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1. Introduction. While the contributions of Wilhelm Ljunggren to the
study of Diophantine equations are significant, perhaps what is as interesting
are the problems that remain open from his work. In this paper, we look
closely at one of Ljunggren’s more notable theorems (see [9] or Theorem 9 in
Chapter 28 from [12]), a result which represented a substantial breakthrough
on the occurrence of squares in a special class of Lucas sequences. In the
following result, εD denotes the fundamental unit in the ring of integers of
the real quadratic field Q(

√
D).

Theorem (Ljunggren, 1936). Let D denote a positive nonsquare integer.
Then the equation

(1.1) X2 −DY 4 = 1
has at most two solutions in positive integers X and Y . If two solutions
(X1, Y1) and (X2, Y2) exist , with Y1 < Y2, then they are given either by

X1 + Y
2
1

√
D = εD, X2 + Y

2
2

√
D = ε2D

or by

X1 + Y
2
1

√
D = εD, X2 + Y

2
2

√
D = ε4D,

with the latter case occurring for only finitely many values of D.

The primary purpose of the present paper is to refine the statement of the
above theorem. Evidently, this result does not cover the case that equation
(1.1) has only one solution. That is to say, in the case that equation (1.1)
has only one solution in positive integers, Ljunggren’s theorem does not give
any information from which power of the fundamental unit of Q(

√
D) this

solution arises. Therefore, we will provide a proof of the following sharpening
of Ljunggren’s theorem. In this formulation, and throughout the paper, we
let εD = T1 + U1

√
D denote the minimal unit greater than 1, of norm 1, in
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Z[
√
D], and for k ≥ 1, εkD = Tk + Uk

√
D. In other words, (X,Y ) = (T1, U1)

is the smallest positive integer solution to the Pell equation X2−DY 2 = 1.
Theorem 1.1.

(i) There are at most two positive integer solutions (X,Y ) to equation
(1.1). If two solutions Y1 < Y2 exist , then Y

2
1 = U1 and Y

2
2 = U2,

except only if D = 1785 or D = 16 · 1785, in which case Y 21 = U1
and Y 22 = U4.

(ii) If only one positive integer solution (X,Y ) to equation (1.1) exists,
then Y 2 = Ul where U1 = lv

2 for some squarefree integer l, and
either l = 1, l = 2, or l = p for some prime p ≡ 3 (mod4).

The statement of this theorem appears in [18], but the details of the proof
have never been published, and so it is the primary purpose of the present
paper to provide those details. The proof depends on results concerning
quartic equations of the type aX2−bY 4 = c with c ∈ {±1, 2}, most of which
appear in the literature, and will be discussed in later sections. There is,
however, a key result concerning solutions to the particular quartic equation
aX4−bY 2 = 1, with a not a square, which does not appear in the literature,
and so most of the present paper will be devoted to proving this new result.

In order to formulate this new result, we must make some preliminary
remarks concerning the solvability of the equation

(1.2) aX4 − bY 2 = 1
in positive integers X,Y . The details concerning these remarks can be found
in Section 2.3 of [18]. Let a denote a nonsquare positive integer, and b a
positive integer for which the quadratic equation

(1.3) aX2 − bY 2 = 1
is solvable in positive integers X,Y . In this case, there is a minimal solution

τ = τa,b = v
√
a+ w

√
b,

that is, a solution with v and w positive integers, τ > 1 minimal with
this property, and τ2 = εab being the minimal solution to X

2 − abY 2 = 1.
Moreover, as shown in [17], all solutions in positive integers of (1.3) are
given by

τ2k+1 = v2k+1
√
a+ w2k+1

√
b (k ≥ 0).

Solving the quartic equation (1.2) is equivalent to the problem of determin-
ing all squares in the sequence {v2k+1}. The case (a, b) = (2, 1) was solved
by Ljunggren in [8], wherein it was shown that (X,Y ) = (1, 1), (13, 239) are
the only solutions in positive integers. For the case (a, b) = (3, 2), Bumby [2]
showed that the only squares in this sequence are v1 and v3. In other words,
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the only solutions in positive integers X,Y to the equation 3X4 − 2Y 2 = 1
are (1, 1) and (3, 11).
The following observation is contained in the work of Rotkiewicz [14],

and can be traced back to Chao Ko’s result in [5] on the equation x2 = yn+1.
The proof relies on clever manipulation of certain Jacobi symbols involving
terms in a given Lucas sequence.

Proposition 1.1. If v2k+1 is a square for some k ≥ 0, then v1 is also a
square.

Assume now that equation (1.2) is solvable. By the preceding result, τ =
τa,b is of the form τ = x

2√a+w
√
b. Put t = x4a− 1; then τ =

√
t+ 1+

√
t,

and for k ≥ 0,
τ2k+1 = V2k+1

√
t+ 1 +W2k+1

√
t,

where for each k ≥ 0, V2k+1 = v2k+1/v1 = v2k+1/x2. Proposition 1.1 can be
reformulated as follows.

Corollary 1.1. For k ≥ 0, v2k+1 is a square if and only if V2k+1 is a
square.

Corollary 1.1 shows that in order to obtain information on the powers
of τa,b which can yield solutions to equation (1.2), it is sufficient to consider
equations of the form

(1.4) (t+ 1)X4 − tY 2 = 1,
which we will do for the remainder of this paper.

