A note on the zeros of the derivative of the Riemann zeta function near the critical line

by

Shaoji Feng (Beijing)

1. Introduction. Let $s = \sigma + it$ be a complex variable and $\zeta(s)$ the Riemann zeta function. Throughout this paper $\rho = \beta + i\gamma$ denotes the zeros of $\zeta(s)$, and $\rho' = \beta' + i\gamma'$ the zeros of $\zeta'(s)$, the first derivative of $\zeta(s)$.

The distribution of the zeros of $\zeta'(s)$ is important in the theory of the Riemann zeta function, being closely related to the distribution of the zeros of $\zeta(s)$. This intimate relationship can be best illustrated by the following three results. The first is by Levinson and Montgomery [6]. They have proved that

(1.1)
$$N_1^-(T) = N^-(T) + O(\log T),$$

and, unless $N^-(T) > T/2$ for all large T, there exists a sequence $\{T_j\}$ with $T_j \to \infty$ as $j \to \infty$ such that

(1.2)
$$N_1^-(T_j) = N^-(T_j),$$

where $N_1^-(T)$ and $N^-(T)$ are the numbers of zeros of $\zeta'(\sigma+it)$ and $\zeta(\sigma+it)$, respectively, in the rectangle $0 < t \leq T$, $0 < \sigma < 1/2$, counted according to multiplicity. This is a quantitative version of an earlier result of Speiser [9], who shows that the Riemann Hypothesis (RH) that

all the complex zeros of $\zeta(s)$ lie on the critical line $\sigma = 1/2$

is equivalent to the non-vanishing of $\zeta'(s)$ in $0 < \sigma < 1/2$. The second result comes from Levinson's famous work [5]. He has further exploited this close relationship and showed that more than one third of the zeros of $\zeta(s)$ lie on the critical line. The third result is due to Guo [3], who has showed that there is also a close connection between the vertical distribution of the zeros of $\zeta'(s)$ and that of $\zeta(s)$.

The distribution of the zeros of $\zeta'(s)$, as well as its relationship with that of the zeros of $\zeta(s)$, has been investigated by many authors (see [1–4, 6, 8,

²⁰⁰⁰ Mathematics Subject Classification: Primary 11M06.

S. J. Feng

9, 11]). In [8], Soundararajan introduced the following functions (for $a \in \mathbb{R}$):

(1.3)
$$m^{-}(a) = \liminf_{T \to \infty} N_{1}(T)^{-1} \sum_{\substack{\beta' \le 1/2 + a/\log T \\ 0 < \gamma' < T}} 1,$$

(1.4)
$$m^{+}(a) = \limsup_{T \to \infty} N_{1}(T)^{-1} \sum_{\substack{\beta' \le 1/2 + a/\log T \\ 0 < \gamma' \le T}} 1,$$

where $N_1(T)$ is the number of zeros of $\zeta'(s)$ in $0 < t \leq T$, counted according to multiplicity. The behavior of these functions determines the horizontal distribution of the zeros of $\zeta'(s)$ near the critical line. Soundararajan [8] proved that RH implies $m^-(a) > 0$ for a > 2.6. He conjectured that $m^-(a) \equiv$ $m^+(a) (= m(a)), m(a)$ is continuous, m(a) > 0 for all a > 0, and $m(a) \to 1$ as $a \to \infty$.

To state Zhang's important results on $m^{-}(a)$, we need to explain a conjecture on small gaps between the zeros of $\zeta(s)$. Let the zeros of $\zeta(s)$ in the upper half-plane be arranged as $\varrho_1, \varrho_2, \ldots$ with $\varrho_n = \beta_n + i\gamma_n$ and

$$0 < \gamma_1 \leq \gamma_2 \leq \cdots$$

If a zero is multiple with multiplicity m, then it appears m times consecutively in the above sequence. If two zeros $\rho_{n_1} \neq \rho_{n_2}$ have the same imaginary part (this will happen if RH is not true), then $n_1 < n_2$ implies $\beta_{n_1} < \beta_{n_2}$. For a > 0, define

(1.5)
$$D^{-}(a) = \liminf_{T \to \infty} N(T)^{-1} \sum_{\substack{\gamma_n \le T \\ \gamma_{n+1} - \gamma_n < a/\log T}} 1,$$

where N(T) denotes the number of zeros of $\zeta(s)$ in $0 < t \leq T$, counted according to multiplicity. The following conjecture is well known and is denoted by SGZ for short.

