A note on the zeros of the derivative of the Riemann zeta function near the critical line

by
Shaodi Feng (Beijing)

1. Introduction. Let $s=\sigma+i t$ be a complex variable and $\zeta(s)$ the Riemann zeta function. Throughout this paper $\varrho=\beta+i \gamma$ denotes the zeros of $\zeta(s)$, and $\varrho^{\prime}=\beta^{\prime}+i \gamma^{\prime}$ the zeros of $\zeta^{\prime}(s)$, the first derivative of $\zeta(s)$.

The distribution of the zeros of $\zeta^{\prime}(s)$ is important in the theory of the Riemann zeta function, being closely related to the distribution of the zeros of $\zeta(s)$. This intimate relationship can be best illustrated by the following three results. The first is by Levinson and Montgomery [6]. They have proved that

$$
\begin{equation*}
N_{1}^{-}(T)=N^{-}(T)+O(\log T) \tag{1.1}
\end{equation*}
$$

and, unless $N^{-}(T)>T / 2$ for all large T, there exists a sequence $\left\{T_{j}\right\}$ with $T_{j} \rightarrow \infty$ as $j \rightarrow \infty$ such that

$$
\begin{equation*}
N_{1}^{-}\left(T_{j}\right)=N^{-}\left(T_{j}\right), \tag{1.2}
\end{equation*}
$$

where $N_{1}^{-}(T)$ and $N^{-}(T)$ are the numbers of zeros of $\zeta^{\prime}(\sigma+i t)$ and $\zeta(\sigma+i t)$, respectively, in the rectangle $0<t \leq T, 0<\sigma<1 / 2$, counted according to multiplicity. This is a quantitative version of an earlier result of Speiser [9], who shows that the Riemann Hypothesis (RH) that
all the complex zeros of $\zeta(s)$ lie on the critical line $\sigma=1 / 2$
is equivalent to the non-vanishing of $\zeta^{\prime}(s)$ in $0<\sigma<1 / 2$. The second result comes from Levinson's famous work [5]. He has further exploited this close relationship and showed that more than one third of the zeros of $\zeta(s)$ lie on the critical line. The third result is due to Guo [3], who has showed that there is also a close connection between the vertical distribution of the zeros of $\zeta^{\prime}(s)$ and that of $\zeta(s)$.

The distribution of the zeros of $\zeta^{\prime}(s)$, as well as its relationship with that of the zeros of $\zeta(s)$, has been investigated by many authors (see $[1-4,6,8$,

[^0]$9,11]$). In [8], Soundararajan introduced the following functions (for $a \in \mathbb{R}$):
\[

$$
\begin{align*}
& m^{-}(a)=\liminf _{T \rightarrow \infty} N_{1}(T)^{-1} \sum_{\substack{\beta^{\prime} \leq 1 / 2+a / \log T \\
0<\gamma^{\prime} \leq T}} 1, \tag{1.3}\\
& m^{+}(a)=\limsup _{T \rightarrow \infty} N_{1}(T)^{-1} \sum_{\substack{\beta^{\prime} \leq 1 / 2+a / \log T \\
0<\gamma^{\prime} \leq T}} 1, \tag{1.4}
\end{align*}
$$
\]

where $N_{1}(T)$ is the number of zeros of $\zeta^{\prime}(s)$ in $0<t \leq T$, counted according to multiplicity. The behavior of these functions determines the horizontal distribution of the zeros of $\zeta^{\prime}(s)$ near the critical line. Soundararajan [8] proved that RH implies $m^{-}(a)>0$ for $a>2.6$. He conjectured that $m^{-}(a) \equiv$ $m^{+}(a)(=m(a)), m(a)$ is continuous, $m(a)>0$ for all $a>0$, and $m(a) \rightarrow 1$ as $a \rightarrow \infty$.