Remark. It is not surprising that Bumby’s equation 3X4 − 2Y 2 = 1 in
[2] has the two solutions (1, 1) and (3, 11). More generally, if t is an integer
of the form t = m2 +m, with m ≥ 1, then the equation
(1.5) (m2 +m+ 1)X4 − (m2 +m)Y 2 = 1
has the two solutions (X,Y ) = (1, 1), (2m+ 1, 4m2 + 4m+ 3), which corre-
spond to τt+1,t and τ

3
t+1,t respectively.

More generally, we state the following.

Conjecture 1.1. Let t > 1 denote a positive integer. Then the only
positive integer solution to

(t+ 1)X4 − tY 2 = 1
is (X,Y ) = (1, 1), unless t = m2 +m for some positive integer m, in which
case there is also the solution (X,Y ) = (2m+ 1, 4m2 + 4m+ 3).

We remark that a solution to Conjecture 1.1 would provide the basis for
a proof of the following, which represents what is likely the truth concerning
Theorem 1.1, although one could refine the statement even further.
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Conjecture 1.2. Let D > 1 be a nonsquare positive integer , and let
T + U

√
D denote the minimal unit greater than 1 of norm 1 in Z[

√
D]. If

x and y are positive integers satisfying equation (1.1), then x + y2
√
D =

(T +U
√
D)k for some positive integer k ≤ 3, except only for D = 1785 and

D = 16 · 1785, in which cases (1.1) has solutions with exponents k = 1 and
k = 4.

2. Reduction to a family of Thue equations. One approach for
determining all solutions to (1.4) is the hypergeometric method of Thue
[16], when it applies. This is accomplished via the following reduction to a
family of Thue equations. We include the details of the reduction not only
for the sake of completeness, but also because we will make reference to
certain aspects of the proof in what follows.

Proposition 2.1. Let t ≥ 1 be a positive integer. If (X,Y ) is a positive
integer solution to (1.4) other than (1, 1), then there is an integer solution
(x, y) to the Thue equation

(2.1) x4 + 4tx3y − 6tx2y2 − 4t2xy3 + t2y4 = t20,
where t0 divides t and t0 ≤

√
t.

Proof. The case t = 1 was solved by Chen and the second author in [3].
Define Vk for all k ≥ 0 by

(2.2) Vk =
τk + (−1)k+1τ−k
τ + τ−1

,

where τ =
√
t+ 1 +

√
t. This definition for Vk is the same as that given

earlier. For k ≥ 0, let
Tk + Uk

√

t(t+ 1) = τ2k;

then V2k =
√
t Uk for all k ≥ 0. With Vk as above, the relation

V2k+1 = V
2
k+1 + V

2
k

holds for all k ≥ 0. Assume now that V2k+1 = z2 for some integer z > 1. We
will assume that k is even, k = 2n say, as a similar argument holds in the
case that k is odd. In this case

V4n+1 = z
2 = V 22n+1 + V

2
2n = V

2
2n+1 + tU

2
n,

with n > 0. Therefore, tU2n = z
2 − V 22n+1, and since V2n+1 = Tn + tUn, it

follows that

tU2n = z
2 − (Tn + tUn)2.

Since gcd(Un, Tn + tUn) = 1 and Un is even and nonzero, there exist
positive integers G,H, t1, t2, with Un = 2GH and t = t1t2, such that

z − (Tn + tUn) = 2t1G2, z + (Tn + tUn) = 2t2H
2.
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Therefore, Tn + tUn = t2H
2 − t1G2, and from Un = 2GH we deduce that

Tn = t2H
2 − 2tGH − t1G2.

Substituting for Tn and Un in the equation T
2
n − t(t+ 1)U2n = 1 and simpli-

fying yields

t21G
4 + 4tt1G

3H − 6tG2H2 − 4tt2GH3 + t22H4 = 1.
Put t0 = min(t1, t2) and multiply the previous relation by t

2
0. Also, if t0 = t1,

put x = t1G and y = H, otherwise put x = −t2H and y = G. Then x and y
are integers satisfying x4 + 4tx3y − 6tx2y2 − 4t2xy3 + t2y4 = t20.
It is important at this stage to determine a method to deal with the Thue

equations in (2.1). In [3], Chen and the second author use the hypergeometric
method of Thue in order to solve a parametric family of Thue equations
which are derived from a solution of the quartic equation X2 − dY 4 = −1.
Quartic equations of the form X2 − dY 4 = −1 are a subclass of the family
of quartic equations given by (1.2). Therefore, it is natural to try to apply
the hypergeometric approach in this more general setting.
In order to apply the hypergeometric method, one requires good rational

approximations to the roots β(i), i = 1, 2, 3, 4, of the polynomial

(2.3) pt(x) = x
4 + 4tx3 − 6tx2 − 4t2x+ t2,

which are given explicitly by

β(1) =

√
t

τ
(1 + ̺), β(3) = (−τ + ̺)

√
t,

β(2) =

√
t

τ
(1− ̺), β(4) = −(τ + ̺)

√
t,

where τ =
√
t+ 1 +

√
t and ̺ =

√
τ2 + 1.

In the case that t = m2 for some integer m, very good approximations to
all 4 of these roots can be constructed, as was described in detail in [3], and
independently in [21]. As a consequence, the authors of [3] completely solved
the associated family of Thue equations, and proved the following result. We
remark that the same family of Thue equations was solved independently
by Lettl and Pethő in [6].

