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1. Introduction. Let F (x) ∈ Z[x] be a monic irreducible polynomial,
α be a root of F and L = Q(α). Then the ring Z[α] is a subgroup of finite
index

Ind(F ) = [OL : Z[α]]

of the ring of integers OL of L, given by the formula

Disc(L) · Ind(F )2 = Disc(F ).

Decomposing pZ[α] into primary ideals is an easy task, and a theorem of
Kummer says that, if p is a prime not dividing Ind(F ), then the factoriza-
tion of pOL can be derived directly from the decomposition of pZ[α]. Also,
Dedekind’s criterion allows us to test whether or not p divides Ind(F ) and
to enlarge Z[α] when it does. Of course, the best possible situation occurs
when OL is monogenic (i.e., there exists α ∈ OL such that OL = Z[α]) or,
at least, when the index of the field K (i.e., the greatest common divisor
of Ind(F ) when F runs over all minimal polynomials of integral generators
of L) is equal to 1. Unfortunately, this is not always the case, but one can
decide whether p divides the index of L in terms of the factorization type
of pOL (see for instance [5, Ch. 4, Theorem 4.13]).

In this paper we deal with problems of similar type in the more gen-
eral case of an irreducible polynomial F which is primitive without being
necessarily monic, and replacing Z and Q by any Dedekind ring R and its
quotient field K. In this situation D. Simon [6] constructed an order RF of
OL which generalizes the order R[α] when F is monic (it turns out that

RF = R[α] ∩ R[α−1],

as shown in Proposition 2 below), and that continues to satisfy the index
rule

Disc(L) · [OL : RF ]2 = Disc(F ).
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We show that, even in the case when F is not monic, the classical invariants
of RF can be derived from the polynomial F , precisely as in the case of
monogenic orders.

More specifically, in Section 3 we give the explicit primary decomposi-
tion of the ideals pRF , where p is a prime ideal of R (Theorem 1). In Sec-
tion 4 we generalize the Dedekind criterion for p-maximality to the ring
RF (Theorem 2). In Section 5 we generalize Kummer’s theorem to the
case when p does not divide the index of RF in OL (Theorem 3).

As an application, we introduce a generalized index for L, namely the
greatest common divisors of the indexes [OL : RF ] where F runs over all
primitive irreducible polynomials such that L is generated over K by a
root of F , and we show how to decide whether a prime p divides this gener-
alized index in terms of the factorization type of pOL (Proposition 10). On
the one hand, it turns out that this generalized index does not give theoret-
ical advantages over the classical index, except for one particular case (see
Remark 3). On the other hand, our results show that the same kind of in-
formation that one obtains from an integral generator can also be obtained
from a non-integral one, thereby giving some computational advantage.

2. Notation and basic properties. Let R be a Dedekind ring and K
be its field of fractions. Let F (x) = a0x

n + a1x
n−1 + · · ·+ an be a primitive

irreducible polynomial with coefficients in R such that a0 6= 0. We also
denote by F the homogenized polynomial F (x, y) = a0x

n + a1x
n−1y + · · ·+

anyn. Define

T0 = a0,

T1 = a0x + a1,

. . .

Tn−1 = a0x
n−1 + · · · + an−1.

Let L be the field K[x]/(F (x)). We denote by α the image of x under this
projection (α is a root of F ). We consider

RF = R ⊕ T1(α)R ⊕ · · · ⊕ Tn−1(α)R.

This R-module is an order in L (see [6]). In particular, it is contained in the
maximal order OL of L.

Let B = T0RF + T1(α)RF + · · ·+ Tn−1(α)RF . This is an invertible ideal
of RF (see [7]), in fact B = T0R ⊕ T1(α)R ⊕ · · · ⊕ Tn−1(α)R. Similarly,
let A = αB = αT0RF + αT1(α)RF + · · · + αTn−1(α)RF . We have A =
αT0R⊕αT1(α)R⊕ · · ·⊕αTn−1(α)R. In [7] it was proved that A + B = RF .
From this we get (α) = AB−1 and therefore A and B are the numerator
and the denominator of α.
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Since R is a Dedekind domain and F is primitive, the following propo-
sition holds (see for instance [4, Cor. 28.4]):

Proposition 1. F divides a polynomial U ∈ R[x] in K[x] if and only

if F divides U in R[x].