To state Zhang's important results on $m^{-}(a)$, we need to explain a conjecture on small gaps between the zeros of $\zeta(s)$. Let the zeros of $\zeta(s)$ in the upper half-plane be arranged as $\varrho_{1}, \varrho_{2}, \ldots$ with $\varrho_{n}=\beta_{n}+i \gamma_{n}$ and

$$
0<\gamma_{1} \leq \gamma_{2} \leq \cdots
$$

If a zero is multiple with multiplicity m, then it appears m times consecutively in the above sequence. If two zeros $\varrho_{n_{1}} \neq \varrho_{n_{2}}$ have the same imaginary part (this will happen if RH is not true), then $n_{1}<n_{2}$ implies $\beta_{n_{1}}<\beta_{n_{2}}$. For $a>0$, define

$$
\begin{equation*}
D^{-}(a)=\liminf _{T \rightarrow \infty} N(T)^{-1} \sum_{\substack{\gamma_{n} \leq T \\ \gamma_{n+1}-\gamma_{n}<a / \log T}} 1 \tag{1.5}
\end{equation*}
$$

where $N(T)$ denotes the number of zeros of $\zeta(s)$ in $0<t \leq T$, counted according to multiplicity. The following conjecture is well known and is denoted by SGZ for short.

Conjecture. For any $a>0$,

$$
\begin{equation*}
D^{-}(a)>0 . \tag{1.6}
\end{equation*}
$$

The statement of SGZ is independent of RH.
In [11], Zhang proved the following.
Theorem A. If a is sufficiently large, then $m^{-}(a)>0$.
Theorem B. (Assume RH and SGZ.) For any $a>0, m^{-}(a)>0$.
In this note, we will show $m^{-}(a)>0$ for any $a>0$ without the assumption of RH. Namely, we prove the following.

Theorem 1. (Assume $S G Z$.$) For any a>0, m^{-}(a)>0$.

2. Proof of Theorem 1. Let

$$
h(s)=\pi^{-s / 2} \Gamma(s / 2), \quad \eta(s)=h(s) \zeta^{\prime}(s)
$$

By applying Hadamard's Theorem to $(s-1)^{2} \zeta^{\prime}(s)$, Zhang [11] proved the following.

Lemma 1 ([11]). Let

$$
\begin{equation*}
F(t)=-\operatorname{Re} \frac{\eta^{\prime}}{\eta}\left(\frac{1}{2}+i t\right) \tag{2.1}
\end{equation*}
$$

(here and hereafter $\operatorname{Re} z$ denotes the real part of z) if $\eta(1 / 2+i t) \neq 0$, and

$$
\begin{equation*}
F(t)=\lim _{\tau \rightarrow T} F(\tau) \tag{2.2}
\end{equation*}
$$

if $\eta(1 / 2+i t)=0$. Then $F(t)$ is continuous for all t,

$$
\begin{equation*}
F(t)=F_{1}(t)-F_{2}(t)+O(1), \tag{2.3}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{1}(t)=-\sum_{\beta^{\prime}>1 / 2} \operatorname{Re} \frac{1}{1 / 2+i t-\varrho^{\prime}}, \tag{2.4}\\
& F_{2}(t)=\sum_{0<\beta^{\prime}<1 / 2} \operatorname{Re} \frac{1}{1 / 2+i t-\varrho^{\prime}}, \tag{2.5}
\end{align*}
$$

and the implied constant is absolute.
Now given T large and $a>0$ arbitrary, let

$$
\begin{equation*}
F_{1}^{*}(t)=-\sum_{\substack{\beta^{\prime}>1 / 2+2 \alpha / \log T \\ 0<\gamma^{\prime} \leq T}} \operatorname{Re} \frac{1}{1 / 2+i t-\varrho^{\prime}} . \tag{2.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
0 \leq F_{1}^{*}(t) \leq F_{1}(t) \tag{2.7}
\end{equation*}
$$

We also need the following lemmas.
Lemma 2 ([11]). We have

$$
\begin{equation*}
\int_{0}^{T} F_{1}^{*}(t) d t \geq \pi \sum_{\substack{\beta^{\prime}>1 / 2+2 a / \log T \\ 0<\gamma^{\prime} \leq T}} 1+O(T) . \tag{2.8}
\end{equation*}
$$