Theorem (Chen–Voutier and Yuan). Let d > 2 be a squarefree integer
such that the Pell equation X2 − dY 2 = −1 is solvable in positive integers,
and let τ = v + u

√
d denote its minimal solution. The only possible integer

solution to the equation X2 − dY 4 = −1 is (X,Y ) = (v,√u).
Because of this theorem, we will assume throughout the paper that t is a

nonsquare positive integer. We remark that Bennett and the third author [1]
completely solved equation (1.4) in the case that t + 1 is a perfect square,
using lower bounds for linear forms in the logarithms of algebraic numbers.
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Most of this paper will be devoted to applying Thue’s method in order to
obtain an effective measure of approximation to the two roots β(3) and β(4),
as this is precisely what is required to prove Theorem 1.1. It is important to
note that problems arise when one attempts to apply Thue’s method to the
entire family of equations (2.1). In particular, there is difficulty in obtaining
an effective measure of approximation for the two roots β(1) and β(2). This is
due to the fact that these roots approach

√
t as t goes to∞ (see below), and

therefore have no explicit rational approximations suitable for all choices of t.
The authors of [3] are able to deal with the particular subclass of equations
of the type X2 − dY 4 = −1 because in this case, the parameter t in (1.4)
is a square, in which case one can initiate the hypergeometric method using
the rational approximation

√
t.

For k ≥ 0 define polynomials V2k+1(t) and W2k+1(t) by
(2.4) (

√
t+ 1 +

√
t)2k+1 = V2k+1(t)

√
t+ 1 +W2k+1(t)

√
t.

For example,

V1(t) = 1, V5(t) = 16t
2 + 12t+ 1,

V3(t) = 4t+ 1, V7(t) = 64t
3 + 80t2 + 24t+ 1,

and for k ≥ 1,
V2k+3(t) = (4t+ 2)V2k+1(t)− V2k−1(t).

An integer solution to equation (1.4) is equivalent to a triple of integers
(t, z, k) for which z2 = V2k+1(t). We will show that a positive integer solution
to z2 = V2k+1(t) with k even gives rise to a solution (x1, y1) to (1.4) with
x1/y1 close to either β

(3) or β(4). A similar argument shows that a solution
to z2 = V2k+1(t) with k odd gives rise to a solution (x1, y1) to (1.4) with
x1/y1 close to either β

(1) or β(2).

To see this, first notice that from (2.2),

Vk+1/Vk − τ =
τk+1 + (−1)k+2τ−(k+1) − τk+1 − (−1)k+1τ−k+1

τk + (−1)k+1τ−k

=
1 + τ−2

τ2k+1(1± τ−2k) ,

and so Vk+1/Vk is evidently very close to τ , which itself is approximately
equal to 2

√
t.

Now suppose that z2 = V4n+1, and that t1 ≤ t2, so that x = t1G and
y = H in the above proof (a similar argument deals with the case t2 ≤ t1).
Therefore,

x

y
=
2t1G

2

2GH
=

√

V4n+1 − V2n+1
Un

=

√

V 22n+1 + V
2
2n − V2n+1

V2n/
√
t

,
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and after some algebraic manipulation, this last quantity is easily seen to
be equal to √

t
√

(V2n+1/V2n)2 + 1 + V2n+1/V2n
,

from which it is evident that x/y is close to 1/4.
We shall also need some inequalities for the location of the roots. For

t ≥ 18, the polynomial pt(x) from (2.3) changes sign between the bounds
given below, and so we have

√
t+
1

2
+
1

8
√
t
− 2
8t
< β(1) <

√
t+
1

2
+
1

8
√
t
− 1
8t
,

−
√
t+
1

2
− 1

8
√
t
− 1
8t
< β(2) < −

√
t+
1

2
− 1

8
√
t
,

1

4
− 5
64t
+
22

512t2
< β(3) <

1

4
− 5
64t
+
23

512t2
,

−4t− 5
4
+
21

64t
− 87

512t2
< β(4) < −4t− 5

4
+
21

64t
− 84

512t2
.

We conclude that an integer solution to z2 = V4n+1 with t1 < t2 forces x/y
to be close to β(3). Similarly, a solution to z2 = V4n+1 with t2 < t1 forces
x/y to be close to β(4).
We remark that one can show in a similar way that solutions to the

equation z2 = V4n+3 correspond to approximations x/y which are close to
β(1) and β(2). We do not seem to be able to apply the hypergeometric method
in this case, and so the focus of this paper will be entirely on the equation
z2 = V4n+1, which is all that we require for the proof of Theorem 1.1.

Theorem 2.1. For n ≥ 1 and for {V2n+1(t)} defined by (2.4), the equa-
tion z2 = V4n+1(t) has no solutions in positive integers (z, t) with t > 1.

As a consequence of this result, we do get some information on the
existence of squares in the sequence {V4n+3(t)}. For the details of the proof,
the reader is referred to Corollary 2.5 of [18].

Corollary 2.1. For n ≥ 0 and for {V2n+1(t)} defined by (2.4), if the
equation z2 = V4n+3(t) has a solution in positive integers (z, t) with t > 1,
then 4n+ 3 is prime.

We remark that the aforementioned result of Bennett and Walsh in [1]
is equivalent to the statement that the equation z2 = V2n+1(t

2) has no
solutions in positive integers n, z and t > 1.

3. An effective measure of approximation. In this section we will
apply the hypergeometric method to obtain effective measures of approxi-
mation to the two roots β(3) and β(4). Because of the relation β(3)β(4) = −t,
we will only need to deal with one of the roots, say β(3).
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Notation. For positive integers n and r, we put

Xn,r(x) = 2F1(−r − r − 1/n; 1− 1/n;x),
where 2F1 denotes the classical hypergeometric function given by

2F1(a, b; c;x) =

∞
∑

k=0

(a)k(b)k
(c)k

xk

k!
,

with (z)k being the Pochhammer symbol representing the product

z(z + 1) · · · (z + k − 1).
It is easy to see that Xn,r(x) is a polynomial of degree r. We will often make
reference to the homogenization of Xn,r(x), which is given explicitly by

Xn,r(x, y) = y
rXn,r(x/y).

