which certainly holds for w = 1. The derivative of the left-hand side of (23)
with respect to w is

1

w

(
7

e
− 1 − 1

log(3w)

)
≥ 1

w

(
7

e
− 2

)

if w ≥ 1. The right-hand side is positive for every w ≥ 1 so we may conclude
that (23) holds for every α, thus completing the proof.

5. Proof of Theorem 3. Choose a large integer q, and define

x =

(
q

q − 1

)n

, y = −
(

q

q − 1

)n−1

with n = [q log q],

so that H(x) = qn > qn−1 = H(y). Then x+ y = α with α = qn−1/(q− 1)n.
Now H(α) = max{qn−1, (q − 1)n} so

(24) lim
q→∞

log H(α)

n log q
= lim

q→∞
max

{
n − 1

n
,
log(q − 1)

log q

}
= 1
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and one clearly has

(25) lim
q→∞

n log q

q(log q)2
= 1.

Multiply (24) and (25) to get log H(α) = q(log q)2κ(q) with limq→∞ κ(q)
= 1. Taking the logarithm gives log log H(α) = log q + 2 log log q + log κ(q),
which leads us to

(26) lim
q→∞

log log H(α)

log q
= 1.

Now we want to show that the quotient H(x)/H(α) is large, so we will
evaluate the limit of

(27) q−1 H(x)

H(α)
= min{1, q−1(1 − q−1)−n}

as q → ∞. Now

log(q−1(1 − q−1)−n)

= − log q − n log(1 − q−1) = − log q + n(q−1 + O(q−2))

= − log q + (q log q + O(1))(q−1 + O(q−2)) = O

(
log q

q

)

as q → ∞. By inserting this expression into (27) one obtains

(28) lim
q→∞

q−1 H(x)

H(α)
= 1.

Finally, by combining (24)–(26), and (28) we conclude that

lim
q→∞

H(x)
H(α) log H(α)
(log log H(α))2

= 1.

6. Proof of Theorem 4. If ζ is a root of unity, then H(1 + ζ) ≤ 2
with equality for example if ζ = 1. We first prove the following variant of
a special case of Theorem 5; it will also be used in the proof of Theorem 4.

Lemma 7. If ζ 6= 1 is a root of unity , then

H(1 + ζ) ≤
√

2
√

3 = 1.8612 . . . .

Proof. Let K be a number field of degree D containing ζ. Multiply the
product formula

∏
v∈MK

|1 − ζ|dv

v = 1 with the definition of the height and
note that ζ is an algebraic integer to get

H(1 + ζ)D ≤ min
{ ∏

v|∞

max{1, |1 + ζ|v}dv ,
∏

v|∞

max{|1 − ζ|v, |1 − ζ2|v}dv

}
.

Let ∆1 be the set of infinite primes v with |1− ζ|v ≥ 1, and let ∆2 be all
other infinite primes. Recall that infinite primes correspond to embeddings
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of K into C up to conjugation. If v ∈ ∆1, then elementary geometry gives
|1 + ζ|v ≤

√
3, with the right-hand side replaced by 2 if we allow v ∈ ∆2.

Similarly if v ∈ ∆2, then max{|1−ζ|v, |1−ζ2|v} ≤
√

3; and if
√

3 is replaced
by 2, then the inequality holds for v ∈ ∆1. Define δi =

∑
v∈∆i

dv/D; then
δ1 + δ2 = 1 and so

H(1 + ζ) ≤ min{
√

3
δ1

2δ2 , 2δ1
√

3
δ2} =

√
3(2

√
3
−1

)min{δ1,1−δ1} ≤
√

2
√

3.

The next lemma will take care of some special cases of Theorem 4.

Lemma 8. Let α = nφ ≥ 2 with n ∈ N, φ a positive rational , and let

x, y ∈ Q
∗

with x + y = α.

(i) If r, s ∈ Z are not both zero with rs ≥ 0 and xrys = 1, then

max{H(x), H(y)} ≤ 3

2
H(α).

(ii) If y = ζx for some root of unity ζ, then

max{H(x), H(y)} ≤
√

2
√

3H(α).

