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consecutive integers
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1. Introduction. Let k ≥ 2 and n ≥ 1 be integers. We define

∆(n, k) = n(n + 1) · · · (n + k − 1).

For an integer ν > 1, we denote by ω(ν) and P (ν) the number of distinct
prime divisors of ν and the greatest prime factor of ν, respectively, and we
put ω(1) = 0, P (1) = 1.

A well known theorem of Sylvester [7] states that

P (∆(n, k)) > k if n > k.(1)

We observe that P (∆(1, k)) ≤ k and therefore the assumption n > k in (1)
cannot be removed. For n > k, Moser [5] sharpened (1) to P (∆(n, k)) > 11

10k
and Hanson [3] to P (∆(n, k)) > 1.5k unless (n, k) = (3, 2), (8, 2), (6, 5).
Further Faulkner [2] proved that P (∆(n, k)) > 2k if n is greater than or
equal to the least prime exceeding 2k and (n, k) 6= (8, 2), (8, 3).

In this paper, we sharpen the results of Hanson and Faulkner. We shall
not use these results in the proofs of our improvements. We prove

Theorem 1. We have

(a)

P (∆(n, k)) > 2k for n > max

(

k + 13,
279

262
k

)

.(2)

(b)

P (∆(n, k)) > 1.97k for n > k + 13.(3)

We observe that 1.97 in (3) cannot be replaced by 2 since there are
arbitrarily long chains of consecutive composite positive integers. The same
reason implies that Theorem 1(a) is not valid under the assumption n >
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k +13. Further the assumption n > 279
262k in Theorem 1(a) is necessary since

P (∆(279, 262)) ≤ 2 · 262.
Now we give a lower bound for P (∆(n, k)) which is valid for n > k > 2

except for an explicitly given finite set. For this, we need some notation. For
a pair (n, k) and a positive integer h, we write [n, k, h] for the set of all pairs
(n, k), . . . , (n + h − 1, k) and we set [n, k] = [n, k, 1] = {(n, k)}. Let

A10 = {58}, A8 = A10 ∪ {59}, A6 = A8 ∪ {60},

A4 = A6 ∪ {12, 16, 46, 61, 72, 93, 103, 109, 151, 163},

A2 = A4 ∪ {4, 7, 10, 13, 17, 19, 25, 28, 32, 38, 43, 47,

62, 73, 94, 104, 110, 124, 152, 164, 269}

and A2i+1 = A2i for 1 ≤ i ≤ 5. Further let

A1 =A2 ∪ {3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 23, 26, 29, 33, 35, 39, 41, 44, 48, 50, 53,

56, 63, 68, 74, 78, 81, 86, 89, 95, 105, 111, 125, 146, 153, 165, 173, 270}.

Finally, we set

B = [8, 3] ∪ [5, 4, 3] ∪ [14, 13, 3] ∪ {(k + 1, k) | k = 3, 5, 8, 11, 14, 18, 63}.

Then

Theorem 2. We have

P (∆(n, k)) > 1.95k for n > k > 2(4)

except when (n, k) ∈ [k + 1, k, h] for k ∈ Ah with 1 ≤ h ≤ 11 or (n, k) =
(8, 3).

If k = 2, we observe (see Lemma 7) that P (∆(n, k)) > 2k unless n = 3, 8
and that P (∆(3, 2)) = P (∆(8, 2)) = 3. Thus the estimate (4) is valid for
k = 2 whenever n 6= 3, 8. We observe that P (∆(k+1, k)) ≤ 2k and therefore
1.95 in (4) cannot be replaced by 2.

There are few exceptions if 1.95 is replaced by 1.8 in Theorem 2. We
derive from Theorem 2 the following result.

Corollary 1. We have

P (∆(n, k)) > 1.8k for n > k > 2(5)

except when (n, k) ∈ B.

2. Lemmas. We begin with a well known result due to Levi ben Gerson
on a particular case of the Catalan equation.

Lemma 1. The solutions of

2a − 3b = ±1 in integers a > 0, b > 0

are given by (a, b) = (1, 1), (2, 1), (3, 2).
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Next we state a result of Saradha and Shorey [6] on a lower bound for
ω(∆(n, k)).