This abuse of notation should not lead to any confusion, as it will be clear
from the context whether a univariate or bivariate polynomial is being re-
ferred to.
Our first lemma is Thue’s “Fundamentaltheorem” [16] together with its

relation to the hypergeometric function, as discovered by Siegel.

Lemma 3.1. Let α1, α2, c1 and c2 be complex numbers with α1 6= α2. For
n ≥ 2, we define the following polynomials:

a(x) =
n2 − 1
6
(α1 − α2)(x− α2), c(x) =

n2 − 1
6
α1(α1 − α2)(x− α2),

b(x) =
n2 − 1
6
(α2 − α1)(x− α1), d(x) =

n2 − 1
6
α2(α2 − α1)(x− α1),

u(x) = − c2(x− α2)n, z(x) = c1(x− α1)n.
Putting λ = (α1 − α2)2/4, for any positive integer r, we define

(
√
λ)rAr(x) = a(x)Xn,r(z, u) + b(x)Xn,r(u, z),

(
√
λ)rBr(x) = c(x)Xn,r(z, u) + d(x)Xn,r(u, z).

Then, for any root β of P (x) = z(x)− u(x), the polynomial
Cr(x) = βAr(x)−Br(x)

is divisible by (x− β)2r+1.
Proof. This is a simplified version of Lemma 2.1 from [3], obtained

by noting that if P (x) satisfies the differential equation given there, with
U(x) = (x− α1)(x− α2), then P (x) must be of the form given here, which
allows us to determine the above expressions.

Lemma 3.2 ([3, Lemma 2.5]). With the above notation, put w(x) =
z(x)/u(x) and write w(x) = µeiϕ with µ ≥ 0 and −π < ϕ ≤ π. Put
w(x)1/n = µ1/neiϕ/n.
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(i) For any nonzero x ∈ C such that w = w(x) is not a negative real
number or zero,

(
√
λ)
r
Cr(x) = {β(a(x)w(x)1/n+ b(x))− (c(x)w(x)1/n+d(x))}Xn,r(u, z)

− (βa(x)− c(x))u(x)rRn,r(w),
with

Rn,r(w) =
Γ (r + 1 + 1/n)

r!Γ (1/n)

w\
1

((1− t)(t− w))r t1/n−r−1 dt,

where the integration path is the straight line from 1 to w.

(ii) Let w = eiϕ, 0 < ϕ < π and put
√
w = eiϕ/2. Then

|Rn,r(w)| ≤
nΓ (r + 1 + 1/n)

r!Γ (1/n)
ϕ|1−

√
w|2r.

Lemma 3.3 ([3, Lemma 2.6]). Let u, w and z be as above. Then

|X∗n,r(u, z)| ≤ 4|u|r
Γ (1− 1/n)r!
Γ (r + 1− 1/n) |1 +

√
w|2r−2.

Lemma 3.4. Let N4,r be the greatest common divisor of the numerators
of the coefficients of X4,r(1 − 2x) and let D4,r be the least common multi-
ple of the denominators of the coefficients of X4,r(x). Then the polynomial
(D4,r/N4,r)X4,r(1− 2x) has integral coefficients. Moreover , N4,r = 2r and

D4,r
Γ (3/4)r!

Γ (r + 3/4)
< 0.8397 · 5.342r, D4,r

Γ (r + 5/4)

Γ (1/4)r!
< 0.1924 · 5.342r.

Proof. Using the so-called Kummer transformation and expanding, we
can write

X4,r(1−2x) =
r
∑

i=0

(−1)i (r+1) · · · (2r−i)
3 · 7 · · · (4r−1)

(

r

i

)

(4r−4i+1) · · · (4r+1)22r−ixi.

Therefore, 2r divides N4,r and by examining the coefficient of x
r, we see

that N4,r = 2
r. We now turn to the inequalities.

From the arguments in the proof of Proposition 2(c) in [7], we obtain

D4,r < exp(1.6708r + 3.43
3
√
r) < 5.341227r

for r ≥ 20 000. Since exp(0.000073r) > exp(1.46) > 2 for such values of r,
the upper bound for D4,r holds for r ≥ 20 000.
For r ≥ 2,
Γ (r + 5/4)

Γ (1/4)r!
=
5

16

r
∏

i=2

i+ 1/4

i
<
5

16
exp

(r\
1

log

(

x+ 1/4

x

)

dx

)

<
5

16
exp

(r\
1

dx

4x

)

≤ 5
16
r1/4.
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As a consequence, the inequalities in the statement of the lemma hold for
r ≥ 20 000. A computation, similar to those described in the proof of Propo-
sition 2 in [7], shows that the same inequalities hold for all smaller values
of r.

Lemma 3.5 ([3, Lemma 2.7]). Let α1, α2, Ar(x), Br(x) and P (x) be de-
fined as in Lemma 3.1 and let a, b, c and d be complex numbers satisfying
ad− bc 6= 0. Define

Kr(x) = aAr(x) + bBr(x), Lr(x) = cAr(x) + dBr(x).

