The greatest prime divisor of a product of consecutive integers

by

SHANTA LAISHRAM and T. N. SHOREY (Mumbai)

1. Introduction. Let $k \ge 2$ and $n \ge 1$ be integers. We define $\Delta(n, k) = n(n+1)\cdots(n+k-1).$

For an integer $\nu > 1$, we denote by $\omega(\nu)$ and $P(\nu)$ the number of distinct prime divisors of ν and the greatest prime factor of ν , respectively, and we put $\omega(1) = 0$, P(1) = 1.

A well known theorem of Sylvester [7] states that

(1)
$$P(\Delta(n,k)) > k \quad \text{if } n > k.$$

We observe that $P(\Delta(1,k)) \leq k$ and therefore the assumption n > k in (1) cannot be removed. For n > k, Moser [5] sharpened (1) to $P(\Delta(n,k)) > \frac{11}{10}k$ and Hanson [3] to $P(\Delta(n,k)) > 1.5k$ unless (n,k) = (3,2), (8,2), (6,5). Further Faulkner [2] proved that $P(\Delta(n,k)) > 2k$ if n is greater than or equal to the least prime exceeding 2k and $(n,k) \neq (8,2), (8,3)$.

In this paper, we sharpen the results of Hanson and Faulkner. We shall not use these results in the proofs of our improvements. We prove

Theorem 1. We have

(a)

(2)
$$P(\Delta(n,k)) > 2k$$
 for $n > \max\left(k + 13, \frac{279}{262}k\right)$.

(b)

(3)
$$P(\Delta(n,k)) > 1.97k \text{ for } n > k+13.$$

We observe that 1.97 in (3) cannot be replaced by 2 since there are arbitrarily long chains of consecutive composite positive integers. The same reason implies that Theorem 1(a) is not valid under the assumption n >

²⁰⁰⁰ Mathematics Subject Classification: Primary 11A41, 11N05, 11N13.

Key words and phrases: arithmetic progressions, primes.

k+13. Further the assumption $n>\frac{279}{262}k$ in Theorem 1(a) is necessary since $P(\varDelta(279,262))\leq 2\cdot 262.$

Now we give a lower bound for $P(\Delta(n,k))$ which is valid for n > k > 2except for an explicitly given finite set. For this, we need some notation. For a pair (n,k) and a positive integer h, we write [n,k,h] for the set of all pairs $(n,k),\ldots,(n+h-1,k)$ and we set $[n,k] = [n,k,1] = \{(n,k)\}$. Let

 $A_{10} = \{58\}, \quad A_8 = A_{10} \cup \{59\}, \quad A_6 = A_8 \cup \{60\},$

 $A_4 = A_6 \cup \{12, 16, 46, 61, 72, 93, 103, 109, 151, 163\},\$

 $A_2 = A_4 \cup \{4, 7, 10, 13, 17, 19, 25, 28, 32, 38, 43, 47, \\$

62, 73, 94, 104, 110, 124, 152, 164, 269

and $A_{2i+1} = A_{2i}$ for $1 \le i \le 5$. Further let

 $56, 63, 68, 74, 78, 81, 86, 89, 95, 105, 111, 125, 146, 153, 165, 173, 270 \}.$ Finally, we set

 $B = [8,3] \cup [5,4,3] \cup [14,13,3] \cup \{(k+1,k) \mid k = 3,5,8,11,14,18,63\}.$ Then

THEOREM 2. We have

(4) $P(\Delta(n,k)) > 1.95k \text{ for } n > k > 2$

except when $(n,k) \in [k+1,k,h]$ for $k \in A_h$ with $1 \le h \le 11$ or (n,k) = (8,3).

If k = 2, we observe (see Lemma 7) that $P(\Delta(n, k)) > 2k$ unless n = 3, 8and that $P(\Delta(3, 2)) = P(\Delta(8, 2)) = 3$. Thus the estimate (4) is valid for k = 2 whenever $n \neq 3, 8$. We observe that $P(\Delta(k+1, k)) \leq 2k$ and therefore 1.95 in (4) cannot be replaced by 2.