Proof. We can and will assume H(x) ≥ H(y). Fix a number field K
with x, y ∈ K. For part (i) assume r ≥ 0, and if r = 0 assume s > 0. Apply
Lemmas 1 and 2 with f = T r(T − α)s and τ = x to conclude

∏

v∈MK

1

max{1, |x|v}dvd
≥

∏

v|∞

1

(1 + |α|v)dvd

∏

v ∤∞

1

max{1, |α|v}dvd

with d = r + s. For a finite prime v we have |α|v ≤ 1 and therefore H(x) ≤
1 + α ≤ 3

2H(α). Now for part (ii): We have x(1 + ζ) = α and by hypothesis
ζ 6= −1; elementary height properties lead to H(x) = H((1 + ζ)−1α) ≤
H((1 + ζ)−1)H(α) = H(1 + ζ)H(α) ≤

√
2
√

3H(α) by Lemma 7 if ζ 6= 1.
So now assume ζ = 1; then x = y = α/2 and so

H(x)[K:Q] =
∏

v∈MK

max{1, |α/2|dv

v } =
∏

v|∞

|α/2|dv

v

∏

v ∤∞

max{1, |α/2|dv

v }

≤ (α/2)[K:Q]
∏

v ∤∞

|2|−dv

v ,

which implies H(x) ≤ H(α).

Lemma 9. Let α = nφ ≥ 2 with n ∈ N, φ a positive rational , and let

x, y ∈ Q
∗

with x + y = α and xr = yt where 0 < r < t are rational integers.

Define λ = t/r and let K be a number field containing x, y. Then x is an

algebraic integer and furthermore:

(i) If v is a finite prime of K with |x|v < 1, then |x|v = |y|λv = |α|λv .
(ii) One has
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(29) H(x) =
∏

v ∤∞
|x|v<1

max{1, |α|−1
v }dvλ/[K:Q] ≤ αλ.

(iii) Let ε ∈ [0, 1) and δ ∈ (1, 2] be such that

(30) λ ≥ 1 +
log 2

log α
(1 + ε) and (δ − 1)(1 − δ−1)

log α

(1+ε) log 2 α ≥ 1.

Then

(31) |x|v ≤ δ|α|v for all v |∞ and H(x) ≤ δH(α).

Proof. Note that x is an algebraic integer. Indeed, α is an algebraic
integer and x is a zero of the monic polynomial (−1)t(α − T )t − (−1)tT r ∈
OK [T ].

Let v be as in part (i); then xr = yt implies |y|v > |x|v and so because

x + y = α we have |α|v = |y|v = |x|r/t
v < 1.

For part (ii) recall the definition (14) of m = mf with f defined as in
Proposition 1 with s = −t. For any finite prime v ∈ MK one has

(32) m(x) = max{|x|rv, |x − α|tv} = |x|rv ≤ 1.

If on the other hand v is an infinite prime one has |α|v = |n|φv = α ≥ 2 so
clearly |x|v ≥ 1 and therefore

(33) m(x) = |x|r−t
v .

Using (32), (33) and applying the product formula, we conclude that

(34)
∏

v∈MK

m(x)dv =
∏

v ∤∞

|x|dvr
v

∏

v|∞

|x|dv(r−t)
v =

∏

v ∤∞

|x|dvt
v =

∏

v ∤∞
|x|v<1

|x|dvt
v .

Then by applying part (i) to (34) and using (13) with f(x) = ±1 we get

1

H(x)[K:Q]t
=

∏

v∈MK

m(x)dv =
∏

v ∤∞
|x|v<1

|α|dvλt
v =

∏

v ∤∞
|x|v<1

max{1, |α|−1
v }−dvλt

≥ H(α−1)−[K:Q]λt,

from which (ii) follows at once.
To prove part (iii) assume (30) holds. Note that the first statement of

(31) implies the second because x is an algebraic integer. We will prove the
first inequality of (31) by contradiction. Assume |x|v > δ|α|v for some v |∞.
Then |x−α|v > |x|v(1− δ−1), and so |x|rv = |x−α|tv > (|x|v(1− δ−1))t. The
first inequality in (30) implies

δα < |x|v < (1 − δ−1)−λ/(λ−1) ≤ (1 − δ−1)
−(1+ log α

(1+ε) log 2
)
,

which contradicts the second inequality in (30).
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We can now prove Theorem 4. Let for example xrys = 1 with r, s ∈ Z
not both zero and assume r ≥ 0 and H(x) ≥ H(y). Fix a number field K
with x, y ∈ K. We begin by proving the inequality (6). If rs ≥ 0 or r = −s
or y is a root of unity, then Lemma 8 implies the assertion. So assume rs < 0
and −s 6= r and y is not a root of unity. Then H(y)−s = H(x)r ≥ H(y)r > 1
by Kronecker’s Theorem, and therefore −s > r.

