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A note on the zeros of the derivative of

the Riemann zeta function near the critical line

by

Shaoji Feng (Beijing)

1. Introduction. Let s = σ + it be a complex variable and ζ(s) the
Riemann zeta function. Throughout this paper ̺ = β+ iγ denotes the zeros
of ζ(s), and ̺′ = β′ + iγ′ the zeros of ζ ′(s), the first derivative of ζ(s).

The distribution of the zeros of ζ ′(s) is important in the theory of the
Riemann zeta function, being closely related to the distribution of the zeros
of ζ(s). This intimate relationship can be best illustrated by the following
three results. The first is by Levinson and Montgomery [6]. They have proved
that

N−1 (T ) = N
−(T ) +O(log T ),(1.1)

and, unless N−(T ) > T/2 for all large T , there exists a sequence {Tj} with
Tj →∞ as j →∞ such that

N−1 (Tj) = N
−(Tj),(1.2)

where N−1 (T ) and N
−(T ) are the numbers of zeros of ζ ′(σ+it) and ζ(σ+it),

respectively, in the rectangle 0 < t ≤ T , 0 < σ < 1/2, counted according to
multiplicity. This is a quantitative version of an earlier result of Speiser [9],
who shows that the Riemann Hypothesis (RH) that

all the complex zeros of ζ(s) lie on the critical line σ = 1/2

is equivalent to the non-vanishing of ζ ′(s) in 0 < σ < 1/2. The second result
comes from Levinson’s famous work [5]. He has further exploited this close
relationship and showed that more than one third of the zeros of ζ(s) lie
on the critical line. The third result is due to Guo [3], who has showed that
there is also a close connection between the vertical distribution of the zeros
of ζ ′(s) and that of ζ(s).

The distribution of the zeros of ζ ′(s), as well as its relationship with that
of the zeros of ζ(s), has been investigated by many authors (see [1–4, 6, 8,
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9, 11]). In [8], Soundararajan introduced the following functions (for a ∈ R):

m−(a) = lim inf
T→∞

N1(T )
−1

∑

β′≤1/2+a/logT
0<γ′≤T

1,(1.3)

m+(a) = lim sup
T→∞

N1(T )
−1

∑

β′≤1/2+a/log T
0<γ′≤T

1,(1.4)

where N1(T ) is the number of zeros of ζ
′(s) in 0 < t ≤ T , counted according

to multiplicity. The behavior of these functions determines the horizontal
distribution of the zeros of ζ ′(s) near the critical line. Soundararajan [8]
proved that RH impliesm−(a) > 0 for a > 2.6. He conjectured thatm−(a) ≡
m+(a) (= m(a)), m(a) is continuous, m(a) > 0 for all a > 0, and m(a)→ 1
as a→∞.

To state Zhang’s important results on m−(a), we need to explain a con-
jecture on small gaps between the zeros of ζ(s). Let the zeros of ζ(s) in the
upper half-plane be arranged as ̺1, ̺2, . . . with ̺n = βn + iγn and

0 < γ1 ≤ γ2 ≤ · · · .

If a zero is multiple with multiplicity m, then it appears m times consecu-
tively in the above sequence. If two zeros ̺n1 6= ̺n2 have the same imaginary
part (this will happen if RH is not true), then n1 < n2 implies βn1 < βn2 .
For a > 0, define

D−(a) = lim inf
T→∞

N(T )−1
∑

γn≤T
γn+1−γn<a/logT

1,(1.5)

where N(T ) denotes the number of zeros of ζ(s) in 0 < t ≤ T , counted
according to multiplicity. The following conjecture is well known and is
denoted by SGZ for short.

Conjecture. For any a > 0,

D−(a) > 0.(1.6)

The statement of SGZ is independent of RH.

In [11], Zhang proved the following.

Theorem A. If a is sufficiently large, then m−(a) > 0.

Theorem B. (Assume RH and SGZ .) For any a > 0, m−(a) > 0.

In this note, we will show m−(a) > 0 for any a > 0 without the assump-
tion of RH. Namely, we prove the following.

Theorem 1. (Assume SGZ .) For any a > 0, m−(a) > 0.
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2. Proof of Theorem 1. Let

h(s) = π−s/2Γ (s/2), η(s) = h(s)ζ ′(s).