If (x− α1)(x− α2)P (x) 6= 0, then
Kr+1(x)Lr(x) 6= Kr(x)Lr+1(x)

for all r ≥ 0.
Lemma 3.6 ([3, Lemma 2.8]). Let θ ∈ R. Suppose that there exist k0, l0

> 0 and E,Q > 1 such that for all r ∈ N, there are rational integers pr and
qr with |qr| < k0Qr and |qrθ− pr| ≤ l0E−r satisfying prqr+1 6= pr+1qr. Then
for any rational integers p and q with |q| ≥ 1/(2l0), we have

∣

∣

∣

∣

θ − p
q

∣

∣

∣

∣

>
1

c|q|κ+1 , where c = 2k0Q(2l0E)
κ and κ =

logQ

logE
.

For the remainder of this section, we shall assume that t is a fixed integer
greater than 204. We shall also simplify our notation here to reflect the fact
that we have n = 4. We shall use Rr and Xr instead of R4,r and X4,r.
We now determine the quantities defined in the Lemma 3.1. Put

α1 =
√
−t, α2 = −

√
−t, c1 = (1 +

√
−t)/2, c2 = (1−

√
−t)/2.

Then
P (x) = x4 + 4tx3 − 6tx2 − 4t2x+ t2,

which is precisely the polynomial in (2.3).
As in Section 2, we define

τ =
√
t+
√
t+ 1, ̺ =

√

τ2 + 1

for any positive integer t.
The preliminary results above will now be used in order to obtain an

effective measure of approximation to β(3). We will use the initial rational
approximation x = 0 to β(3). By Lemma 3.2, it is desirable to have

β(3) =
c(x)w(x)1/4 + d(x)

a(x)w(x)1/4 + b(x)
,

and it is easy to see that for any particular value of x there is a fourth root
w(x)1/4 for which this identity holds. In the case of x = 0, we have

w = w(0) =
1 +
√
−t

−1 +
√
−t ,

(

τ − i
τ + i

)2

= w,

(

τ − i
̺

)2

=
τ − i
τ + i
,
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and so

w1/4 = (ij)
τ − i
̺

for some 0 ≤ j ≤ 3. Using the fact that ̺2 = τ2 + 1, one can check that
−iτ − 1 + i̺
−τ + i− ̺ = −τ + ̺.

Now since

a(0) = −5t, b(0) = −5t, c(0) = −5t
√
−t, d(0) = 5t

√
−t,

it follows that with j = 0, and hence w1/4 = (τ − i)/̺, the following identity
holds:

β(3) =
c(0)w1/4 + d(0)

a(0)w1/4 + b(0)
.

Therefore, the first term in the expression for (−t)r/2Cr(0) in Lemma 3.2
disappears. Moreover, we will see later that the above choice for the fourth
root of w(0) is extremely close to 1 in the complex plane, a property which
is of critical importance.

We now construct our sequence of rational approximations to β(3).

By Lemmas 3.1 and 3.2, we see that λ = −t, and moreover
(−t)r/2Ar(0) = a(0)Xr(z(0), u(0)) + b(0)Xr(u(0), z(0)),
(−t)r/2Br(0) = c(0)Xr(z(0), u(0)) + d(0)Xr(u(0), z(0)),(3.1)

(−t)r/2Cr(0) = −(β(3)a(0)− c(0))u(0)rRr(w).
These quantities will form the basis for our approximations. We first elim-
inate some common factors. We can write u(0) = −t2(1 −

√
−t)/2 and

z(0) = t2(1 +
√
−t)/2, and after some routine manipulations, we find that

(−t)r/2Ar(0) =
−5t2r+1N4,r
2rD4,r

{

D4,r
N4,r

[

(−1)r(1−
√
−t)rXr

(

1− 2

1−
√
−t

)

+ (1 +
√
−t)rXr

(

1− 2

1 +
√
−t

)]}

,

(−t)r/2Br(0) =
5t2r+3/2N4,r
2rD4,r

{

D4,r
N4,r

[

(1−
√
−t)rXr

(

1− 2

1 +
√
t

)

− (−1)r(1−
√
t)rXr

(

1− 2

1−
√
t

)]}

.

By Lemma 3.4, the quantities inside the braces can be expressed as

(−1)r(e− f
√
−t)± (e− f

√
−t),

where e and f are rational integers, and recalling from Lemma 3.4 that
N4,r = 2

r, considering the cases of r being even or odd separately, we find
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that

(3.2) Pr =
D4,rBr(0)

10t[3r/2+3/2]
, Qr =

D4,rAr(0)

10t[3r/2+3/2]

are rational integers. We note for future reference that if r is even, then Pr
will be divisible by t.
The numbers in (3.2) are those that will be used as the rational approx-

imations to β(3). We have

Qrβ
(3) − Pr = Sr, where Sr =

D4,rCr(0)

10t[3r/2+3/2]
.

We want to show that these are good approximations, and we do this by
estimating |Pr|, |Qr| and |Sr| from above. It is readily verified that

|1 +
√

w(0)|2 = 2 + 2
√

t/(t+ 1),

and hence
|u(0)(1 +

√

w(0))2| = t2(
√
t+ 1 +

√
t).

Using this expression, the expressions for a(0), b(0), c(0) and d(0), Lemma
3.3, and the triangle inequality, we find, for t ≥ 204, that

|Qr| < 1.0013D4,r
Γ (3/4)r!

Γ (r + 3/4)
(
√
t+ 1 +

√
t)r(3.3)

≤ 0.85{5.342(
√
t+ 1 +

√
t)}r.

Similarly, for t ≥ 204 one obtains
(3.4) |Pr| < 0.85

√
t{5.342(

√
t+ 1 +

√
t)}r.