Lemma 3. Let the zeros of $\zeta(s)$ in the upper half-plane be arranged as $\varrho_{1}, \varrho_{2}, \ldots$ with $\varrho_{n}=\beta_{n}+i \gamma_{n}$ (we do not assume $\beta_{n} \equiv 1 / 2$ here) and

$$
0<\gamma_{1} \leq \gamma_{2} \leq \cdots
$$

If a zero is multiple with multiplicity m, then it appears m times consecutively in the above sequence. If two zeros $\varrho_{n_{1}} \neq \varrho_{n_{2}}$ have the same imaginary
part, then $n_{1}<n_{2}$ implies $\beta_{n_{1}}<\beta_{n_{2}}$. For $n>1$, define

$$
I_{n}=\int_{\gamma_{n-1}}^{\gamma_{n+1}} F_{1}^{*}(t) d t
$$

(i) For any n,

$$
\begin{equation*}
I_{n} \leq 2 \pi+\int_{\gamma_{n-1}}^{\gamma_{n+1}} F_{2}(t) d t+O\left(\gamma_{n+1}-\gamma_{n-1}\right) \tag{2.9}
\end{equation*}
$$

(ii) If $\beta_{n}=1 / 2, \gamma_{n+1} \leq T$ and $\gamma_{n+1}-\gamma_{n}<a / \log T$, then

$$
\begin{equation*}
I_{n} \leq \pi+2 a+\int_{\gamma_{n-1}}^{\gamma_{n+1}} F_{2}(t) d t+O\left(\gamma_{n+1}-\gamma_{n-1}\right) \tag{2.10}
\end{equation*}
$$

Proof. (i) This follows from Lemma 1, (2.7) and [11, Lemma 4].
(ii) This follows from Lemma 1, (2.7) and a slightly modified version of the proof of [11, Lemma 8].

Lemma 4 ([1]). We have

$$
\begin{equation*}
N_{1}(T)=\frac{T}{2 \pi}\left(\log \frac{T}{4 \pi}-1\right)+O(\log T) \tag{2.11}
\end{equation*}
$$

Lemma 5. We have

$$
\begin{equation*}
\int_{0}^{T} F_{2}(t) d t \leq \pi \sum_{\substack{0<\beta^{\prime}<1 / 2 \\ 0<\gamma^{\prime} \leq T}} 1+O(T) \tag{2.12}
\end{equation*}
$$

Proof. By Lemma 4 , for $0 \leq t \leq T$ and $n \geq 1$,

$$
\begin{align*}
& \sum_{\substack{0<\beta^{\prime}<1 / 2 \\
n \log T \leq\left|\gamma^{\prime}-t\right|<(n+1) \log T}} 1 \tag{2.13}\\
& \leq 2 \log T \log (T+(n+1) \log T)+O(\log (T+(n+1) \log T)) \\
& \leq 2 \log ^{2} T+2 \log T \log n+O(\log n)+o\left(\log ^{2} T\right)
\end{align*}
$$

where the implied constants are independent of n. Then

$$
\begin{equation*}
\sum_{\substack{0<\beta^{\prime}<1 / 2 \\ \gamma^{\prime} \geq T+\log T \text { or } \gamma^{\prime} \leq-\log T}} \operatorname{Re} \frac{1}{1 / 2+i t-\varrho^{\prime}} \tag{2.14}
\end{equation*}
$$

$$
\begin{aligned}
& \leq \sum_{n=1}^{\infty} \sum_{\substack{0<\beta^{\prime}<1 / 2 \\
n \log T \leq\left|\gamma^{\prime}-t\right|<(n+1) \log T}} \frac{1}{\left(\gamma^{\prime}-t\right)^{2}} \\
& \leq \sum_{n=1}^{\infty}\left(2 \log ^{2} T+2 \log T \log n+O(\log n)+o\left(\log ^{2} T\right)\right) \frac{1}{(n \log T)^{2}} \\
& =O(1)
\end{aligned}
$$

Thus

$$
\begin{equation*}
F_{2}(t)=\sum_{\substack{0<\beta^{\prime}<1 / 2 \\-\log T<\gamma^{\prime}<T+\log T}} \operatorname{Re} \frac{1}{1 / 2+i t-\varrho^{\prime}}+O(1) \tag{2.15}
\end{equation*}
$$