For brevity we set t = −s and λ = t/r. If λ ≤ 1 + log 2/log α then (29)
in Lemma 9 gives

(35) H(x) ≤ αλ ≤ α1+log 2/log α = 2H(α).

On the other hand, if λ > 1+log 2/log α, there exists an ε > 0 such that the
first inequality in (30) holds. Now the second inequality in (30) holds strictly
when δ = 2, and so it must continue to hold for some δ < 2. Hence the first
inequality of (31) holds with some δ < 2 and therefore H(x) < 2H(α).

Finally, we prove that max{H(x), H(y)} = 2H(α) if and only if α is a
rational power of 2 and x = 2α or y = 2α. The “if” part is trivial. For the
“only if” part assume H(x) = 2H(α) ≥ H(y). As above we use Lemma 8
to reduce to the case rs < 0 and t = −s > r. We have already showed that
λ > 1 + log 2/log α implies H(x) < 2H(α). But if λ < 1 + log 2/log α then
(35) also implies H(x) < 2H(α). So we must have

(36) λ = 1 + log 2/log α

and thus α is a rational power of 2. By (36) the choice ε = 0, δ = 2 satisfies
the hypothesis of Lemma 9(iii). We conclude that |x|v ≤ 2|α|v for infinite
primes v. As α, x are algebraic integers we even have |x|v = |2α|v for all
infinite primes v. Note that (36) implies

(37) αλ = 2α.

If v is a finite prime with |2|v < 1 then |x|v < 1; indeed, we must have
equality in (29). So Lemma 9(i) gives |x|v = |α|λv , and by (37) we conclude
that |x|v = |2α|v. But this last equality holds for any finite prime: indeed,
if |2|v = 1 then |x|v = |α|v = 1 by Lemma 9(i). Hence |x|v = |2α|v for all
primes, finite or infinite; therefore x = 2αξ for a root of unity ξ. Let v be an
infinite prime. Then the equality |x|rv = |x−α|tv and (37) imply |2ξ−1|v = 1.
For any z, w ∈ K we have the equality |z + w|2v + |z − w|2v = 2|z|2v + 2|w|2v;
take z = ξ − 1 and w = ξ to conclude that ξ = 1. Thus x = 2α.

7. Proof of Theorem 5. We start with an elementary estimate.

Lemma 10. Let φ ∈ N and 1 + 2
3φ−1 ≤ λ ≤ 1 + 4

3φ−1. Then

(38)
1

2
max{1, λ(1 + φ−1)−1} log(22φ+1 + 2max{1, (λ/2)1/(1−λ)})

≤ log(1.98 · 2φ).
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Proof. Let g(λ) be the left-hand side of (38). The map λ 7→ (λ/2)1/(1−λ)

decreases for 1 < λ < 4. If φ = 1 the lemma follows easily by considering the
cases λ ≤ 2 and λ > 2. We will therefore assume φ ≥ 2. Since (1 + 1/w)w

increases for w ≥ 1 we conclude that

(λ/2)1/(1−λ) ≤ 23φ/2

(
1 + 2

3φ

)3φ/2
≤ 33

26
· 23φ/2.

If x and y are positive then log(x + y) ≤ x/y + log y, thus

g(λ) ≤ 1

2
max

{
1,

λ

1 + φ−1

}
log

(
33

26
· 23φ/2+1 + 22φ+1

)

≤ max

{
1,

λ

1 + φ−1

}(
33

28
+

1

2
log 22φ+1

)
.