It follows, in particular, that R[x]/(F (x)) ∼= R[α]. Moreover, we have the
following characterization of RF :

Proposition 2. RF = R[α] ∩ R[α−1].

Proof. We have Ti(α) = a0α
i + · · ·+ ai = −(ai+1α

−1 + · · ·+ anαi−n), so
the inclusion ⊆ is clear. To prove the converse inclusion, let P, Q ∈ R[x] be
such that P (α) = Q(α−1), and let m = deg P .

Let P = c0x
m + · · · + cm. We first prove that, if m > 0, then a0 | c0.

In fact, letting Q∗(x) = xdeg QQ(1/x), we see that the integer polynomial
U = xdeg QP − Q∗ vanishes at α, and therefore F divides U in K[x]; by
Proposition 1, F divides U also in R[x], whence a0 | c0.

We prove that P ∈ RF by induction on m. If m = 0, the inclusion is
trivial. For m > 0, let c0 = a0b0. If m ≤ n − 1, then P (α) − b0Tm(α) ∈
R[α]∩R[α−1] and P − b0Tm has degree < m, so the inclusion follows by the
induction hypothesis. Similarly, if m ≥ n, then P (α) = P (α)− b0α

m−nF (α)
and P − b0x

m−nF has degree < m, so the inclusion follows again.

Proposition 3. For d ≥ 0, let Rd[x, y] denote the R-module of homo-

geneous polynomials of degree d with coefficients in R. Then

Bd{b(α, 1) | b ∈ Rd[x, y]} = RF .

Proof. The inclusion ⊆ is clear since Bα = A ⊂ RF . For the converse it
is enough to observe that choosing b = xd and b = yd we find that Ad and Bd

are in this product. Since A and B are coprime, we have the conclusion.

Remark 1. Given an algebraic number α over K of degree n, it is not
always possible to find an irreducible primitive polynomial of degree n and
with coefficients in R which has α as a root. However, if R is a principal ideal
domain, it is straightforward to see that such a polynomial exists, and one
can always reduce to this case by localizing R at a prime ideal. When R is
not principal, and no irreducible primitive polynomial of degree n exists, one
can also use the generalized definitions of RF , A and B given by D. Simon
in [7], and we suspect that, with these definitions, almost all the results of
the present paper remain valid.

Example 1. Let R = Q[
√

10] and let α be a root of x2 +
√

10/2. The

factorizations in R of the ideals (2) and (
√

10) are (2) = p2 and (
√

10) = pq,
where p = (2,

√
10) and q = (5,

√
10) are not principal. Any quadratic

polynomial F ∈ R[x] vanishing at α has the form F = cx2 + c
√

10/2,
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with (c) = pI where I is a proper ideal such that pI is principal. The ideal
generated by the coefficients of F must therefore be exactly (pI, qI) = I 6= 1.

Proposition 4. discRF = discF .

Proof. We have












1

T1(α)

· · ·
Tn−1(α)













=













1 0 0 0

∗ a0 0 0

∗ ∗ · · · 0

∗ ∗ ∗ a0

























1

α

· · ·
αn−1













,

hence, letting σ1, . . . , σn be the embeddings of K in some algebraic closure
K of K,

discRF = disc{1, T1(α), . . . , Tn−1(α)} = a2n−2
0 disc{1, α, . . . , αn−1}

= a2n−2
0

∏

i6=j

(σi(α) − σj(α)) = discF.

3. The primary decomposition of prime ideals. Let p be a prime
ideal of R (the interesting case is when p divides a0). We use the notation
x 7→ x for the reduction modulo p. Let

F (x, y) =
∏

i

F i(x, y)ei

be the factorization into irreducible factors of F (x, y) modulo p. Let fi be
the degree of F i. Fix a choice Fi(x, y) for a lift of F i(x, y) in R[x, y], homo-
geneous of degree fi. Define

pi = pRF + BfiFi(α, 1).