For $\beta^{\prime}<1 / 2$,

$$
\begin{align*}
\int_{0}^{T} \operatorname{Re} \frac{1}{1 / 2+i t-\varrho^{\prime}} d t & =\int_{0}^{T} \operatorname{Re} \frac{1 / 2-\beta^{\prime}}{\left|1 / 2+i t-\varrho^{\prime}\right|^{2}} d t \tag{2.16}\\
& =\arctan \left(\frac{T-\gamma^{\prime}}{1 / 2-\beta^{\prime}}\right)+\arctan \left(\frac{\gamma^{\prime}}{1 / 2-\beta^{\prime}}\right)<\pi
\end{align*}
$$

By (2.15) and (2.16),

$$
\begin{equation*}
\int_{0}^{T} F_{2}(t) d t \leq \pi \sum_{\substack{0<\beta^{\prime}<1 / 2 \\-\log T<\gamma^{\prime}<T+\log T}} 1+O(T) \tag{2.17}
\end{equation*}
$$

By Lemma 4,

$$
\begin{equation*}
\sum_{\substack{0<\beta^{\prime}<1 / 2 \\-\log T<\gamma^{\prime} \leq 0}} 1=O(\log T \log \log T), \quad \sum_{\substack{0<\beta^{\prime}<1 / 2 \\ T<\gamma^{\prime}<T+\log T}} 1=O\left(\log ^{2} T\right) \tag{2.18}
\end{equation*}
$$

Combining (2.17) and (2.18), we get (2.12).
Lemma 6 ([10, Theorem 9.4]). We have

$$
\begin{equation*}
N(T)=\frac{T}{2 \pi}\left(\log \frac{T}{2 \pi}-1\right)+O(\log T) \tag{2.19}
\end{equation*}
$$

Proof of Theorem 1. It is no restriction to assume $a<\pi / 2$. Let

$$
\begin{aligned}
& N=\max \left\{n: \gamma_{n+1} \leq T\right\} \\
& S_{1}=\left\{n: 1<n \leq N, \gamma_{n+1}-\gamma_{n} \geq a / \log T\right\} \\
& S_{2}=\left\{n: 1<n \leq N, \beta_{n}=1 / 2, \gamma_{n+1}-\gamma_{n}<a / \log T\right\} \\
& S_{3}=\left\{n: 1<n \leq N, \beta_{n} \neq 1 / 2, \gamma_{n+1}-\gamma_{n}<a / \log T\right\}
\end{aligned}
$$

On the one hand, by Lemma 3,

$$
\begin{align*}
& \sum_{n=2}^{N} I_{n}=\sum_{n \in S_{1} \cup S_{3}} I_{n}+\sum_{n \in S_{2}} I_{n} \tag{2.20}\\
& \leq 2 \pi \sum_{n \in S_{1} \cup S_{3}} 1+\sum_{n \in S_{1} \cup S_{3}} \int_{\gamma_{n-1}}^{\gamma_{n+1}} F_{2}(t) d t+O\left(\sum_{n \in S_{1} \cup S_{3}}\left(\gamma_{n+1}-\gamma_{n-1}\right)\right) \\
& \quad+(\pi+2 a) \sum_{n \in S_{2}} 1+\sum_{n \in S_{2}} \int_{\gamma_{n-1}}^{\gamma_{n+1}} F_{2}(t) d t+O\left(\sum_{n \in S_{2}}\left(\gamma_{n+1}-\gamma_{n-1}\right)\right) \\
& \leq 2 \pi N-(\pi-2 a) \sum_{n \in S_{2}} 1+\int_{0}^{\gamma_{N}} F_{2}(t) d t+\int_{0}^{\gamma_{N+1}} F_{2}(t) d t+O(T)
\end{align*}
$$

where the fact that $F_{2}(t) \geq 0$ is used.
On the other hand, by Lemma 2,

$$
\begin{align*}
& \sum_{n=2}^{N} I_{n}+\int_{0}^{\gamma_{1}} F_{1}^{*}(t) d t+\int_{0}^{\gamma_{2}} F_{1}^{*}(t) d t+\int_{\gamma_{N}}^{T} F_{1}^{*}(t) d t+\int_{\gamma_{N+1}}^{T} F_{1}^{*}(t) d t \tag{2.21}\\
&=2 \int_{0}^{T} F_{1}^{*}(t) d t \geq 2 \pi \sum_{\substack{\beta^{\prime}>1 / 2+2 a / \log T \\
0<\gamma^{\prime} \leq T}} 1+O(T)
\end{align*}
$$