By applying Hadamard’s Theorem to (s − 1)2ζ ′(s), Zhang [11] proved the
following.

Lemma 1 ([11]). Let

F (t) = −Re
η′

η

(

1

2
+ it

)

(2.1)

(here and hereafter Re z denotes the real part of z) if η(1/2 + it) 6= 0, and

F (t) = lim
τ→T
F (τ)(2.2)

if η(1/2 + it) = 0. Then F (t) is continuous for all t,

F (t) = F1(t)− F2(t) +O(1),(2.3)

where

F1(t) = −
∑

β′>1/2

Re
1

1/2 + it− ̺′
,(2.4)

F2(t) =
∑

0<β′<1/2

Re
1

1/2 + it− ̺′
,(2.5)

and the implied constant is absolute.

Now given T large and a > 0 arbitrary, let

F ∗1 (t) = −
∑

β′>1/2+2a/logT
0<γ′≤T

Re
1

1/2 + it− ̺′
.(2.6)

Then

0 ≤ F ∗1 (t) ≤ F1(t).(2.7)

We also need the following lemmas.

Lemma 2 ([11]). We have

T\
0

F ∗1 (t) dt ≥ π
∑

β′>1/2+2a/logT
0<γ′≤T

1 +O(T ).(2.8)

Lemma 3. Let the zeros of ζ(s) in the upper half-plane be arranged as
̺1, ̺2, . . . with ̺n = βn + iγn (we do not assume βn ≡ 1/2 here) and

0 < γ1 ≤ γ2 ≤ · · · .

If a zero is multiple with multiplicity m, then it appears m times consecu-
tively in the above sequence. If two zeros ̺n1 6= ̺n2 have the same imaginary
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part , then n1 < n2 implies βn1 < βn2. For n > 1, define

In =

γn+1\
γn−1

F ∗1 (t) dt.

(i) For any n,

In ≤ 2π +

γn+1\
γn−1

F2(t) dt+O(γn+1 − γn−1).(2.9)

(ii) If βn = 1/2, γn+1 ≤ T and γn+1 − γn < a/log T , then

In ≤ π + 2a+

γn+1\
γn−1

F2(t) dt+O(γn+1 − γn−1).(2.10)

Proof. (i) This follows from Lemma 1, (2.7) and [11, Lemma 4].

(ii) This follows from Lemma 1, (2.7) and a slightly modified version of
the proof of [11, Lemma 8].

Lemma 4 ([1]). We have

N1(T ) =
T

2π

(

log
T

4π
− 1

)

+O(log T ).(2.11)

Lemma 5. We have

T\
0

F2(t) dt ≤ π
∑

0<β′<1/2
0<γ′≤T

1 +O(T ).(2.12)

Proof. By Lemma 4, for 0 ≤ t ≤ T and n ≥ 1,

(2.13)
∑

0<β′<1/2
n log T≤|γ′−t|<(n+1) log T

1

≤ 2 log T log(T + (n+ 1) log T ) +O(log(T + (n+ 1) log T ))

≤ 2 log2 T + 2 log T logn+O(logn) + o(log2 T ),

where the implied constants are independent of n. Then

(2.14)
∑

0<β′<1/2
γ′≥T+logT or γ′≤− log T

Re
1

1/2 + it− ̺′
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≤

∞
∑

n=1

∑

0<β′<1/2
n log T≤|γ′−t|<(n+1) log T

1

(γ′ − t)2

≤

∞
∑

n=1

(2 log2 T + 2 log T logn+O(logn) + o(log2 T ))
1

(n log T )2

= O(1).

Thus

F2(t) =
∑

0<β′<1/2
− log T<γ′<T+logT

Re
1

1/2 + it− ̺′
+O(1).(2.15)

For β′ < 1/2,

(2.16)

T\
0

Re
1

1/2 + it− ̺′
dt =

T\
0

Re
1/2− β′

|1/2 + it− ̺′|2
dt

= arctan

(

T − γ′

1/2− β′

)

+ arctan

(

γ′

1/2− β′

)

< π.