It is easily seen that pi does not change if we multiply F i by a unit in R/p,
and is independent of the choice of the lift Fi. By Proposition 3, pi is an
integral ideal of RF . We now define

qi = pRF + BeifiF ei

i (α, 1).

Lemma 1. • If F i 6= uy (with u ∈ (R/p)∗) then pi + B = RF = qi + B.

• If F i = uy then B ⊂ pi.

• If F i 6= ux then pi + A = RF = qi + A.

• If F i = ux then A ⊂ pi.

Proof. Assume first that F i 6= uy (with u ∈ (R/p)∗). Let c be the coef-
ficient of Fi corresponding to xfi . We can assume without loss of generality
that c = 1. We have

pi + B = pRF + BfiFi(α, 1) + B = pRF + Afi + B = pRF + RF = RF .
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Assume now that F i = uy (with u ∈ (R/p)∗). We can still assume that
Fi = y. Hence pi = pRF + B ⊃ B. The proof for the remaining cases is
similar.

Proposition 5. Let I = pRF + BbifiF bi

i (α, 1) with 1 ≤ bi ≤ ei. The

quotient ring RF /I is isomorphic to (R/p)[x]/F bi

i (x, 1) when F i 6= uy with

u a unit in R/p, and is isomorphic to (R/p)[y]/ybi otherwise. The norm of

the ideal I is NRF /R(I) = pbifi. In particular , the pi are prime ideals, the

qi are pi-primary and their norms are given by NRF /R(pi) = pfi , NRF /R(qi)

= peifi.

Proof. We consider first the case F i 6= uy. We have I ⊃ qi. But, by
Lemma 1, qi+B = RF , hence I+B = RF . Consider the ring homomorphism

φ : RF → (R/p)[x]/(F bi

i (x, 1))

defined by φ(g(α)) = g(x). Since RF ⊂ R[α] ∼= R[x]/(F (x)) and F bi

i

divides F , this map is well defined. As for its kernel, it is clear that
I ⊂ kerφ. Conversely, let g ∈ R[x] be such that g(α) ∈ kerφ. We thus

have g(x) = F bi

i (x, 1)q(x) + r(x) in R[x] with q(x) ∈ R[x] and r(x) ∈ p[x].

Multiplying by Bdeg g and evaluating at α, we get

Bdeg gg(α) = BfibiF bi

i (α, 1) · Bdeg g−fibiq(α) + Bdeg gr(α),

which is a relation between ideals of RF . It follows that Bdeg gg(α) ⊂ I
and, since obviously Ig(α) ⊂ I and Bdeg g + I = RF , we obtain g(α) ∈ I.
We have therefore proved that kerφ = I. To prove surjectivity, let γ ∈ I
and β ∈ B be such that γ + β = 1. We have φ(β) = 1 and φ(αβ) = x,
which implies that φ is onto. The other claims for the case F i 6= uy are now
immediate.

Consider now the case F i = uy, where u is a unit in R/p. We can
assume that u = 1. Let G be the reciprocal polynomial of F . We know from
Proposition 2 that RF = RG. It is then possible to work with G instead
of F . The factor Fi = y of F modulo p corresponds to the factor Gi = x
of G. We can apply the results of the first case to G, and the proposition is
proved in all cases.

Theorem 1. The decomposition of pRF into primary ideals is given by

pRF =
⋂

i

qi =
∏

i

qi

where qi = pRF + BeifiF ei

i (α, 1).

Proof. By Proposition 5 we know that the ideals qi are pi-primary and
therefore pairwise coprime, hence

⋂

qi =
∏

qi =
∏

(pRF + BeifiF ei

i (α, 1))
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⊂ pRF + B
∑

eifi
∏

F ei

i (α, 1). Since
∑

eifi = n, we have pRF ⊂ pRF +
Bn

∏

F ei

i (α, 1). From the definition of the Fi we deduce that
∏

F ei

i (x, y)−
F (x, y) ∈ pR[x, y]. Since F (α, 1) = 0, by Proposition 3 we get Bn

∏

F ei

i (α, 1)
⊂ pRF , and hence pRF =

∏

qi.

Corollary 1. The ideals qi are invertible. For each i, the ideal pi is

invertible if and only if pei

i = qi.