Lemma 6 implies

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

then by (2.7) and Lemma 3, we have

$$
\begin{align*}
& \int_{\gamma_{N}}^{T} F_{1}^{*}(t) d t \leq \int_{\gamma_{N}}^{\gamma_{N+2}} F_{1}^{*}(t) d t=I_{N+1} \tag{2.22}\\
& \quad \leq 2 \pi+\int_{\gamma_{N}}^{\gamma_{N+2}} F_{2}(t) d t+O\left(\gamma_{N+2}-\gamma_{N}\right)=\int_{\gamma_{N}}^{\gamma_{N+2}} F_{2}(t) d t+O(1)
\end{align*}
$$

By Lemma 1, (2.7) and [11, Lemma 4],

$$
\begin{align*}
& \int_{\gamma_{N+1}}^{T} F_{1}^{*}(t) d t \leq \int_{\gamma_{N+1}}^{\gamma_{N+2}} F_{1}^{*}(t) d t \leq \int_{\gamma_{N+1}}^{\gamma_{N+2}} F_{1}(t) d t \tag{2.23}\\
& \quad \leq \pi+\int_{\gamma_{N+1}}^{\gamma_{N+2}} F_{2}(t) d t+O\left(\gamma_{N+2}-\gamma_{N+1}\right)=\int_{\gamma_{N+1}}^{\gamma_{N+2}} F_{2}(t) d t+O(1)
\end{align*}
$$

By (2.7),

$$
\begin{align*}
& \int_{0}^{\gamma_{1}} F_{1}^{*}(t) d t \leq \int_{0}^{\gamma_{1}} F_{1}(t) d t=O(1) \tag{2.24}\\
& \int_{0}^{\gamma_{2}} F_{1}^{*}(t) d t \leq \int_{0}^{\gamma_{2}} F_{1}(t) d t=O(1) \tag{2.25}
\end{align*}
$$

where the implied constant is absolute. Combining (2.21)-(2.25), we have
(2.26) $\sum_{n=2}^{N} I_{n} \geq 2 \pi \sum_{\substack{\beta^{\prime}>1 / 2+2 a / \log T \\ 0<\gamma^{\prime} \leq T}} 1-\int_{\gamma_{N}}^{\gamma_{N+2}} F_{2}(t) d t-\int_{\gamma_{N+1}}^{\gamma_{N+2}} F_{2}(t) d t+O(T)$.

It follows from Lemmas 4 and 6 that

$$
N=N_{1}(T)+O(T)
$$

Then combining (2.20) and (2.26) we obtain

$$
\begin{equation*}
\sum_{\substack{\beta^{\prime} \leq 1 / 2+2 a / \log T \\ 0<\gamma^{\prime} \leq T}} 1 \geq\left(\frac{1}{2}-\frac{a}{\pi}\right) \sum_{n \in S_{2}} 1-\frac{1}{\pi} \int_{0}^{\gamma_{N+2}} F_{2}(t) d t+O(T) \tag{2.27}
\end{equation*}
$$

By Lemma 5, Lemma 4 and the fact that $\gamma_{N+2}-T=O(1)$,

$$
\begin{align*}
\int_{0}^{\gamma_{N+2}} F_{2}(t) d t & \leq \pi \sum_{\substack{0<\beta^{\prime}<1 / 2 \\
0<\gamma^{\prime} \leq \gamma_{N+2}}} 1+O\left(\gamma_{N+2}\right) \tag{2.28}\\
& =\pi \sum_{\substack{0<\beta^{\prime}<1 / 2 \\
0<\gamma^{\prime} \leq T}} 1+\pi \sum_{\substack{0<\beta^{\prime}<1 / 2 \\
T<\gamma^{\prime} \leq \gamma_{N+2}}} 1+O(T) \\
& =\pi \sum_{\substack{0<\beta^{\prime}<1 / 2 \\
0<\gamma^{\prime} \leq T}} 1+O(T)
\end{align*}
$$