There are few exceptions if 1.95 is replaced by 1.8 in Theorem 2. We derive from Theorem 2 the following result.

COROLLARY 1. We have

(5) $P(\Delta(n,k)) > 1.8k \text{ for } n > k > 2$

except when $(n,k) \in B$.

2. Lemmas. We begin with a well known result due to Levi ben Gerson on a particular case of the Catalan equation.

LEMMA 1. The solutions of $2^a - 3^b = \pm 1$ in integers a > 0, b > 0are given by (a, b) = (1, 1), (2, 1), (3, 2). Next we state a result of Saradha and Shorey [6] on a lower bound for $\omega(\Delta(n,k))$.

LEMMA 2. For n > k > 2, we have

$$\omega(\varDelta(n,k)) \ge \pi(k) + \left[\frac{1}{3}\pi(k)\right] + 2$$

except when (n, k) belongs to the union of the sets

$$\left\{ \begin{split} & [4,3], [6,3,3], [16,3], [6,4], [6,5,4], [12,5], [14,5,3], [23,5,2], \\ & [7,6,2], [15,6], [8,7,3], [12,7], [14,7,2], [24,7], [9,8], [14,8], \\ & [14,13,3], [18,13], [20,13,2], [24,13], [15,14], [20,14], [20,17]. \end{split} \right.$$

We shall use Lemma 2 only when k = 3 or $5 \le k \le 8$. Let p_i denote the *i*th prime number. Then

LEMMA 3. We have
(6)
$$p_{i+1} - p_i < \begin{cases} 35 & for \ p_i \le 5591, \\ 15 & for \ p_i \le 1123, \ p_i \ne 523, 887, 1069, \\ 21 & for \ p_i = 523, 887, 1069, \\ 9 & for \ p_i \le 361, \\ p_i \ne 113, 139, 181, 199, 211, 241, 283, 293, 317, 337. \end{cases}$$

LEMMA 4. Let \mathfrak{N} be a positive real number and k_0 a positive integer. Let $I(\mathfrak{N}, k_0) = \{i \mid p_{i+1} - p_i \geq k_0, p_i \leq \mathfrak{N}\}$. Then

$$P(n(n+1)\cdots(n+k-1)) > 2k$$

for $2k \leq n < \mathfrak{N}$ and $k \geq k_0$ except possibly when $p_i < n < n + k - 1 < p_{i+1}$ for $i \in I(\mathfrak{N}, k_0)$.

Proof. Let $2k \leq n < \mathfrak{N}$ and $k > k_0$. We may suppose that none of $n, n+1, \ldots, n+k-1$ is a prime, otherwise the result follows. Let $p_i < n < n+k-1 < p_{i+1}$. Then $i = \pi(n)$ and $p_{\pi(n)} < n < \mathfrak{N}$. For $\pi(n) \notin I(\mathfrak{N}, k_0)$, we have

$$k - 1 = n + k - 1 - n < p_{\pi(n)+1} - p_{\pi(n)} < k_0,$$

which implies $k - 1 < k_0 - 1$, a contradiction. Hence the assertion.

The following result on the estimates for primes is due to Dusart [1, p. 14].

LEMMA 5. For $\nu > 1$, we have

(i)
$$\pi(\nu) \le \frac{\nu}{\log \nu} \left(1 + \frac{1.2762}{\log \nu} \right),$$

(ii) $\pi(\nu) \ge \frac{\nu}{\log \nu - 1} \quad \text{for } \nu \ge 5393.$

LEMMA 6. Let
$$X > 0$$
 and $0 < \theta < e - 1$ be real numbers. For $l \ge 0$, let

$$X_0 = \max\left(\frac{5393}{1+\theta}, \exp\left(\frac{\log(1+\theta) + 0.2762}{\theta}\right)\right),$$

$$X_{l+1} = \max\left(\frac{5393}{1+\theta}, \exp\left(\frac{\log(1+\theta) + 0.2762}{\theta + \frac{1.2762(1-\log(1+\theta))}{\log^2 X_l}}\right)\right).$$