Proof. Since p is invertible, Theorem 1 says immediately that the qi are
invertible.

The identity pei

i = qi implies that pi is also invertible. Assume now that
pi is invertible. In this case NRF /R(pei

i ) = NRF /R(pi)
ei and, by Proposition 5,

NRF /R(pi)
ei = peifi = NRF /R(qi). But pei

i ⊂ qi, hence pei

i = qi.

We can now classify the ideals containing pRF and their inclusion rela-
tions.

Proposition 6. The ideals of RF containing pRF are in one-to-one

correspondence with the divisors of F , where, if P |F , the corresponding

ideal is pRF + Bdeg P P (α, 1) for any homogeneous lift P of P .

If I1 = pRF + Bd1P1(α, 1) and I2 = pRF + Bd2P2(α, 1) where P 1 |F
and P 2 |F , then:

(i) I1 ⊂ I2 ⇔ P 2 |P 1;
(ii) I1 + I2 = pRF + Bdeg DD(α, 1), where D is any homogeneous lift of

the greatest common divisor D of P 1 and P 2;
(iii) I1 ∩ I2 = pRF + Bdeg MM(α, 1), where M is any homogeneous lift

of the least common multiple M of P 1 and P 2.

Proof. Via projection, the ideals of RF containing pRF are in one-to-one
correspondence with the ideals of RF /pRF

∼=
∏

i RF /qi. The ideals of the
last ring are products of ideals of RF /qi and, since projection preserves
products of ideals, each ideal I containing pRF must be of the form

∏

i q′i,
where q′i ⊃ qi for all i.

By Proposition 5, the ideals q′i containing qi are of the form q′i = pRF +

BbifiF bi

i (α, 1) with 0≤ bi ≤ ei. Now, we clearly have
∏

i(pRF +BbifiF bi

i (α, 1))

⊂ pRF +
∏

i B
bifiF bi

i (α, 1). On the other hand,
∏

i

q′i =
∏

i

(pRF + BbifiF bi

i (α, 1))

⊃ pRF

(

∑

i

∏

j 6=i

q′j

)

+
∏

i

BbifiF bi

i (α, 1) = pRF +
∏

i

BbifiF bi

i (α, 1).

Hence the ideals I containing pRF are exactly those of the form I = pRF +
∏

i B
bifiF bi

i (α, 1) and, since the products
∏

i F
bi

i represent all divisors of F ,
the first statement of the proposition follows.
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(i) Let I1 =
∏

i q′i,1 =
∏

i(pRF + Bbi,1fiF
bi,1

i (α, 1)) and I2 =
∏

i q
′
i,2 =

∏

i(pRF + Bbi,2fiF
bi,2

i (α, 1)). We have I1 ⊂ I2 if and only if q′i,1 ⊂ q′i,2 for
all i, as can be seen by localizing at qi; by Proposition 5, this is true if and
only if bi,2 ≤ bi,1 for all i.

(ii) and (iii) are easy consequences of (i), since I1 + I2 is the smallest
ideal containing I1 and I2 and I1 ∩ I2 is the greatest ideal contained in I1

and I2.

The following elementary proposition appears to be quite useful when
we deal with ideals dividing pRF in the next section.

Proposition 7. Let P ∈ R[x, y] be any homogeneous polynomial and

let I = pRF + Bdeg P P (α, 1).

(i) The ideal I can be written canonically as I = pRF +Bdeg P0P0(α, 1),
where P0 is any homogeneous polynomial satisfying (P ,F ) = P 0.

(ii) Let 0 ≤ bi ≤ ei. We have pRF +BbifiF bi

i (α, 1) | pRF +Bdeg P P (α, 1)

if and only if F bi

i |P .

Proof. (i) Let I =
∏

i q′i, where q′i ⊃ qi. Consider the projection RF →
RF /qi. Since RF /qi

∼= (R/p)[x]/(F ei

i (x, 1)) or RF /qi
∼= (R/p)[y]/(yei)

(see Proposition 5), the ideal I corresponds to (P (x, 1))/(F ei

i (x, 1)) or to

(P (1, y))/(yei). Now, (P (x, 1))/(F ei

i (x, 1)) = (P (x, 1), F ei

i (x, 1))/(F ei

i (x, 1))

and (P (1, y))/(yei) = (P (1, y), yei)/(yei), whence the result follows.
(ii) is an immediate consequence of (i) and Proposition 6.