Now (2.27) and (2.28) imply

$$
\begin{align*}
2 \sum_{\substack{\beta^{\prime} \leq 1 / 2+2 a / \log T \\
0<\gamma^{\prime} \leq T}} 1 & \geq \sum_{\substack{\beta^{\prime} \leq 1 / 2+2 a / \log T \\
0<\gamma^{\prime} \leq T}} 1+\sum_{\substack{0<\beta^{\prime}<1 / 2 \\
0<\gamma^{\prime} \leq T}} 1 \tag{2.29}\\
& \geq\left(\frac{1}{2}-\frac{a}{\pi}\right) \sum_{n \in S_{2}} 1+O(T)
\end{align*}
$$

By (1.5) and Lemma 6,

$$
\begin{equation*}
\sum_{n \in S_{2}} 1+\sum_{n \in S_{3}} 1 \geq D^{-}(a) \frac{T \log T}{2 \pi}+o(T \log T) \tag{2.30}
\end{equation*}
$$

By (1.1),

$$
\begin{equation*}
\sum_{n \in S_{3}} 1 \leq 2 \sum_{\substack{0<\beta<1 / 2 \\ 0<\gamma \leq T}} 1 \leq 2 \sum_{\substack{0<\beta^{\prime}<1 / 2 \\ 0<\gamma^{\prime} \leq T}} 1+O(\log T) \tag{2.31}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\sum_{n \in S_{2}} 1 & \geq D^{-}(a) \frac{T \log T}{2 \pi}-2 \sum_{\substack{0<\beta^{\prime}<1 / 2 \\
0<\gamma^{\prime} \leq T}} 1+o(T \log T) \tag{2.32}\\
& \geq D^{-}(a) \frac{T \log T}{2 \pi}-2 \sum_{\substack{\beta^{\prime} \leq 1 / 2+2 a / \log T \\
0<\gamma^{\prime} \leq T}} 1+o(T \log T)
\end{align*}
$$

Combining (2.29) and (2.32), we have

$$
\begin{equation*}
\sum_{\substack{\beta^{\prime} \leq 1 / 2+2 a / \log T \\ 0<\gamma^{\prime} \leq T}} 1 \geq \frac{\pi-2 a}{6 \pi+4 a} D^{-}(a) \frac{T \log T}{2 \pi}+o(T \log T) \tag{2.33}
\end{equation*}
$$

That is,

$$
\begin{equation*}
m^{-}(2 a) \geq \frac{\pi-2 a}{6 \pi+4 a} D^{-}(a)>0 \tag{2.34}
\end{equation*}
$$

The proof is complete.
3. Remark. In Levinson's well known work [5], he proved that more than one third of the zeros of $\zeta(s)$ lie on the critical line by using the relationship between $N^{-}(T)$ and $N_{1}^{-}(T)$. We outline the principle behind his proof here. Let $g(s)$ be the function $\zeta^{\prime}(1-s)$ and σ be $1 / 2-a / \log T$, where $a>0$ is a small positive real number. Note that $\varrho^{*}=\beta^{*}+i \gamma^{*}$ is a zero of $g(s)$ if and only if $\varrho^{\prime}=1-\beta^{*}+i \gamma^{*}$ is a zero of $\zeta^{\prime}(s)$. If one can show that

$$
\begin{equation*}
\sum_{\substack{\sigma<\beta^{*} \leq 2 \\ 0<\gamma^{*} \leq T}}\left(\beta^{*}-\sigma\right) \leq C_{a} T+o(T) \tag{3.1}
\end{equation*}
$$

where C_{a} is a constant depending on a, then since

$$
\begin{equation*}
\sum_{\substack{\sigma<\beta^{*} \leq 2 \\ 0<\gamma^{*} \leq T}}\left(\beta^{*}-\sigma\right) \geq\left(\frac{1}{2}-\sigma\right) \sum_{\substack{1 / 2<\beta^{*} \leq 2 \\ 0<\gamma^{*} \leq \bar{T}}} 1 \tag{3.2}
\end{equation*}
$$

one has

$$
\begin{equation*}
\sum_{\substack{1 / 2<\beta^{*} \leq 2 \\ 0<\gamma^{*} \leq \bar{T}}} 1 \leq \frac{C_{a}}{a} T \log T+o(T \log T) \tag{3.3}
\end{equation*}
$$