By (2.15) and (2.16),

T\
0

F2(t) dt ≤ π
∑

0<β′<1/2
− log T<γ′<T+log T

1 +O(T ).(2.17)

By Lemma 4,
∑

0<β′<1/2
− log T<γ′≤0

1 = O(log T log log T ),
∑

0<β′<1/2
T<γ′<T+logT

1 = O(log2 T ).(2.18)

Combining (2.17) and (2.18), we get (2.12).

Lemma 6 ([10, Theorem 9.4]). We have

N(T ) =
T

2π

(

log
T

2π
− 1

)

+O(log T ).(2.19)

Proof of Theorem 1. It is no restriction to assume a < π/2. Let

N = max{n : γn+1 ≤ T},

S1 = {n : 1 < n ≤ N, γn+1 − γn ≥ a/log T},

S2 = {n : 1 < n ≤ N, βn = 1/2, γn+1 − γn < a/log T},

S3 = {n : 1 < n ≤ N, βn 6= 1/2, γn+1 − γn < a/log T}.
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On the one hand, by Lemma 3,

(2.20)

N
∑

n=2

In =
∑

n∈S1∪S3

In +
∑

n∈S2

In

≤ 2π
∑

n∈S1∪S3

1 +
∑

n∈S1∪S3

γn+1\
γn−1

F2(t) dt+O
(

∑

n∈S1∪S3

(γn+1 − γn−1)
)

+ (π + 2a)
∑

n∈S2

1 +
∑

n∈S2

γn+1\
γn−1

F2(t) dt+O
(

∑

n∈S2

(γn+1 − γn−1)
)

≤ 2πN − (π − 2a)
∑

n∈S2

1 +

γN\
0

F2(t) dt+

γN+1\
0

F2(t) dt+O(T ),

where the fact that F2(t) ≥ 0 is used.

On the other hand, by Lemma 2,

(2.21)

N
∑

n=2

In +

γ1\
0

F ∗1 (t) dt+

γ2\
0

F ∗1 (t) dt+

T\
γN

F ∗1 (t) dt+

T\
γN+1

F ∗1 (t) dt

= 2

T\
0

F ∗1 (t) dt ≥ 2π
∑

β′>1/2+2a/logT
0<γ′≤T

1 +O(T ).

Lemma 6 implies

γn+1 − γn = O(1);

then by (2.7) and Lemma 3, we have

(2.22)

T\
γN

F ∗1 (t) dt ≤

γN+2\
γN

F ∗1 (t) dt = IN+1

≤ 2π +

γN+2\
γN

F2(t) dt+O(γN+2 − γN ) =

γN+2\
γN

F2(t) dt+O(1).

By Lemma 1, (2.7) and [11, Lemma 4],

(2.23)

T\
γN+1

F ∗1 (t) dt ≤

γN+2\
γN+1

F ∗1 (t) dt ≤

γN+2\
γN+1

F1(t) dt

≤ π +

γN+2\
γN+1

F2(t) dt+O(γN+2 − γN+1) =

γN+2\
γN+1

F2(t) dt+O(1).
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By (2.7),
γ1\
0

F ∗1 (t) dt ≤

γ1\
0

F1(t) dt = O(1),(2.24)

γ2\
0

F ∗1 (t) dt ≤

γ2\
0

F1(t) dt = O(1),(2.25)

where the implied constant is absolute. Combining (2.21)–(2.25), we have

N
∑

n=2

In ≥ 2π
∑

β′>1/2+2a/logT
0<γ′≤T

1−

γN+2\
γN

F2(t) dt−

γN+2\
γN+1

F2(t) dt+O(T ).(2.26)

It follows from Lemmas 4 and 6 that

N = N1(T ) +O(T ).

Then combining (2.20) and (2.26) we obtain

∑

β′≤1/2+2a/logT
0<γ′≤T

1 ≥

(

1

2
−
a

π

)

∑

n∈S2

1−
1

π

γN+2\
0

F2(t) dt+O(T ).(2.27)

By Lemma 5, Lemma 4 and the fact that γN+2 − T = O(1),
γN+2\
0

F2(t) dt ≤ π
∑

0<β′<1/2
0<γ′≤γN+2

1 +O(γN+2)(2.28)

= π
∑

0<β′<1/2
0<γ′≤T

1 + π
∑

0<β′<1/2
T<γ′≤γN+2

1 +O(T )

= π
∑

0<β′<1/2
0<γ′≤T

1 +O(T ).