Now, we give a proposition and its corollary which will not be needed in
the rest of this paper, but which give a very practical way to find generators
for the ideals containing pRF .

Proposition 8. Let D, I be integral ideals of RF , with D invertible.

Then there exists an integral ideal C of RF in the same ideal class of D

such that C + I = 1. In particular , there exists an integral ideal C of RF

such that CB = (β) is principal and C + pRF = 1.

Proof. We have C + I = 1 if and only if C +
√

I = 1. Write
√

I =
⋂

i ri

=
∏

i ri, where ri are distinct prime ideals of RF . It follows that C is coprime
to I if and only if it is coprime to each of the ri. Since DD−1 = 1, we can
find, for each i, an element xi ∈ D−1 such that xiD 6⊂ ri. Now, since the ri

are prime, ri 6⊃
⋂

j 6=i rj, and hence there exist elements yi 6∈ ri, yi ∈
⋂

j 6=i rj .

Letting zi = xiyi, we have ziD 6⊂ ri and ziD ⊂ ⋂

j 6=i rj . Finally, z =
∑

zi is

an element of D−1 such that zD is coprime to ri for all i.

Corollary 2. Let β ∈ B be such that (β) = CB where C is an ideal of

RF with C+pRF = 1. Then β and αβ are in RF and pRF +Bdeg P P (α, 1) =
(p, P (αβ, β)).
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Proof. By definition of B, β and αβ are in RF . For each ideal I and
each non-negative integer m, we have pRF + I = pRF +(p+Cm)I ⊂ pRF +
CmI ⊂ pRF + I, and therefore pRF + I = pRF + CmI. It follows that
pRF + Bdeg P P (α, 1) = pRF + Cdeg P Bdeg P P (α, 1) = (p, P (αβ, β)).

4. The Dedekind criterion. Now we generalize [3, Ch. 2.4], to be able
to decide whether the order RF is p-maximal or not, and to enlarge it when
it is not. The main result is the generalization of the Dedekind criterion. For
this, we need some definitions.

Let O ⊂ OL be an order in L. Then OL/O is a finitely generated torsion
R-module. By [3, Thm 1.2.30], there exist unique integral ideals d1, . . . , dr,
with 0 6= d1 ⊂ d2 ⊂ · · · ⊂ dr 6= R, such that

OL/O ∼= (R/d1) ⊕ · · · ⊕ (R/dr).

The index-ideal [OL : O] is by definition the product of the ideals di. When
the base ring R is Z, this definition coincides with the usual index if we
identify an ideal of Z with its positive generator.

We say that an order O in L is p-maximal if the index-ideal [OL : O] is
not divisible by p.

The p-radical Ip of O at p is defined as the radical of the ideal p, that is,

Ip =
√

pO = {x ∈ O | ∃m ≥ 1 such that xm ∈ pO}.
The p-radical is a useful tool for enlarging an order O when it is not

p-maximal, as we can see in Zassenhaus’s theorem (see [3, Prop. 2.4.4]):

Proposition 9 (Zassenhaus’s theorem). Set O′ = {x ∈ L | xIp ⊂ Ip}.
Then

(i) O′ is an order in L containing O,
(ii) O′ = O if and only if O is p-maximal ,
(iii) if O′ 6= O, then [O′ : O] = pk with 1 ≤ k ≤ n.

Theorem 2 (Dedekind criterion). Let h =
∑

i fi be the degree of H1 =
∏

i Fi.

(i) The p-radical of RF at p is given by

Ip = pRF + BhH1(α, 1).

(ii) Let ξ ∈ p−1 \R (i.e. a uniformizer of p−1), H2 be a lift of F/H1 and

H3 = ξ(H1H2 − F ) ∈ R[x, y]. Let also G be the gcd of H1, H2 and

H3 in R/p[x, y], and g = deg G. Finally , let U be a lift of F/G in

R[x, y] of degree n−g. Then the order given by Zassenhaus’s theorem

starting with O = RF is equal to
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O′ = RF + p−1Bn−gU(α, 1).