CONJECTURE. For any a > 0,

(1.6)
$$D^{-}(a) > 0.$$

The statement of SGZ is independent of RH.

In [11], Zhang proved the following.

THEOREM A. If a is sufficiently large, then $m^{-}(a) > 0$.

THEOREM B. (Assume RH and SGZ.) For any a > 0, $m^{-}(a) > 0$.

In this note, we will show $m^{-}(a) > 0$ for any a > 0 without the assumption of RH. Namely, we prove the following.

THEOREM 1. (Assume SGZ.) For any a > 0, $m^{-}(a) > 0$.

2. Proof of Theorem 1. Let

 $h(s) = \pi^{-s/2} \Gamma(s/2), \quad \eta(s) = h(s) \zeta'(s).$

By applying Hadamard's Theorem to $(s-1)^2 \zeta'(s)$, Zhang [11] proved the following.

LEMMA 1 ([11]). Let

(2.1)
$$F(t) = -\operatorname{Re}\frac{\eta'}{\eta}\left(\frac{1}{2} + it\right)$$

(here and hereafter Re z denotes the real part of z) if $\eta(1/2 + it) \neq 0$, and (2.2) $F(t) = \lim_{\tau \to T} F(\tau)$

if $\eta(1/2 + it) = 0$. Then F(t) is continuous for all t,

(2.3)
$$F(t) = F_1(t) - F_2(t) + O(1),$$

where

(2.4)
$$F_1(t) = -\sum_{\beta' > 1/2} \operatorname{Re} \frac{1}{1/2 + it - \varrho'},$$

(2.5)
$$F_2(t) = \sum_{0 < \beta' < 1/2} \operatorname{Re} \frac{1}{1/2 + it - \varrho'},$$

and the implied constant is absolute.

Now given T large and a > 0 arbitrary, let

(2.6)
$$F_1^*(t) = -\sum_{\substack{\beta' > 1/2 + 2a/\log T \\ 0 < \gamma' \le T}} \operatorname{Re} \frac{1}{1/2 + it - \varrho'}.$$

Then

(2.7)
$$0 \le F_1^*(t) \le F_1(t).$$

We also need the following lemmas.

LEMMA 2 ([11]). We have

(2.8)
$$\int_{0}^{1} F_{1}^{*}(t) dt \geq \pi \sum_{\substack{\beta' > 1/2 + 2a/\log T \\ 0 < \gamma' \le T}} 1 + O(T).$$

LEMMA 3. Let the zeros of $\zeta(s)$ in the upper half-plane be arranged as ρ_1, ρ_2, \ldots with $\rho_n = \beta_n + i\gamma_n$ (we do not assume $\beta_n \equiv 1/2$ here) and

$$0 < \gamma_1 \leq \gamma_2 \leq \cdots$$
.

If a zero is multiple with multiplicity m, then it appears m times consecutively in the above sequence. If two zeros $\rho_{n_1} \neq \rho_{n_2}$ have the same imaginary part, then $n_1 < n_2$ implies $\beta_{n_1} < \beta_{n_2}$. For n > 1, define

$$I_n = \int\limits_{\gamma_{n-1}}^{\gamma_{n+1}} F_1^*(t) \, dt.$$

(i) For any n,

(2.9)
$$I_n \le 2\pi + \int_{\gamma_{n-1}}^{\gamma_{n+1}} F_2(t) \, dt + O(\gamma_{n+1} - \gamma_{n-1}).$$

(ii) If
$$\beta_n = 1/2$$
, $\gamma_{n+1} \leq T$ and $\gamma_{n+1} - \gamma_n < a/\log T$, then

(2.10)
$$I_n \le \pi + 2a + \int_{\gamma_{n-1}}^{\gamma_{n+1}} F_2(t) dt + O(\gamma_{n+1} - \gamma_{n-1}).$$

Proof. (i) This follows from Lemma 1, (2.7) and [11, Lemma 4].