Lemma 2. For n > k > 2, we have

ω(∆(n, k)) ≥ π(k) +

[

1

3
π(k)

]

+ 2

except when (n, k) belongs to the union of the sets






[4, 3], [6, 3, 3], [16, 3], [6, 4], [6, 5, 4], [12, 5], [14, 5, 3], [23, 5, 2],

[7, 6, 2], [15, 6], [8, 7, 3], [12, 7], [14, 7, 2], [24, 7], [9, 8], [14, 8],

[14, 13, 3], [18, 13], [20, 13, 2], [24, 13], [15, 14], [20, 14], [20, 17].

We shall use Lemma 2 only when k = 3 or 5 ≤ k ≤ 8. Let pi denote the
ith prime number. Then

Lemma 3. We have

pi+1 − pi <



























35 for pi ≤ 5591,

15 for pi ≤ 1123, pi 6= 523, 887, 1069,

21 for pi = 523, 887, 1069,

9 for pi ≤ 361,

pi 6= 113, 139, 181, 199, 211, 241, 283, 293, 317, 337.

(6)

Lemma 4. Let N be a positive real number and k0 a positive integer. Let

I(N, k0) = {i | pi+1 − pi ≥ k0, pi ≤ N}. Then

P (n(n + 1) · · · (n + k − 1)) > 2k

for 2k ≤ n < N and k ≥ k0 except possibly when pi < n < n + k − 1 < pi+1

for i ∈ I(N, k0).

Proof. Let 2k ≤ n < N and k > k0. We may suppose that none of
n, n + 1, . . . , n + k − 1 is a prime, otherwise the result follows. Let pi < n <
n + k − 1 < pi+1. Then i = π(n) and pπ(n) < n < N. For π(n) /∈ I(N, k0),
we have

k − 1 = n + k − 1 − n < pπ(n)+1 − pπ(n) < k0,

which implies k − 1 < k0 − 1, a contradiction. Hence the assertion.

The following result on the estimates for primes is due to Dusart [1,
p. 14].

Lemma 5. For ν > 1, we have

(i) π(ν) ≤
ν

log ν

(

1 +
1.2762

log ν

)

,

(ii) π(ν) ≥
ν

log ν − 1
for ν ≥ 5393.
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Lemma 6. Let X > 0 and 0 < θ < e − 1 be real numbers. For l ≥ 0, let

X0 = max

(

5393

1 + θ
, exp

(

log(1 + θ) + 0.2762

θ

))

,

Xl+1 = max

(

5393

1 + θ
, exp

(

log(1 + θ) + 0.2762

θ + 1.2762(1−log(1+θ))

log2 Xl

))

.

Then

π((1 + θ)X) − π(X) > 0 for X > Xl.

Proof. Let l ≥ 0 and X > Xl. Then (1 + θ)X ≥ 5393. By Lemma 5, we
have

δ := π((1 + θ)X) − π(X) ≥
(1 + θ)X

log(1 + θ)X − 1
−

X

log X

(

1 +
1.2762

log X

)

≥
X

log(1 + θ)X − 1

{

1 + θ −
log(1 + θ)X − 1

log X

(

1 +
1.2762

log X

)}

≥
X

log(1 + θ)X − 1

{

1 + θ −

(

1 −
1 − log(1 + θ)

log X

)(

1 +
1.2762

log X

)}

≥
X

log(1 + θ)X − 1
{F (X) + G(X)}

where

F (X) = θ −
log(1 + θ) + 0.2762

log X
, G(X) =

1.2762(1 − log(1 + θ))

log2 X
.

We see that G(X) > 0 and is decreasing since 0 < θ < e − 1. Further we
observe that {Xi} is a non-increasing sequence. We notice that δ > 0 if
F (X) + G(X) > 0. But F (X) + G(X) > F (X) > 0 for X > X0 by the
definition of X0. Thus δ > 0 for X > X0.

Let now X ≤ X0. Then F (X) + G(X) ≥ F (X) + G(X0) and F (X) +
G(X0) > 0 if X > X1 by the definition of X1. Hence δ > 0 for X > X1. Now
we proceed inductively as above to see that δ > 0 for X > Xl with l ≥ 2.

Lemma 7. Let n > k and k ≤ 16. Then

P (∆(n, k)) ≤ 2k(7)

implies that (n, k) ∈ {(8, 2), (8, 3)} or (n, k) ∈ [k + 1, k] for k ∈ {2, 3, 5, 6, 8,
9, 11, 14, 15} or (n, k) ∈ [k + 1, k, 3] for k ∈ {4, 7, 10, 13} or (n, k) ∈ [k + 1,
k, 5] for k ∈ {12, 16}.