By Lemma 3.2 and the expressions in (3.1), we obtain

|Sr| ≤ 2D4,r
Γ (r + 5/4)

r!Γ (1/4)
ϕ|β(3) −

√
−t|
∣

∣

∣

∣

u(0)

t2
(1−
√

w(0))2
∣

∣

∣

∣

r

,

and as above,
|u(0)(1−

√

w(0))2| = t2(
√
t+ 1−

√
t).

With ϕ as in Lemma 3.2, it can be shown that 2ϕ/π ≤ sinϕ and sinϕ =
Imw(0) = −2

√
t/(t + 1). From our estimates for the β(i)’s, we know that

0 < β(3) < 0.25, and so
ϕ|β(3) −

√
−t| < π.

Combining these inequalities with Lemma 3.4, we obtain

(3.5) |Sr| < 1.21{5.342(
√
t+ 1−

√
t)}r = 1.21

{
√
t+ 1 +

√
t

5.342

}−r

.

Note also that since β(3)β(4) = −t, we have
(3.6) tQr + β

(4)Pr = −β(4)Sr.
We now apply Lemma 3.6 to prove the following theorem.
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Theorem 3.1. Suppose that t ≥ 204. Define

κ =
log(5.342(

√
t+ 1 +

√
t))

log((
√
t+ 1 +

√
t)/5.342)

.

For j = 3 and 4, and for any rational integers p and q, we have

|p− β(j)q| > 1

cj |q|κ

for |q| ≥ 1, where
c3 = 18.2

√
t(0.91

√
t)κ, c4 = 195

√
t(1.37t)κ.

Proof. In each case we will apply Lemmas 3.5 and 3.6. First notice that
PrQr+1 − Pr+1Qr is a nonzero multiple of Ar+1(0)Br(0) − Ar(0)Br+1(0).
Applying Lemma 3.5, with a = d = 1, b = c = 0 and x = 0, we see that
PrQr+1 6= Pr+1Qr.
For β(3), we put pr = Pr and qr = Qr. Since

√
t+ 1+

√
t < 2.0025

√
t, for

t ≥ 204, from (3.3) and (3.4), we can take k0 = 0.85, l0 = 1.21, E = 0.3749
√
t

and Q = 10.698
√
t. Hence we can use c0 for the quantity c in Lemma 3.6.

As well, 1/(2l0) < 1, which gives us the lower bound for |q|.
For β(4), we take advantage of the fact that P2r is divisible by t. In this

case let pr = −Q2r and qr = P2r/t. Since −4t − 2 < β(4) < −4t, we put
k0 = 0.85/

√
t, l0 = 1.21β

(3)/t < 4.86, E = 0.1406t and Q = 114.45t. Here
κ is the same as in the case of β(3) and we can use c2 for the quantity c
in Lemma 3.6. Since l0 is larger in this case, the same lower bound for |q|
remains valid.

4. Proof of Theorem 2.1. We have just used the hypergeometric
method to determine how close a rational number x/y can possibly be to
one of the roots of the polynomial pt(X) in (2.3). Let us now estimate how
close such a rational number must be in order that (x, y) is a solution of
(2.1). As noted before, the closest root to x/y must be either β(3) or β(4). By
abuse of notation, we denote by pt(X,Y ) the bivariate polynomial in (2.1).
Henceforth, X and Y are indeterminates, while x and y represent integer
solutions to equation (2.1). We will assume that t ≥ 204, since for smaller
values of t we verified Conjecture 1.1 using a SIMATH’s program faintp
on the curves Y 2 = X3 − t2(t + 1)X, and doublechecked this computation
using KANT’s program ThueSolve on all Thue equations of the form given
in (2.1).

We begin by proving a lower bound for |y| in terms of t. We do this
as follows; this is essentially Runge’s method. For each of 1 ≤ n ≤ 21, we
compute the Puiseux expansions at infinity of the algebraic function z(t)
defined by z2 = V4n+1(t) in order to obtain, for each n, a positive integer rn
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and integer polynomials f4n+1(t), g4n+1(t) with the property that

22rnV4n+1(t) = (f4n+1(t))
2 + g4n+1(t),

with 2 deg f4n+1(t) = deg V4n+1(t) = 2n, and deg g4n+1(t) = n− 1. We veri-
fied that each of the polynomials g4n+1(t) has no positive integer roots. We
then computed positive integers c1, . . . , c21 with the property that |2f4n+1(t)|
> |g4n+1(t)| for t > cn, and that z2 = V4n+1(t) has no integer solutions for
1 ≤ t ≤ cn. This computation was performed using MAGMA, and to be
precise, we used the (integer) polynomials V4n+1(t/4) rather than V4n+1(t),
as they provided smaller values for each of the ci. In particular, the pos-
itive integers ci increase roughly geometrically in size, with c1 = 1 and
c21 < 3.2 · 109. It follows from this computation that each of the equations
z2 = V4n+1(t) (1 ≤ n ≤ 21) has no solutions in positive integers (z, t).
Now, using equation (2.2), it is readily verified that for t ≥ 204 and

k ≥ 3, one has
(4.1) .9τk−1 < Vk ≤ 1.1τk−1.
In order to prove a lower bound for |y|, we notice that y was defined in the
proof of Proposition 2.1 as either y = H, where

√

V4n+1 + V2n+1 = 2t2H
2 if t1 ≤ t2,

or y = G, where
√

V4n+1 − V2n+1 = 2t1G2 if t2 ≤ t1.
We will deal only with the latter case, as the former can be dealt with in
the same way, and actually produces a larger lower bound for |y|.
It is easy to see that

√

V4n+1 − V2n+1 =
V2n

√

(V2n+1/V2n)2 + 1 + V2n+1/V2n
,

and so from (4.1), we deduce that

2t1y
2 > (1/4)τ2n−2 > (1/4)22n−2(

√
t)2n−2.