(ii) This follows from Lemma 1, (2.7) and a slightly modified version of the proof of [11, Lemma 8]. \blacksquare

Lemma 4 ([1]). We have

(2.11)
$$N_1(T) = \frac{T}{2\pi} \left(\log \frac{T}{4\pi} - 1 \right) + O(\log T).$$

LEMMA 5. We have

(2.12)
$$\int_{0}^{T} F_{2}(t) dt \leq \pi \sum_{\substack{0 < \beta' < 1/2 \\ 0 < \gamma' \leq T}} 1 + O(T).$$

Proof. By Lemma 4, for $0 \le t \le T$ and $n \ge 1$,

$$(2.13) \qquad \sum_{\substack{0 < \beta' < 1/2 \\ n \log T \le |\gamma' - t| < (n+1) \log T \\ \le 2 \log T \log(T + (n+1) \log T) + O(\log(T + (n+1) \log T)) \\ \le 2 \log^2 T + 2 \log T \log n + O(\log n) + o(\log^2 T), \end{cases}$$

where the implied constants are independent of n. Then

(2.14)
$$\sum_{\substack{0<\beta'<1/2\\\gamma'\geq T+\log T \text{ or } \gamma'\leq -\log T}} \operatorname{Re} \frac{1}{1/2+it-\varrho'}$$

$$\leq \sum_{n=1}^{\infty} \sum_{\substack{0 < \beta' < 1/2 \\ n \log T \le |\gamma' - t| < (n+1) \log T}} \frac{1}{(\gamma' - t)^2} \\ \leq \sum_{n=1}^{\infty} (2 \log^2 T + 2 \log T \log n + O(\log n) + o(\log^2 T)) \frac{1}{(n \log T)^2} \\ = O(1).$$

Thus

(2.15)
$$F_2(t) = \sum_{\substack{0 < \beta' < 1/2 \\ -\log T < \gamma' < T + \log T}} \operatorname{Re} \frac{1}{1/2 + it - \varrho'} + O(1).$$

For $\beta' < 1/2$,

(2.16)
$$\int_{0}^{T} \operatorname{Re} \frac{1}{1/2 + it - \varrho'} dt = \int_{0}^{T} \operatorname{Re} \frac{1/2 - \beta'}{|1/2 + it - \varrho'|^2} dt$$
$$= \arctan\left(\frac{T - \gamma'}{1/2 - \beta'}\right) + \arctan\left(\frac{\gamma'}{1/2 - \beta'}\right) < \pi.$$

By (2.15) and (2.16),

(2.17)
$$\int_{0}^{T} F_{2}(t) dt \leq \pi \sum_{\substack{0 < \beta' < 1/2 \\ -\log T < \gamma' < T + \log T}} 1 + O(T).$$

By Lemma 4,

(2.18)
$$\sum_{\substack{0<\beta'<1/2\\-\log T<\gamma'\leq 0}} 1 = O(\log T \log \log T), \qquad \sum_{\substack{0<\beta'<1/2\\T<\gamma'< T+\log T}} 1 = O(\log^2 T).$$

Combining (2.17) and (2.18), we get (2.12). \blacksquare

Lemma 6 ([10, Theorem 9.4]). We have

(2.19)
$$N(T) = \frac{T}{2\pi} \left(\log \frac{T}{2\pi} - 1 \right) + O(\log T).$$

Proof of Theorem 1. It is no restriction to assume $a < \pi/2$. Let

$$\begin{split} N &= \max\{n : \gamma_{n+1} \leq T\},\\ S_1 &= \{n : 1 < n \leq N, \, \gamma_{n+1} - \gamma_n \geq a/\log T\},\\ S_2 &= \{n : 1 < n \leq N, \, \beta_n = 1/2, \, \gamma_{n+1} - \gamma_n < a/\log T\},\\ S_3 &= \{n : 1 < n \leq N, \, \beta_n \neq 1/2, \, \gamma_{n+1} - \gamma_n < a/\log T\}. \end{split}$$