Then by (1.1),

$$
\begin{equation*}
\sum_{\substack{0<\beta<1 / 2 \\ 0<\gamma \leq T}} 1 \leq \frac{C_{a}}{a} T \log T+o(T \log T) \tag{3.4}
\end{equation*}
$$

Therefore the proportion of the zeros of $\zeta(s)$ on the critical line is more than

$$
1-\frac{4 \pi C_{a}}{a}
$$

By estimating C_{a} carefully (applying the Littlewood Theorem [7, 10]) and choosing a suitably, Levinson proved the proportion is more than $1 / 3$. This result can be improved slightly by having a better estimate for C_{a}.

But we can see in (3.2) there is some loss in the argument. In the process of obtaining an upper bound for the number of zeros of $\zeta^{\prime}(s)$ with $\beta^{\prime}<1 / 2$, one has also counted those zeros satisfying

$$
\begin{equation*}
\frac{1}{2} \leq \beta^{\prime}<\frac{1}{2}+\frac{a}{\log T}, \quad 0<\gamma^{\prime} \leq T \tag{3.5}
\end{equation*}
$$

(with the weight $1 / 2+a / \log T-\beta^{\prime}$). Theorem 1 shows that on the SGZ, there is a positive proportion of the zeros of $\zeta^{\prime}(s)$ satisfying (3.5) or

$$
\beta^{\prime}<1 / 2, \quad 0<\gamma^{\prime} \leq T
$$

Thus, if SGZ is valid, no matter how precisely C_{a} are estimated and what a is chosen, the framework of [5] cannot prove that 100% of the zeros of $\zeta(s)$ lie on the critical line (although it is likely true).

However, once a good (large) lower estimate of $m^{-}(a)$ is obtained, the result of [5] can be significantly improved by combining this estimate and (3.1). We can see in the statement and proof of Theorem 1 that the lower bound for $m^{-}(a)$ is closely connected with the vertical distribution of the zeros of the Riemann zeta function.

References

[1] B. C. Berndt, The number of zeros for $\zeta^{(k)}(s)$, J. London Math. Soc. (2) 2 (1970), 577-580.
[2] J. B. Conrey and A. Ghosh, Zeros of derivatives of the Riemann zeta-function near the critical line, in: Analytic Number Theory (Allerton Park, IL, 1989), Progr. Math. 85, Birkhäuser, Boston, 1990, 95-110.
[3] C. R. Guo, On the zeros of $\zeta(s)$ and $\zeta^{\prime}(s)$, J. Number Theory 54 (1995), 206-210.
[4] -, On the zeros of the derivative of the Riemann zeta function, Proc. London Math. Soc. (3) 72 (1996), 28-62.
[5] N. Levinson, More than one third of zeros of Riemann's zeta-function are on $\sigma=\frac{1}{2}$, Adv. Math. 13 (1974), 383-436.
[6] N. Levinson and H. L. Montgomery, Zeros of the derivatives of the Riemann zetafunction, Acta Math. 133 (1974), 49-65.
[7] J. E. Littlewood, On the zeros of the Riemann zeta function, Proc. Cambridge Philos. Soc. 22 (1924), 295-318.
[8] K. Soundararajan, The horizontal distribution of zeros of $\zeta^{\prime}(s)$, Duke Math. J. 91 (1998), 33-59.
[9] A. Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1934), 514-521.
[10] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, Clarendon Press, Oxford, 1986.
[11] Y. Zhang, On the zeros of $\zeta^{\prime}(s)$ near the critical line, Duke Math. J. 110 (2001), 555-571.

Academy of Mathematics and Systems Science
Chinese Academy of Sciences
Beijing 100080, P.R. China
E-mail: jxfsj@hotmail.com

[^0]: 2000 Mathematics Subject Classification: Primary 11M06.