Proof. We apply Lemma 1 to derive that (7) is possible only if n = 3, 8
when k = 2 and n = 5, 6, 7 when k = 4. For the latter assertion, we apply
Lemma 1 after securing P ((n+ i)(n+j)) ≤ 3 with 0 ≤ i < j ≤ 3 by deleting
the terms divisible by 5 and 7 in n, n + 1, n + 2 and n + 3. For k = 3 and
5 ≤ k ≤ 8, the assertion follows from Lemma 2.
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Thus we may assume that k ≥ 9. Assume that (7) holds. Then in the
product ∆(n, k), there are at most 1 + [(k − 1)/p] terms divisible by the
prime p. After removing all the terms divisible by p ≥ 7, we are left with
at least four terms only divisible by 2, 3 and 5. Further out of these terms,
for each prime 2, 3 and 5, we remove a term in which the prime divides to
a maximal power. Then we are left with a term n + i such that n ≤ n + i ≤
8 · 9 · 5 = 360.

Let n ≥ 2k. We now apply Lemma 4 with N = 361, k0 = 9 and (6) to get
P (∆(n, k)) > 2k for k ≥ 9 except possibly when pi < n < n + k − 1 < pi+1,
pi = 113, 139, 181, 199, 211, 241, 283, 293, 317, 337. For these values of n, we
check that P (∆(n, k)) > 2k is valid for 9 ≤ k ≤ 16. Thus it suffices to
consider k < n < 2k. We calculate P (∆(n, k)) for (n, k) with 9 ≤ k ≤ 16
and k < n < 2k. We find that (7) holds only if (n, k) is as given in the
statement of Lemma 7.

3. Proof of Theorem 1(a). Let n > max
(

k + 13, 279
262k

)

. In view of
Lemma 7, we may take k ≥ 17 since n ≤ k + 5 for the exceptions (n, k)
given in Lemma 7. It suffices to prove (2) for k such that 2k − 1 is prime.
Let k1 < k2 be such that 2k1−1 and 2k2−1 are consecutive primes. Suppose
(2) holds at k1. Then for k1 < k < k2, we have

P (n(n + 1) · · · (n + k − 1)) ≥ P (n · · · (n + k1 − 1)) > 2k1,

implying P (∆(n, k)) ≥ 2k2−1 > 2k. Therefore we may suppose that k ≥ 19
since 2k − 1 with k = 17, 18 are composites. We assume from now onward
in the proof of Theorem 1(a) that 2k − 1 is prime. We put x = n + k − 1.
Then ∆(n, k) = x(x− 1) · · · (x−k +1). Let f1 < · · · < fµ be all the integers
in [0, k) such that

P ((x − f1) · · · (x − fµ)) ≤ k.(8)

We argue as in the proof of [4, Lemma 4] to get

k! > xµ−π(k)

(

1 −
k

x

)µ

.(9)

We may suppose ω(∆(n, k)) ≤ π(2k), otherwise (2) follows. Then

µ ≥ k − π(2k) + π(k)(10)

which we use as in [4, Lemma 4] to derive from (9) that

x < k3/2 for k ≥ 87; x < k7/4 for k ≥ 40; x < k2 for k ≥ 19.(11)

If x ≥ 7k and k > 57, then as in [4, Lemma 7] we derive from (10) that x ≥
k3/2. Thus (11) implies that x < 7k for k ≥ 87. Putting back n = x− k + 1,

we may assume that n < 6k +1 for k ≥ 87, n < k7/4−k +1 for 40 ≤ k < 87
and n < k2 − k + 1 for 19 ≤ k < 40.
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Let k < 87. Suppose n ≥ 2k. Then 2k ≤ n < k7/4−k+1 for 40 ≤ k < 87
and 2k ≤ n < k2 − k + 1 for 19 ≤ k < 40. Thus Lemma 4 with N =
877/4 − 87 + 1, k0 = 35 and (6) implies that P (∆(n, k)) > 2k for k ≥ 35.
We note here that 2k ≤ n < N for 35 ≤ k < 40. Let k < 35. Taking N =
342−34+1, k0 = 21 for 21 ≤ k ≤ 34 and N = 192−19+1, k0 = 19 for k = 19,
we see from Lemma 4 and (6) that P (∆(n, k)) > 2k for k ≥ 19. Here the case
k = 20 is excluded since 2k−1 is composite. Therefore we may assume that
n < 2k. Further we observe that π(n + k − 1)− π(2k) ≥ π(2k + 13)− π(2k)
since n > k + 13. Next we check that π(2k + 13) − π(2k) > 0. This implies
that [2k, n + k − 1] contains a prime.