On the one hand, by Lemma 3,

$$(2.20) \qquad \sum_{n=2}^{N} I_n = \sum_{n \in S_1 \cup S_3} I_n + \sum_{n \in S_2} I_n$$

$$\leq 2\pi \sum_{n \in S_1 \cup S_3} 1 + \sum_{n \in S_1 \cup S_3} \int_{\gamma_{n-1}}^{\gamma_{n+1}} F_2(t) dt + O\Big(\sum_{n \in S_1 \cup S_3} (\gamma_{n+1} - \gamma_{n-1})\Big)$$

$$+ (\pi + 2a) \sum_{n \in S_2} 1 + \sum_{n \in S_2} \int_{\gamma_{n-1}}^{\gamma_{n+1}} F_2(t) dt + O\Big(\sum_{n \in S_2} (\gamma_{n+1} - \gamma_{n-1})\Big)$$

$$\leq 2\pi N - (\pi - 2a) \sum_{n \in S_2} 1 + \int_{0}^{\gamma_N} F_2(t) dt + \int_{0}^{\gamma_{N+1}} F_2(t) dt + O(T),$$

where the fact that $F_2(t) \ge 0$ is used.

On the other hand, by Lemma 2,

(2.21)
$$\sum_{n=2}^{N} I_n + \int_{0}^{\gamma_1} F_1^*(t) dt + \int_{0}^{\gamma_2} F_1^*(t) dt + \int_{\gamma_N}^{T} F_1^*(t) dt + \int_{\gamma_{N+1}}^{T} F_1^*(t) dt$$
$$= 2 \int_{0}^{T} F_1^*(t) dt \ge 2\pi \sum_{\substack{\beta' > 1/2 + 2a/\log T \\ 0 < \gamma' \le T}} 1 + O(T).$$

Lemma 6 implies

$$\gamma_{n+1} - \gamma_n = O(1);$$

then by (2.7) and Lemma 3, we have

(2.22)
$$\int_{\gamma_N}^T F_1^*(t) dt \le \int_{\gamma_N}^{\gamma_{N+2}} F_1^*(t) dt = I_{N+1}$$
$$\le 2\pi + \int_{\gamma_N}^{\gamma_{N+2}} F_2(t) dt + O(\gamma_{N+2} - \gamma_N) = \int_{\gamma_N}^{\gamma_{N+2}} F_2(t) dt + O(1).$$

By Lemma 1, (2.7) and [11, Lemma 4],

(2.23)
$$\int_{\gamma_{N+1}}^{T} F_1^*(t) dt \leq \int_{\gamma_{N+1}}^{\gamma_{N+2}} F_1^*(t) dt \leq \int_{\gamma_{N+1}}^{\gamma_{N+2}} F_1(t) dt$$
$$\leq \pi + \int_{\gamma_{N+1}}^{\gamma_{N+2}} F_2(t) dt + O(\gamma_{N+2} - \gamma_{N+1}) = \int_{\gamma_{N+1}}^{\gamma_{N+2}} F_2(t) dt + O(1).$$

By (2.7),

(2.24)
$$\int_{0}^{\gamma_{1}} F_{1}^{*}(t) dt \leq \int_{0}^{\gamma_{1}} F_{1}(t) dt = O(1),$$

(2.25)
$$\int_{0}^{\gamma_{2}} F_{1}^{*}(t) dt \leq \int_{0}^{\gamma_{2}} F_{1}(t) dt = O(1),$$

where the implied constant is absolute. Combining (2.21)-(2.25), we have

(2.26)
$$\sum_{n=2}^{N} I_n \ge 2\pi \sum_{\substack{\beta' > 1/2 + 2a/\log T \\ 0 < \gamma' \le T}} 1 - \int_{\gamma_N}^{\gamma_{N+2}} F_2(t) \, dt - \int_{\gamma_{N+1}}^{\gamma_{N+2}} F_2(t) \, dt + O(T).$$