Now (2.27) and (2.28) imply

2
∑

β′≤1/2+2a/logT
0<γ′≤T

1 ≥
∑

β′≤1/2+2a/logT
0<γ′≤T

1 +
∑

0<β′<1/2
0<γ′≤T

1(2.29)

≥

(

1

2
−
a

π

)

∑

n∈S2

1 +O(T ).

By (1.5) and Lemma 6,
∑

n∈S2

1 +
∑

n∈S3

1 ≥ D−(a)
T log T

2π
+ o(T log T ).(2.30)
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By (1.1),
∑

n∈S3

1 ≤ 2
∑

0<β<1/2
0<γ≤T

1 ≤ 2
∑

0<β′<1/2
0<γ′≤T

1 +O(logT ).(2.31)

Therefore
∑

n∈S2

1 ≥ D−(a)
T log T

2π
− 2

∑

0<β′<1/2
0<γ′≤T

1 + o(T log T )(2.32)

≥ D−(a)
T log T

2π
− 2

∑

β′≤1/2+2a/logT
0<γ′≤T

1 + o(T log T ).

Combining (2.29) and (2.32), we have

∑

β′≤1/2+2a/logT
0<γ′≤T

1 ≥
π − 2a

6π + 4a
D−(a)

T log T

2π
+ o(T log T ).(2.33)

That is,

m−(2a) ≥
π − 2a

6π + 4a
D−(a) > 0.(2.34)

The proof is complete.

3. Remark. In Levinson’s well known work [5], he proved that more
than one third of the zeros of ζ(s) lie on the critical line by using the
relationship between N−(T ) and N−1 (T ). We outline the principle behind
his proof here. Let g(s) be the function ζ ′(1 − s) and σ be 1/2 − a/log T ,
where a > 0 is a small positive real number. Note that ̺∗ = β∗ + iγ∗ is a
zero of g(s) if and only if ̺′ = 1−β∗+ iγ∗ is a zero of ζ ′(s). If one can show
that

∑

σ<β∗≤2
0<γ∗≤T

(β∗ − σ) ≤ CaT + o(T ),(3.1)

where Ca is a constant depending on a, then since

∑

σ<β∗≤2
0<γ∗≤T

(β∗ − σ) ≥

(

1

2
− σ

)

∑

1/2<β∗≤2
0<γ∗≤T

1,(3.2)

one has
∑

1/2<β∗≤2
0<γ∗≤T

1 ≤
Ca
a
T log T + o(T log T ).(3.3)
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Then by (1.1),
∑

0<β<1/2
0<γ≤T

1 ≤
Ca
a
T log T + o(T log T ).(3.4)

Therefore the proportion of the zeros of ζ(s) on the critical line is more than

1−
4πCa
a
.

By estimating Ca carefully (applying the Littlewood Theorem [7, 10]) and
choosing a suitably, Levinson proved the proportion is more than 1/3. This
result can be improved slightly by having a better estimate for Ca.

But we can see in (3.2) there is some loss in the argument. In the process
of obtaining an upper bound for the number of zeros of ζ ′(s) with β′ < 1/2,
one has also counted those zeros satisfying

1

2
≤ β′ <

1

2
+
a

log T
, 0 < γ′ ≤ T(3.5)

(with the weight 1/2 + a/log T − β′). Theorem 1 shows that on the SGZ,
there is a positive proportion of the zeros of ζ ′(s) satisfying (3.5) or

β′ < 1/2, 0 < γ′ ≤ T.

Thus, if SGZ is valid, no matter how precisely Ca are estimated and
what a is chosen, the framework of [5] cannot prove that 100% of the zeros
of ζ(s) lie on the critical line (although it is likely true).

However, once a good (large) lower estimate of m−(a) is obtained, the
result of [5] can be significantly improved by combining this estimate and
(3.1). We can see in the statement and proof of Theorem 1 that the lower
bound for m−(a) is closely connected with the vertical distribution of the
zeros of the Riemann zeta function.
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