We have [O′ : RF ] = pg. In particular , RF is p-maximal if and only

if (H1,H2,H3) = 1.

Proof. (i) This statement is a consequence of Proposition 6 and of the

equality Ip =
√

pRF =
√

⋂

i qi =
⋂

i

√
qi =

⋂

i pi.
(ii) Clearly pO′ is an ideal of RF containing pRF , and by Proposition 6

we may write pO′ = pRF +Bdeg P P (α, 1) for some homogeneous polynomial

P such that P is a divisor of F . Since pRF is invertible, we have to prove
that we can choose P such that P = U .

From now on we shall follow closely the lines of the proof of [2, The-
orem 6.1.4]. The ideal pO′ is characterized as the set of elements γ such
that γ ∈ Ip and γBhH1(α, 1) ⊂ pIp. We first remark that Proposition 6 and

part (i) of this theorem give immediately pRF + Bdeg P P (α, 1) ⊂ Ip if and

only if H1 |P . Hence, the polynomial P is characterized as the smallest one

such that H1 |P |F and

(1) BhH1(α, 1)(pRF + Bdeg P P (α, 1)) ⊂ pIp.

But BhH1(α, 1)pRF ⊂ p2RF + BhH1(α, 1)pRF = pIp, hence (1) is equiva-
lent to

(2) Bh+deg P H1(α, 1)P (α, 1) ⊂ pIp.

We note that (2) implies that

Bh+deg P H1(α, 1)P (α, 1) ⊂ pRF ,

and by Proposition 7 we get F |H1P , that is, H2 |P . Let P = A3H2 + B1,
where A3 and B1 are homogeneous polynomials respectively in R[x, y]
and p[x, y]. Now, we have H1P = H1H2A3 + H1B1 = (H1H2 − F )A3 +
H1B1 + FA3, and (2) is equivalent to

Bh+deg P ((H1H2 − F )A3 + H1B1)(α, 1) ⊂ pIp,

or after multiplication by ξ to

(3) Bh+deg P (H3A3 + H1ξB1)(α, 1) ⊂ Ip.

We use again the fact that Ip = pRF + BhH1(α, 1), which implies that

Bh+deg P (H1ξB1)(α, 1) ⊂ BhH1(α, 1) ⊂ Ip, and (3) is now equivalent to

(4) Bh+deg P (H3A3)(α, 1) ⊂ pRF + BhH1(α, 1).

By Proposition 7, this is equivalent to H1 |H3A3, or simply to H4 |A3 where
H4 = H1/(H1,H3). Putting together the different conditions, we see that
(1) is equivalent to H4H2 |P .
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Summarizing, the two conditions on P mean that P is the least common
multiple of H1 and H4H2. Now,

lcm(H1,H4H2) = H4 lcm((H1,H3),H2)

=
H1

(H1,H3)

(H1,H3)H2

(H1,H2,H3)
=

F

(H1, H2,H3)
= U.

5. The case when p is coprime to the index. Let Ind(RF ) =
[OL : RF ] be the index-ideal of RF in OL as described in Section 4.

Theorem 3. If p is coprime to Ind(RF ), the factorization of pRF into

prime ideals is given by

pRF =
∏

i

pei

i

where pi = pRF + BfiFi(α, 1). Moreover ,

pOL =
∏

i

(piOL)ei

and NOL/R(pi) = pfi.

Proof. Setting S = R \ p we have (S−1R)F = S−1RF = S−1OL, and
therefore S−1RF is a Dedekind domain. The decomposition of S−1p in
S−1RF is S−1p =

⋂

S−1qi, where the prime ideals S−1pi are invertible and
the S−1qi are S−1pi-primary. By Corollary 1 we see that S−1qi = S−1pei

i
and, contracting these ideals to RF and to OL, we obtain qi = pei

i and
qiOL = (piOL)ei (see for instance [1, Proposition 4.8]). The factorizations
of pRF and pOL now follow from Theorem 1.