It follows from Lemmas 4 and 6 that

$$N = N_1(T) + O(T).$$

Then combining (2.20) and (2.26) we obtain

(2.27)
$$\sum_{\substack{\beta' \le 1/2 + 2a/\log T \\ 0 < \gamma' \le T}} 1 \ge \left(\frac{1}{2} - \frac{a}{\pi}\right) \sum_{n \in S_2} 1 - \frac{1}{\pi} \int_{0}^{\gamma_{N+2}} F_2(t) \, dt + O(T).$$

By Lemma 5, Lemma 4 and the fact that $\gamma_{N+2} - T = O(1)$,

(2.28)
$$\int_{0}^{\gamma_{N+2}} F_2(t) dt \le \pi \sum_{\substack{0 < \beta' < 1/2 \\ 0 < \gamma' \le \gamma_{N+2}}} 1 + O(\gamma_{N+2})$$
$$= \pi \sum_{\substack{0 < \beta' < 1/2 \\ 0 < \gamma' \le T}} 1 + \pi \sum_{\substack{0 < \beta' < 1/2 \\ T < \gamma' \le \gamma_{N+2}}} 1 + O(T)$$
$$= \pi \sum_{\substack{0 < \beta' < 1/2 \\ 0 < \gamma' \le T}} 1 + O(T).$$

Now (2.27) and (2.28) imply

(2.29)
$$2 \sum_{\substack{\beta' \le 1/2 + 2a/\log T \\ 0 < \gamma' \le T}} 1 \ge \sum_{\substack{\beta' \le 1/2 + 2a/\log T \\ 0 < \gamma' \le T}} 1 + \sum_{\substack{0 < \beta' < 1/2 \\ 0 < \gamma' \le T}} 1 \\ \ge \left(\frac{1}{2} - \frac{a}{\pi}\right) \sum_{n \in S_2} 1 + O(T).$$

By (1.5) and Lemma 6,

(2.30)
$$\sum_{n \in S_2} 1 + \sum_{n \in S_3} 1 \ge D^-(a) \, \frac{T \log T}{2\pi} + o(T \log T).$$

By (1.1), (2.31)

(2.31)
$$\sum_{n \in S_3} 1 \le 2 \sum_{\substack{0 < \beta < 1/2 \\ 0 < \gamma \le T}} 1 \le 2 \sum_{\substack{0 < \beta' < 1/2 \\ 0 < \gamma' \le T}} 1 + O(\log T).$$

Therefore

(2.32)
$$\sum_{n \in S_2} 1 \ge D^-(a) \frac{T \log T}{2\pi} - 2 \sum_{\substack{0 < \beta' < 1/2 \\ 0 < \gamma' \le T}} 1 + o(T \log T)$$
$$\ge D^-(a) \frac{T \log T}{2\pi} - 2 \sum_{\substack{\beta' \le 1/2 + 2a/\log T \\ 0 < \gamma' \le T}} 1 + o(T \log T).$$

Combining (2.29) and (2.32), we have

(2.33)
$$\sum_{\substack{\beta' \le 1/2 + 2a/\log T \\ 0 < \gamma' \le T}} 1 \ge \frac{\pi - 2a}{6\pi + 4a} D^-(a) \frac{T \log T}{2\pi} + o(T \log T).$$

That is,

(2.34)
$$m^{-}(2a) \ge \frac{\pi - 2a}{6\pi + 4a} D^{-}(a) > 0.$$

The proof is complete. \blacksquare

3. Remark. In Levinson's well known work [5], he proved that more than one third of the zeros of $\zeta(s)$ lie on the critical line by using the relationship between $N^-(T)$ and $N_1^-(T)$. We outline the principle behind his proof here. Let g(s) be the function $\zeta'(1-s)$ and σ be $1/2 - a/\log T$, where a > 0 is a small positive real number. Note that $\varrho^* = \beta^* + i\gamma^*$ is a zero of g(s) if and only if $\varrho' = 1 - \beta^* + i\gamma^*$ is a zero of $\zeta'(s)$. If one can show that