If λ ≤ 1 + φ−1, then

g(λ) ≤ 33

28
+

1

2
log 2 + log 2φ

and we are done. On the other hand, if λ > 1 + φ−1, then

g(λ) ≤ φ + 4
3

φ + 1

(
33

28
+

1

2
log 22φ+1

)
=

φ
(

5
6 log 2 + 33

28

)
+ 32

26 + 2
3 log 2

φ + 1
+ log 2φ

<
5

6
log 2 +

33

28
+ log 2φ.

We proceed as follows: let x and y = α−x be multiplicatively dependent
with H(y) ≤ H(x) < 2H(α), and let P ∈ Z[T ] be the minimal polynomial
of x. Then we will show P (2α) 6= 0. With the help of the finite primes lying
above 2 we will even find a lower bound for |P (2α)| in terms of H(x). More
precisely:

Lemma 11. Let α = 2φ for φ ∈ N and let x, y ∈ Q
∗

with x + y = α
and xr = yt where 0 < r < t are rational integers. Define λ = t/r and

k(w) = 2α2 + 2w2/λ − w2. If H(x) < 2H(α), then

(39) log H(x) ≤ 1

2
max{1, λ(1 + φ−1)−1} log sup

w≥1
k(w).

Proof. Fix a finite Galois extension K/Q with Galois group G such that
x ∈ K. Let P ∈ Z[T ] be the minimal polynomial of x; then because x is an
algebraic integer we have

(40) P [K:Q(x)] =
∏

σ∈G

(T − σx).

Let v be any finite prime of MK extending the 2-adic absolute value, i.e. v | 2.
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Then

|P (2α)|[K:Q(x)]
v =

∏

σ∈G

|2α − σx|v ≤
∏

σ∈G

max{|2|1+φ
v , |σx|v}.

Recall from Lemma 9(i) that if v′ ∤∞ then |x|v′ < 1 implies |x|v′ = |α|λv′ . Let
g be the number of finite primes of MK lying over 2 and g′ be the number
of finite primes v′ with |2|v′ , |x|v′ < 1. Now G acts transitively on the set of
all finite primes lying over 2 ([Lan94, Proposition 11, p. 12]), therefore each
stabilizer has cardinality [K : Q]/g, so

|P (2α)|[K:Q(x)]
v ≤

∏

σ∈G

max{|2|1+φ
σ−1v

, |x|σ−1v} =
∏

v′|2

max{|2|1+φ
v′ , |x|v′}[K:Q]/g

=
∏

v′|2
|x|

v′
<1

max{|2|1+φ
v′ , |α|λv′}[K:Q]/g = |2|[K:Q](g′/g)min{1+φ,φλ}

v .

Recall that α ∈ Q, so if P (2α) = 0 then x = 2α. In this case H(x) =
2H(α), which contradicts our hypothesis. We conclude that P (2α) 6= 0.
Apply P (2α) ∈ Z and the product formula to see

|P (2α)|[K:Q] =
∏

v|∞

|P (2α)|dv

v =
∏

v ∤∞

|P (2α)|−dv

v ≥
∏

v|2

|P (2α)|−dv

v(41)

≥ 2[K:Q](g′/g) min{1+φ,φλ}deg P .

Because K/Q is Galois we have dvg = [K : Q] for any v | 2. So Lemma 9(ii)
yields

H(x) =
∏

v ∤∞
|x|v<1, |2|v<1

max{1, |α|−1
v }dvλ/[K:Q] = 2(g′/g)φλ.

This equality inserted into (41) gives

(42) |P (2α)|[K:Q] ≥ H(x)[K:Q] min{1,λ−1(1+φ−1)}deg P .

We continue by bounding the left-hand side of (42) from above. Let v be an
infinite prime. Recall that for z1, z2 ∈ K we have |z1 + z2|2v + |z1 − z2|2v =
2|z1|2v + 2|z2|2v. Let σ ∈ G, take z1 = σα, z2 = σα − σx in the previous

equality and recall |σα − σx|v = |σx|1/λ
v to conclude

(43) |2α − σx|2v = |2σα − σx|2v = 2|σα|2v + 2|σx|2/λ
v − |σx|2v = k(|σx|v).