Since t1 ≤ t and n ≥ 22, we finally deduce that
(4.2) |y| > 219t10.
We now estimate how close x/y must be to β(3) and β(4). The inequality

in (4.2) shows that we need only deal with |y| ≥ 4. Let us assume first that
(x, y) is a solution of equation (2.1) with x/y closest to β(3). In this case,
|x − β(3)y| ≤ t1/4, for otherwise |pt(x, y)| > t, and so x/y is greater than
β(3) − t1/4/4. Therefore,

∣

∣

∣

∣

x

y
− β(4)

∣

∣

∣

∣

> β(3) − t
.25

4
− β(4) > 4t− t

.25

4
+
3

2
− 13
32t
+
53

256t2
,

by our estimates for the size of the roots.
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Similarly, we also have
∣

∣

∣

∣

x

y
− β(1)

∣

∣

∣

∣

,

∣

∣

∣

∣

x

y
− β(2)

∣

∣

∣

∣

>
√
t− t

.25

4
+
1

2
+ · · · ,

and upon combining the above, assuming that t ≥ 204,
∏

i6=3

∣

∣

∣

∣

x

y
− β(i)

∣

∣

∣

∣

> 3.9t2.

Therefore, if |pt(x, y)| = t20 ≤ t, with t ≥ 204, then

(4.3)

∣

∣

∣

∣

x

y
− β(3)

∣

∣

∣

∣

<
y−4

3.9t
.

Equation (4.3) shows that if x/y is closest to β(3) and |y| ≥ 4, then x/y
must be a convergent in the continued fraction expansion of β(3), since the
right-hand side of (4.3) is less than 1/(2y2) for such values of y.
If the closest root to x/y is β(4), then |x−β(4)y| < t.25, and so x/y must

be less than β(4) + t.25/4. Therefore,
∣

∣

∣

∣

x

y
− β(3)

∣

∣

∣

∣

> β(3) − t
.25

4
− β(4) > 4t−

√
t

4
+
3

2
− 13
32t
+
53

256t2
,

and we also have
∣

∣

∣

∣

x

y
− β(1)

∣

∣

∣

∣

,

∣

∣

∣

∣

x

y
− β(2)

∣

∣

∣

∣

> 4t− t
.25

4
− · · · .

We similarly conclude that for t ≥ 204,
∏

i6=4

∣

∣

∣

∣

x

y
− β(i)

∣

∣

∣

∣

> 63.9t3,

and also, if |pt(x, y)| = t20 ≤ t, then

(4.4)

∣

∣

∣

∣

x

y
− β(4)

∣

∣

∣

∣

<
|y|−4
63.9t2

.

As before, we deduce that if x/y is closest to β(4) and |y| ≥ 4, then x/y
must be a convergent in the continued fraction expansion of β(4).
By Theorem 3.1, (4.3) and (4.4), if (x, y) is any further solution of equa-

tion (2.1), arising from the equation z2 = V4n+1(t), then x/y is either a
convergent to β(3) and

(4.5) |y|3−κ < 18.2
√
t

3.9t
(0.91
√
t)κ,

or a convergent to β(4) and

(4.6) |y|3−κ < 195
√
t

63.9t2
(1.37t)κ,

provided that t ≥ 204.
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Combining (4.5) with the lower bound for |y| in (4.2) shows that t ≤ 240,
while combining (4.6) with (4.2) shows that t ≤ 262. We therefore used the
programs faintp in SIMATH and ThueSolve in KANT once again to verify
Conjecture 1.1 for t in the range 204 ≤ t ≤ 262.
This completes the proof of Theorem 2.1.

5. Further auxiliary results. In this section we will collect those
results which will be needed in the course of proving Theorem 1.1.

Lemma 5.1. Let d > 1 be a squarefree integer , and let εd = T + U
√
d

denote the minimal unit (> 1) in Q(
√
d). Then

εd = τ
2, where τ =

a
√
m+ b

√
n√

c
,

c ∈ {1, 2}, a, b are positive integers for which U = 2ab/c, m,n are posi-
tive integers for which d = mn, m is not a square if c = 1, and a2m −
b2n = c.

Proof. This is well known; for example see Nagell [13].

Lemma 5.2. Let d > 1 denote a nonsquare positive integer , εd = T +
U
√
d be the minimal solution to X2 − dY 2 = 1, and Tk + Uk

√
d = εkd for

k ≥ 1. If Tk = x2 for some integer x, then either k = 1 or k = 2.
Proof. This is in [4], and proved independently by Sun and Yuan [15].

This result improves upon classical work of Ljunggren. For a detailed account
of the entire proof, the reader is referred to the first section of [18].

Let {Tk} and {Uk} be as above. For a positive integer b we define the
rank of apparition of b in {Tk} (resp. {Uk}) to be the minimal index k such
that b divides some term Tk (resp. Uk), provided such an index exists, and
denote it by β(b) (resp. α(b)). It is well known that α(b) exists for all positive
integers b, but β(b) may or may not exist.

Lemma 5.3. Let d > 1 denote a nonsquare positive integer , and b > 1 a
squarefree integer.