Then

$$\pi((1+\theta)X) - \pi(X) > 0 \quad \text{for } X > X_l.$$

Proof. Let $l \ge 0$ and $X > X_l$. Then $(1 + \theta)X \ge 5393$. By Lemma 5, we have

$$\begin{split} \delta &:= \pi ((1+\theta)X) - \pi(X) \geq \frac{(1+\theta)X}{\log(1+\theta)X - 1} - \frac{X}{\log X} \left(1 + \frac{1.2762}{\log X} \right) \\ &\geq \frac{X}{\log(1+\theta)X - 1} \left\{ 1 + \theta - \frac{\log(1+\theta)X - 1}{\log X} \left(1 + \frac{1.2762}{\log X} \right) \right\} \\ &\geq \frac{X}{\log(1+\theta)X - 1} \left\{ 1 + \theta - \left(1 - \frac{1 - \log(1+\theta)}{\log X} \right) \left(1 + \frac{1.2762}{\log X} \right) \right\} \\ &\geq \frac{X}{\log(1+\theta)X - 1} \{ F(X) + G(X) \} \end{split}$$

where

$$F(X) = \theta - \frac{\log(1+\theta) + 0.2762}{\log X}, \quad G(X) = \frac{1.2762(1-\log(1+\theta))}{\log^2 X}.$$

We see that G(X) > 0 and is decreasing since $0 < \theta < e - 1$. Further we observe that $\{X_i\}$ is a non-increasing sequence. We notice that $\delta > 0$ if F(X) + G(X) > 0. But F(X) + G(X) > F(X) > 0 for $X > X_0$ by the definition of X_0 . Thus $\delta > 0$ for $X > X_0$.

Let now $X \leq X_0$. Then $F(X) + G(X) \geq F(X) + G(X_0)$ and $F(X) + G(X_0) > 0$ if $X > X_1$ by the definition of X_1 . Hence $\delta > 0$ for $X > X_1$. Now we proceed inductively as above to see that $\delta > 0$ for $X > X_l$ with $l \geq 2$.

LEMMA 7. Let n > k and $k \le 16$. Then (7) $P(\Delta(n,k)) \le 2k$

implies that $(n, k) \in \{(8, 2), (8, 3)\}$ or $(n, k) \in [k + 1, k]$ for $k \in \{2, 3, 5, 6, 8, 9, 11, 14, 15\}$ or $(n, k) \in [k + 1, k, 3]$ for $k \in \{4, 7, 10, 13\}$ or $(n, k) \in [k + 1, k, 5]$ for $k \in \{12, 16\}$.

Proof. We apply Lemma 1 to derive that (7) is possible only if n = 3, 8 when k = 2 and n = 5, 6, 7 when k = 4. For the latter assertion, we apply Lemma 1 after securing $P((n+i)(n+j)) \leq 3$ with $0 \leq i < j \leq 3$ by deleting the terms divisible by 5 and 7 in n, n + 1, n + 2 and n + 3. For k = 3 and $5 \leq k \leq 8$, the assertion follows from Lemma 2.

Thus we may assume that $k \ge 9$. Assume that (7) holds. Then in the product $\Delta(n, k)$, there are at most 1 + [(k-1)/p] terms divisible by the prime p. After removing all the terms divisible by $p \ge 7$, we are left with at least four terms only divisible by 2, 3 and 5. Further out of these terms, for each prime 2, 3 and 5, we remove a term in which the prime divides to a maximal power. Then we are left with a term n + i such that $n \le n + i \le 8 \cdot 9 \cdot 5 = 360$.