Thus we may assume that k ≥ 87. Then we write

n = αk + 1 with

{

279/262 − 1/k < α ≤ 6 if k ≥ 201,

1 + 12/k < α ≤ 6 if k < 201.

Further we consider π(n + k − 1) − π(max(n − 1, 2k)), which is

= π((α + 1)k) − π(αk) for α ≥ 2,

≥ π

([

541

262
k

])

− π(2k) for α < 2 and k ≥ 201,

≥ π(2k + 13) − π(2k) for α < 2 and k < 201.

By using exact values of the π function we check that

π(2k + 13) − π(2k) > 0 for k < 201,

π

([

541

262
k

])

− π(2k) > 0 for 201 ≤ k ≤ 2616.

Thus we may suppose that k > 2616 if α < 2. Also
[

541

262
k

]

≥
540

262
k for k > 2616.

Now we apply Lemma 6 with X = αk, θ = 1/α, l = 0 if α ≥ 2 and X =
2k, θ = 4/131, l = 1 if α < 2 to get

π(n + k − 1) − π(max(n − 1, 2k)) > 0

for X > X0 = 5393/(1 + 1/α) if α ≥ 2 and X > X1 = 5393/(1 + 4/131) if
α < 2. Further when α < 2, we observe that X = 2k > X1 since k > 2616.
Thus the assertion follows for n < 2k.

It remains to consider the case α ≥ 2 and X ≤ 5393(1 + 1/α)−1. Then
2k ≤ n < n + k − 1 = X(1 + 1/α) ≤ 5393. Now we apply Lemma 4 with
N = 5393, k0 = 35 and (6) to conclude that P (∆(n, k)) > 2k.

4. Proof of Theorem 1(b). In view of Lemma 7 and Theorem 1(a), we
may assume that k ≥ 17 and k < n ≤ 279

262k. Let X = 279
262k, θ = 245

279 , l = 0.
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Then for k < n ≤ X, we see from Lemma 6 that

π(2k) − π(n − 1) ≥ π((1 + θ)X) − π(X) > 0

for X > X0 = 5393(1+θ)−1 which is satisfied for k > 2696 since (1+θ)X =
2k. Thus we may suppose that k ≤ 2696. Now we check with exact values
of the π function that π(2k) − π

(

279
262k

)

> 0. Therefore

P (∆(n, k)) ≥ P (n(n + 1) · · · 2k) ≥ pπ(2k).

Further we apply Lemma 6 with X = 1.97k, θ = 3/197 and l = 25. We
calculate that Xl ≤ 284000. We conclude by Lemma 6 that

π(2k) − π(1.97k) = π((1 + θ)X) − π(X) > 0

for k > 145000. Let k ≤ 145000. Then we check that π(2k) − π(1.97k) > 0
is valid for k ≥ 680 by using exact values of the π function. Thus

pπ(2k) > 1.97k for k ≥ 680.(12)

Therefore we may suppose that k < 680. Now we observe that for n > k+13,

π(n + k − 1) − π(1.97k) ≥ π(2k + 13) − π(1.97k) > 0;

the latter inequality can be checked by using exact values of the π function.
Hence the assertion follows since n < 1.97k.

5. Proof of Theorem 2. By Theorem 1(b), we may assume that n ≤
k +13. Also we may suppose that k < 680 by (12). For k ≤ 16, we calculate
P (∆(n, k)) for all the pairs (n, k) given in the statement of Lemma 7. We find
that either P (∆(n, k)) > 1.95k or (n, k) is an exception stated in Theorem
1(a). Thus we may suppose that k ≥ 17. Now we check that π(n + k − 1)−
π(1.95k) > 0 except when (n, k) ∈ [k + 1, k, h] for k ∈ Ah with 1 ≤ h ≤ 11,
and the assertion follows.

6. Proof of Corollary 1. We calculate P (∆(n, k)) for all (n, k) with
k ≤ 270 and k + 1 ≤ n ≤ k + 11. This contains the set of exceptions given
in Theorem 2. We find that P (∆(n, k)) > 1.8k unless (n, k) ∈ B. Hence the
assertion (5) follows from Theorem 2.
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