(3.1)
$$\sum_{\substack{\sigma < \beta^* \le 2\\ 0 < \gamma^* \le T}} (\beta^* - \sigma) \le C_a T + o(T),$$

where C_a is a constant depending on a, then since

(3.2)
$$\sum_{\substack{\sigma < \beta^* \leq 2\\ 0 < \gamma^* \leq T}} (\beta^* - \sigma) \ge \left(\frac{1}{2} - \sigma\right) \sum_{\substack{1/2 < \beta^* \leq 2\\ 0 < \gamma^* \leq T}} 1,$$

one has

(3.3)
$$\sum_{\substack{1/2 < \beta^* \le 2\\ 0 < \gamma^* \le T}} 1 \le \frac{C_a}{a} T \log T + o(T \log T).$$

66

Then by (1.1),

(3.4)
$$\sum_{\substack{0 < \beta < 1/2 \\ 0 < \gamma \le T}} 1 \le \frac{C_a}{a} T \log T + o(T \log T).$$

Therefore the proportion of the zeros of $\zeta(s)$ on the critical line is more than

$$1 - \frac{4\pi C_a}{a}.$$

By estimating C_a carefully (applying the Littlewood Theorem [7, 10]) and choosing *a* suitably, Levinson proved the proportion is more than 1/3. This result can be improved slightly by having a better estimate for C_a .

But we can see in (3.2) there is some loss in the argument. In the process of obtaining an upper bound for the number of zeros of $\zeta'(s)$ with $\beta' < 1/2$, one has also counted those zeros satisfying

(3.5)
$$\frac{1}{2} \le \beta' < \frac{1}{2} + \frac{a}{\log T}, \quad 0 < \gamma' \le T$$

(with the weight $1/2 + a/\log T - \beta'$). Theorem 1 shows that on the SGZ, there is a positive proportion of the zeros of $\zeta'(s)$ satisfying (3.5) or

$$\beta' < 1/2, \quad 0 < \gamma' \le T.$$

Thus, if SGZ is valid, no matter how precisely C_a are estimated and what a is chosen, the framework of [5] cannot prove that 100% of the zeros of $\zeta(s)$ lie on the critical line (although it is likely true).

However, once a good (large) lower estimate of $m^{-}(a)$ is obtained, the result of [5] can be significantly improved by combining this estimate and (3.1). We can see in the statement and proof of Theorem 1 that the lower bound for $m^{-}(a)$ is closely connected with the vertical distribution of the zeros of the Riemann zeta function.

References

- [1] B. C. Berndt, The number of zeros for $\zeta^{(k)}(s)$, J. London Math. Soc. (2) 2 (1970), 577–580.
- [2] J. B. Conrey and A. Ghosh, Zeros of derivatives of the Riemann zeta-function near the critical line, in: Analytic Number Theory (Allerton Park, IL, 1989), Progr. Math. 85, Birkhäuser, Boston, 1990, 95–110.
- [3] C. R. Guo, On the zeros of $\zeta(s)$ and $\zeta'(s)$, J. Number Theory 54 (1995), 206–210.
- [4] —, On the zeros of the derivative of the Riemann zeta function, Proc. London Math. Soc. (3) 72 (1996), 28–62.
- [5] N. Levinson, More than one third of zeros of Riemann's zeta-function are on $\sigma = \frac{1}{2}$, Adv. Math. 13 (1974), 383–436.
- [6] N. Levinson and H. L. Montgomery, Zeros of the derivatives of the Riemann zetafunction, Acta Math. 133 (1974), 49–65.

S. J. Feng

- [7] J. E. Littlewood, On the zeros of the Riemann zeta function, Proc. Cambridge Philos. Soc. 22 (1924), 295–318.
- [8] K. Soundararajan, The horizontal distribution of zeros of $\zeta'(s)$, Duke Math. J. 91 (1998), 33–59.
- [9] A. Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1934), 514–521.
- [10] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, Clarendon Press, Oxford, 1986.
- [11] Y. Zhang, On the zeros of $\zeta'(s)$ near the critical line, Duke Math. J. 110 (2001), 555–571.

Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100080, P.R. China E-mail: jxfsj@hotmail.com

Received on 13.12.2004

(4900)