(i) If Tk = bx
2 for some integer x, then k = α(b). In particular , if

Tk = 2x
2 for some integer x, then k = 1.

(ii) If Uk = bx
2 and α(b) is even, then k = α(b), except only in the

case that 2T 21 − 1 = v2 for some integer v, and T1U1 = bu2 for some
integer u, in which case U4 = U2α(b) = b(2uv)

2.

Proof. For part (i), see [1, Theorem 1 and Corollary 1], while for part
(ii) see [19].
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Lemma 5.4. Let a and b be positive integers, a nonsquare, such that

aX2 − bY 2 = 1

is solvable in integers, and let τa,b = V
√
a+U
√
b denote its minimal solution

with V and U positive integers, and

τ2k+1 = V2k+1
√
a+ U2k+1

√
b (k ≥ 0).

Write U in the form U = lv2 with l odd and squarefree. If (x, y) is a positive
integer solution of the quartic equation aX2 − bY 4 = 1, then l is odd and
y2 = Ul.

Proof. This is a theorem of Ljunggren [10]. The reader may wish to
consult [18] for a detailed account of the proof and related problems.

We remark that the abc conjecture suggests that if the value l in Lemma
5.4 is greater than 5, then the equation aX2 − bY 4 = 1 cannot have any
positive integer solutions. A proof of this open problem would provide an
approach to prove Conjecture 1.2 which is quite different than the approach
using Conjecture 1.1, which was suggested in Section 1. The reader is referred
to [20] for more details.

Lemma 5.5. Let a and b be odd positive integers, such that aX2 − bY 2
= 2 is solvable in odd integers X and Y . Let τa,b = (V

√
a+ U

√
b)/
√
2

denote its minimal solution with V and U odd positive integers, and

τ2k+1 =
V2k+1

√
a+ U2k+1

√
b√

2
(k ≥ 0).

If (x, y) is a positive integer solution of the quartic equation aX2− bY 4 = 2,
then either y2 = U1 or y

2 = U3.

Proof. This has recently been proved in [11], improving upon previous
work of Ljunggren.

The last result we state in this section is a consequence of Corollaries
1.1 and 2.1.

Lemma 5.6. Let a and b be positive integers, a nonsquare, such that the
equation aX2 − bY 2 = 1 is solvable in positive integers X,Y , and let τa,b =
V
√
a+U

√
b denote its minimal solution, and τ2k+1a,b = V2k+1

√
a+U2k+1

√
b.

If the quartic equation aX4− bY 2 = 1 has a solution (x, y), then x2 = V2k+1
for some k, and either 2k + 1 = 1 or 2k + 1 is a prime p ≡ 3 (mod4).
Furthermore, if V2k+1 is a square for some index 2k + 1, then V1 is also a
square.
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6. Proof of Theorem 1.1. Let k denote an index with the property
that Uk = y

2 for some integer y. If k is even, k = 2r, then y2 = Uk = U2r =
2TrUr, from which it follows that Tr is either a square or twice a square. By
Lemma 5.2, we see that r = 1 or r = 2, and hence k = 2 or k = 4.

With D as in the statement of the theorem, let D = dw2, with w a
positive integer, and d a squarefree positive integer. Let εd = t+u

√
d (resp.

εD = T + U
√
d) denote the minimal solution to X2 − dY 2 = 1 (resp.

X2−DY 2 = 1), and define rD to be the positive integer for which εrDd = εD,
i.e. rD = log(εD)/log(εd).

Assume first that rD is even. Let tk + uk
√
d = (εd)

k. Then Uk = y
2 for

some integer y if and only if u2k1 = wz
2 for some integer z, where 2k1 = krD.

If w divides uk1 , then tk1 is a square, and Lemma 5.2 implies that k1 = 1
or k1 = 2. It follows that k ∈ {1, 2, 4}. If w does not divide uk1 , then the
rank of apparition α(w) of w in the sequence {uk} is even, and so by Lemma
5.3, either 2k1 = 4 or 2k1 = α(w). Since 2k1 = krD and since α(w) clearly
divides rD, we see that k ∈ {1, 2, 4}.
We henceforth assume that both k and rD are odd positive integers. In

this case we can assume that U1 is properly divisible by 2 to an even power,
for otherwise the binomial theorem shows that Uk is properly divisible by 2
to an odd power for all odd positive integers k. Appealing to Lemma 5.1,
we see that εD = τ

2 with

τ =
A1
√
a+B1

√
b√

c
, c ∈ {1, 2},

a a nonsquare positive integer, A21a − B21b = c, D = 42−cab, Uk = AkBk,
and gcd(Ak, Bk) = 1 for all odd k ≥ 1, where

τk =
Ak
√
m+Bk

√
n√

c
.

Therefore, Uk is a square precisely when both Ak and Bk are squares.

We will consider the cases c = 1 and c = 2 separately. Suppose first that
c = 1. By Lemma 5.4, Bk can only be a square when k = l, where B1 = lv

2

for some squarefree positive integer l and some integer v. By Lemma 5.6,
if Ak is a square, then so is A1, and k = 1 or k is a prime p ≡ 3 (mod4).
Combining these two results shows that either U1 =W

2 for some integer W
and k = 1, or U1 = A1B1 = pW

2 and k = p.

Now assume that c = 2. If Uk is a square, then by the same reasoning
as in the previous case, Ak and Bk must both be squares, and so Lemma
5.5 shows that k = 1 or k = 3. Since A3 = A1(2A

2
1 − 3) is not a square for

any positive integer A1, it follows that k = 1. This completes the proof of
Theorem 1.1.
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