Finally, RF /pi
∼= OL/piOL and the last statement follows from Proposi-

tion 5.

6. Applications. In this section, we consider the standard case K = Q
and R = Z, and we write ZF for the ring RF .

Definition 1. The generalized index of a number field L is the greatest
common divisor of the indices [OL : ZF ] where F is the primitive irreducible
minimal polynomial of α, and α runs over all generators of L over Q.

The usual definition of the index of L is the same, except that α is
restricted to algebraic integers. It is not difficult to see that the generalized
index of L is a divisor of the index of L. The following proposition is the
analogue of [5, Ch. 4, Theorem 4.13].

Proposition 10. Let L be a number field , p be a rational prime and let

pOL = pe1

1 · · · pet

t
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be the factorization of pOL into prime ideals. Let also fi be the inertial

degree of pi for i = 1, . . . , t. Then p does not divide the generalized index

of L if and only if there exist distinct irreducible homogeneous polynomials

F 1, . . . , F t ∈ Fp[x, y] with degrees f1, . . . , ft, respectively.

Remark 2. To say that the polynomials F i and F j are distinct means

in this context that there is no unit u ∈ F∗
p such that F i = uF j .

Proof of Proposition 10. If p does not divide the generalized index of L,
then there exists a generator α ∈ L such that p ∤ [OL : ZFα

] (where Fα ∈ Z[x]
is a primitive irreducible polynomial having α as a root). Denote again by
Fα the homogenized polynomial of Fα with the same degree; by Theorem 3,
the factors of Fα modulo p are homogeneous polynomials with the required
properties.

To prove the converse, let F1, . . . , Ft be homogeneous lifts of F 1, . . . , F t

to Z[x, y].
If none of the F i is equal to y (up to some invertible element modulo p),

then we can apply to F i(x, 1) the standard result, for example [5, Ch. 4,
Theorem 4.13]. In this case, we find that p does not divide the index of L,
and therefore it cannot divide the generalized index of L either.

Assume now that F i0 = y for some index i0. Let β be an element of OL

such that β ∈ pi0 , β 6∈ p2
i0

and β ≡ 1 (modp2
i ) for i 6= i0. For i = 1, . . . , t,

i 6= i0, let γi be an element of OL such that γi 6∈ pi0 and

Fi(γi, 1) ≡ 0 (mod pi).

Such a root of F i does exist since the degree of F i is equal to the inertial
degree of pi. Furthermore, the polynomial F i is irreducible modulo p, and its
discriminant is coprime to p, hence to pi, so F ′

i(γi, 1) 6∈ pi, and by Hensel’s
Lemma we can also assume that

Fi(γi, 1) 6≡ 0 (modp2
i ).

Since β ≡ 1 (mod p2
i ), we have moreover

Fi(γi, β) ≡ 0 (mod pi), Fi(γi, β) 6≡ 0 (mod p2
i ).

Finally, let γ ∈ OL with γ ≡ γi (modp2
i ) and γ ≡ 1 (modpi0).

Let qi = (p, Fi(γ, β)) (for i = i0, this gives qi0 = (p, β)). Clearly, pi | qi,
p2

i ∤ qi. Moreover, if i 6= j, i, j 6= i0, then pi ∤ qj , since otherwise Fi(γ, 1) ≡ 0

(modpi) and Fj(γ, 1) ≡ 0 (mod pi), whence F i(x, 1) and F j(x, 1) would
have a common root, but they are coprime. Similarly, for i 6= i0, pi0 ∤ qi

(since otherwise Fi(γ, β) ∈ pi0 , which would imply that γ ∈ pi0) and pi ∤ qi0

(since otherwise β ∈ pi). It follows that qi = pi for all i.
Let F = F e1

1 · · ·F et

t . It is plain that F (γ, β) ≡ 0 (modpOL). On the
other hand, let α = γ/β and let W (x) be a primitive irreducible polynomial
with integer coefficients such that W (α) = 0. In particular, denoting by
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W again the homogenized polynomial of W with the same degree, we have
W (γ, β) = 0, whence W (γ, β) ∈ pei

i for all i. Arguing as above, we see that

pi and G(γ, β) are coprime for all G such that (F i, G) = 1, and we get the
inequality

ei ≤ vpi
(W (γ, β)) = vpi

(Fi(γ, β))vF i
(W ).