Note that |σx|v ≥ 1; indeed, if |σx|v < 1 then |σy|v = |σx|1/λ
v < 1 and so

|α|v < 2, a contradiction. Apply (43) to (40) to get

|P (2α)|[K:Q(x)] =
∏

σ∈G

|2α − σx|v =
∏

σ∈G

k(|σx|v)1/2 ≤ (sup
w≥1

k(w))[K:Q]/2.
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Combine the previous upper bound with the lower bound in (42) to conclude
the proof.

We can now prove Theorem 5. Assume H(y) ≤ H(x) < 2H(α) and let
r, s ∈ Z not both zero with r ≥ 0 such that xrys = 1. With the help of
Lemma 8 we reduce to the case t = −s > r > 0 as we did at the beginning
of the proof of Theorem 4. Define λ = t/r; we split up the argument into
cases.

The first two cases λ < 1+ 2
3φ−1 and λ > 1+ 4

3φ−1 are effectively covered

by Lemma 9. Indeed, part (ii) applied to the first case gives H(x) ≤ αλ ≤
22/3H(α). For the second case set ε = 1/3 and δ = 1.9. This choice clearly
satisfies the right-hand inequality of (30). Because

(δ − 1)(1 − δ−1)φ/(1+ε)α =
9

10

(
2

(
9

19

)3/4)φ

≥ 1

the left-hand inequality of (30) holds as well. Thus H(x) ≤ 1.9H(α).
Now assume 1 + 2

3φ−1 ≤ λ ≤ 1 + 4
3φ−1. Let k be the function defined in

Lemma 11. Elementary calculus yields

sup
w≥1

k(w) = k(w0) with w0 = max{1, (λ/2)λ/(2(1−λ))}.

Apply the previous inequality to Lemma 11 and obtain the bound

log H(x) ≤ 1

2
max{1, λ(1 + φ−1)−1} log k(w0)

≤ 1

2
max{1, λ(1 + φ−1)−1} log(2α2 + 2max{1, (λ/2)1/(1−λ)}).

Now Lemma 10 implies H(x) ≤ 1.98H(α).

8. Proof of Theorem 6. The next lemma proves the first inequality
in Theorem 6.

Lemma 12. Let K be a number field with rankO∗
K = 1 and α ∈ Q∗; then

#SK(α) ≤ 292.

Proof. If α /∈ Z then SK(α) is empty so assume α ∈ Z \ {0}. Let ω be
the number of roots of unity in K, η a fundamental unit, R the regulator,
and D the degree of K.

If (x, y) ∈ SK(α) there exist r, s ∈ Z not both zero such that xrys = 1;
we shall furthermore assume that r ≥ 0 and H(x) ≥ H(y) (so we will have
to multiply the number of solutions under this hypothesis by 2 to get a
bound for the total number of solutions). If H(y) = 1 then y is a root of
unity, hence in this case we can choose r = 0 and s > 0. So in all cases one
may assume |s| ≥ r.

First assume α 6= ±1. Let ∆ denote the set of all infinite primes v for
which |x|v ≥ 1 and let δ ∈ [0, 1] with δD =

∑
v∈∆ dv. Note that in the case
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s < 0 one has δ = 1 because |α| ≥ 2. Since x is a unit the height is given by

(44) H(x) =
∏

v∈∆

|x|dv/D
v .

Let v ∈ ∆; if |x|v < |α|v/2, then |x|−r/s
v = |α − x|v ≥ |α|v − |x|v > |x|v,

which leads to r/s < −1 so |r/s| > 1, contradicting |r| ≤ |s|. We conclude
that |x|v ≥ |α|v/2 = max{1, |α|v}/2 for all v ∈ ∆. So by (44),

(45) H(x) ≥ 2−δH(α)δ.

We now deduce a corresponding upper bound for H(x). If s ≥ 0, then
Lemma 2 with f = T r(T − α)s and τ = x applied to (44) leads to

(46) H(x) ≤ 2δH(α)δ.