In any case, we see that vF i
(W )≥1, and if ei ≥2, we have vpi

(Fi(γ, β))=1

from the previous discussion, which gives ei ≤ vF i
(W ). It follows that

F ei

i | W for all i, whence F | W . Taking into account the degrees, we infer

in fact that F = W up to a non-zero constant.
Consider now the order ZW . We want to show that

ZW ∩ pOL = pZW .

One inclusion is obvious, so let ̺ ∈ ZW ∩ pOL, and write ̺ = T (α) for
some T (x) ∈ Z[x]. Homogenizing T we obtain T (γ, β) ≡ 0 (mod pei

i ) and

therefore T is divisible by F ei

i in view of what we have just proved. By the

proof of Proposition 5, ̺ ∈ pZW + BeifiF ei

i (α, 1) for i 6= i0 where B is the
denominator of α in ZW ; similarly, interchanging the roles of α and α−1,
we obtain ̺ ∈ pZW + Bei0yei0 as well. Hence ̺ ∈ pZW by Theorem 1, as
wanted.

Finally, the equality ZW ∩ pOL = pZW means that the inclusion
ZW → OL induces an isomorphism ZW /pZW

∼−→ OL/pOL, showing that
p ∤ [OL : ZW ].

Corollary 3. If p divides the generalized index of a number field L
with [L : Q] = n, then p < n − 1.

Proof. It is immediate to check that for p + 1 ≥ n and for every d ≥ 1
there are at least [n/d] distinct homogeneous irreducible polynomials in
Fp[x, y] of degree d.

Remark 3. For d > 1, the number of irreducible homogeneous poly-
nomials of degree d in Fp[x, y] is the same as the number of irreducible
polynomials of degree d in Fp[x], whereas for d = 1 there are p + 1 irre-
ducible linear forms and p linear polynomials. It follows that a prime p does
not divide the generalized index of L if and only if: either (i) p does not
divide the index of L (with the usual definition given in [5]), or (ii) there
are exactly p + 1 primes with inertial degree 1 above p.

Example 2. Consider the cubic field L = Q(α) where α is a root of
F = 2x3 +x2 +3x+2 = 0. The discriminant of this cubic field is Disc(F ) =
Disc(L) = −431. We have F (x, y) = x(x − y)y (mod2), and this implies
that the generalized index of L is 1, whereas the usual index of L is divisible
by 2 (it is exactly 2 because of the polynomial 4F (x/2)).



Decomposition of primes in non-maximal orders 243

We also derive a necessary condition for an element α of a number field
to have index 1.

Proposition 11. Let L = Q(α) be a number field and p a prime num-

ber. Let F be the minimal polynomial of α, and A the numerator of α (an
ideal in OL). If one of the following conditions is satisfied , then p divides

the index [OL : ZF ]:

(i) there is a prime ideal p above p with inertial degree fp ≥ 2 such that

p | A,
(ii) there are two different prime ideals p1 and p2 above p with inertial

degree 1 such that p1p2 | A,
(iii) there is a prime ideal p above p with ramification index ep ≥ 2 such

that p2 | A.

Proof. Let p be a prime, and assume that p does not divide the index
of α. Then from Theorem 3 all prime ideals above are of the form p =
pOL + BfiFi(α, 1). But Lemma 1 shows that p is coprime to A, unless
Fi = ux. This proves that at most one prime ideal above p can divide A.
In this case, we have fi = deg(ux) = 1. This prime ideal p is such that
p = pOL + αB = pOL + A. By inspecting valuations, we see that if ep > 1,
we must have vp(A) = 1.

Remark 4. Since the index of α does not change under the transfor-
mations of GL2(Z), we can apply this proposition to all the elements of the
form (aα + b)/(cα + d) with ad − bc = ±1. In particular, we can apply it
to 1/α or to α + q. This shows, for example, that for any integer q and any
prime p, the numerator and the denominator of α + q can only be divisible
by primes p with inertial degree fp = 1, and by at most one such prime
above each prime p.
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