If on the other hand s < 0, then (46) also holds by Theorem 4 because δ = 1.
With the bounds (45) and (46) we can apply a gap principle. There

exists a unique a ∈ Z and a root of unity ζ such that x = ζηa. Apply
height functorial properties and the bounds to see that |a| lies in an interval
of length δ log 4/log H(η). Hence there are at most 2(log 4/log H(η) + 1)
possibilities for a. Clearly this estimate remains valid for α = ±1 because
in this case Theorem 1 implies 0 ≤ log H(x) ≤ log 2. We also note that
R = D log H(η) and therefore

(47) #SK(α) ≤ 4ω

(
D log 4

R
+ 1

)
.

Elementary considerations lead to D ≤ 4 and ω ≤ 12. Now a result of
Friedman ([Fri89, Theorem B]) which states R/ω ≥ 0.09058 completes the
proof.

To prove Theorem 6 let (x, y) ∈ SF (α). The proof splits up into two
cases:

(i) There exist n ∈ Z and a root of unity ζ ∈ F such that x = ζyn with
−2 ≤ n ≤ 2 or y = ζxn with n = 0,±2.

(ii) Otherwise.

First assume case (i). Elementary arguments show that there are 24 roots
of unity ζ in F . For each such ζ, substituting y = α − x in (i) gives eight
polynomial equations in x of degree at most 3; thus the number of x is at
most 24 · 8 · 3 = 576.

Now assume that case (i) does not hold. Set K = Q(x) = Q(x, y) and
D = [K : Q]. Because x and y are not roots of unity we have rankO∗

K = 1.
Let η be a fundamental unit of K. We claim that H(η)D ≤ 4 will com-
plete the proof. Indeed, assuming this inequality, a well known argument
bounds the number of units with degree d and height at most 41/d by
2d

∏d−1
k=1

(
2 ·

(
d
k

)
· 4 + 1

)
. Take the sum over this expression for 2 ≤ d ≤ 4;
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thus there are at most 430706 possibilities for η. There are six roots of unity
in F such that one of these generates the group of roots of unity in K. Let
ζ be such a root of unity; then K = Q(η, ζ). Now the assertion follows from
Lemma 12 applied to the field K.

We will now show H(η)D ≤ 4. There are a, b ∈ Z and roots of unity ζ, ξ
such that x = ζηa and y = ξηb. Let σ1, σ2 be two distinct non-conjugate
embeddings of K into C. These correspond to the two infinite primes in MK .
Define di = 1 if σi(K) ⊂ R and di = 2 otherwise. We may assume d1 ≥ d2.
Now |σi(η)| 6= 1 for i = 1, 2 by Kronecker’s Theorem, so by replacing η with
η−1 if necessary we may assume |σ1(η)| > 1. Let li be a logarithm of σi(η).
Note that D log H(η) = d1 log |σ1(η)| = d1 Re(l1), hence it suffices to show
Re(l1) ≤ log 2. The equality |σ1(η)|d1|σ2(η)|d2 = 1 implies

(48) d1 Re(l1) + d2 Re(l2) = 0.

Because α ∈ Q one has σ1(x) − σ2(x) = σ2(y) − σ1(y). Apply (48) to get

(49) |eq(a)|a|Re(l1)+γ1i − e−q(−a)|a|Re(l1)+γ2i|
= |eq(b)|b|Re(l1)+γ3i − e−q(−b)|b|Re(l1)+γ4i|

where the γi are real numbers and

q(w) =

{
1 if w ≥ 0,

d1/d2 if w < 0,

is an integer. Now define k = q(b)|b| − q(a)|a| ∈ Z; then k 6= 0 because
otherwise we would be in case (i). So first assume k ≥ 1. Apply the triangle
inequality to (49) and use Re(l1) ≥ 0 to conclude that

(50) eq(a)|a|Re(l1) + 1 ≥ e(q(a)|a|+k)Re(l1) − 1.

Note that we have |a| ≥ 1, or else we would be back in case (i). Now (50)
and q(a) ≥ 1 imply

(51) eRe(l1) − 2e−Re(l1) − 1 ≤ 0.

The left-hand side of (51) increases in Re(l1). Substitute log 2 for Re(l1) to
get the bound Re(l1) ≤ log 2. Now assume k ≤ −1; then similar arguments
to those above involving the triangle inequality and this time |b| ≥ 1 also
lead to (51) and thus again Re(l1) ≤ log 2.
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