Let $n \geq 2k$. We now apply Lemma 4 with $\mathfrak{N} = 361, k_0 = 9$ and (6) to get $P(\Delta(n,k)) > 2k$ for $k \geq 9$ except possibly when $p_i < n < n + k - 1 < p_{i+1}$, $p_i = 113, 139, 181, 199, 211, 241, 283, 293, 317, 337$. For these values of n, we check that $P(\Delta(n,k)) > 2k$ is valid for $9 \leq k \leq 16$. Thus it suffices to consider k < n < 2k. We calculate $P(\Delta(n,k))$ for (n,k) with $9 \leq k \leq 16$ and k < n < 2k. We find that (7) holds only if (n,k) is as given in the statement of Lemma 7.

3. Proof of Theorem 1(a). Let $n > \max(k + 13, \frac{279}{262}k)$. In view of Lemma 7, we may take $k \ge 17$ since $n \le k + 5$ for the exceptions (n, k) given in Lemma 7. It suffices to prove (2) for k such that 2k - 1 is prime. Let $k_1 < k_2$ be such that $2k_1 - 1$ and $2k_2 - 1$ are consecutive primes. Suppose (2) holds at k_1 . Then for $k_1 < k < k_2$, we have

$$P(n(n+1)\cdots(n+k-1)) \ge P(n\cdots(n+k_1-1)) > 2k_1$$

implying $P(\Delta(n,k)) \ge 2k_2 - 1 > 2k$. Therefore we may suppose that $k \ge 19$ since 2k - 1 with k = 17, 18 are composites. We assume from now onward in the proof of Theorem 1(a) that 2k - 1 is prime. We put x = n + k - 1. Then $\Delta(n,k) = x(x-1)\cdots(x-k+1)$. Let $f_1 < \cdots < f_{\mu}$ be all the integers in [0, k) such that

(8)
$$P((x-f_1)\cdots(x-f_{\mu})) \le k.$$

We argue as in the proof of [4, Lemma 4] to get

(9)
$$k! > x^{\mu - \pi(k)} \left(1 - \frac{k}{x}\right)^{\mu}$$

We may suppose $\omega(\Delta(n,k)) \leq \pi(2k)$, otherwise (2) follows. Then

(10)
$$\mu \ge k - \pi(2k) + \pi(k)$$

which we use as in [4, Lemma 4] to derive from (9) that

(11)
$$x < k^{3/2}$$
 for $k \ge 87$; $x < k^{7/4}$ for $k \ge 40$; $x < k^2$ for $k \ge 19$.

If $x \ge 7k$ and k > 57, then as in [4, Lemma 7] we derive from (10) that $x \ge k^{3/2}$. Thus (11) implies that x < 7k for $k \ge 87$. Putting back n = x - k + 1, we may assume that n < 6k + 1 for $k \ge 87$, $n < k^{7/4} - k + 1$ for $40 \le k < 87$ and $n < k^2 - k + 1$ for $19 \le k < 40$.

Let k < 87. Suppose $n \ge 2k$. Then $2k \le n < k^{7/4} - k + 1$ for $40 \le k < 87$ and $2k \le n < k^2 - k + 1$ for $19 \le k < 40$. Thus Lemma 4 with $\mathfrak{N} = 87^{7/4} - 87 + 1, k_0 = 35$ and (6) implies that $P(\Delta(n, k)) > 2k$ for $k \ge 35$. We note here that $2k \le n < \mathfrak{N}$ for $35 \le k < 40$. Let k < 35. Taking $\mathfrak{N} = 34^2 - 34 + 1, k_0 = 21$ for $21 \le k \le 34$ and $\mathfrak{N} = 19^2 - 19 + 1, k_0 = 19$ for k = 19, we see from Lemma 4 and (6) that $P(\Delta(n, k)) > 2k$ for $k \ge 19$. Here the case k = 20 is excluded since 2k - 1 is composite. Therefore we may assume that n < 2k. Further we observe that $\pi(n + k - 1) - \pi(2k) \ge \pi(2k + 13) - \pi(2k)$ since n > k + 13. Next we check that $\pi(2k + 13) - \pi(2k) > 0$. This implies that [2k, n + k - 1] contains a prime.

Thus we may assume that $k \ge 87$. Then we write

$$n = \alpha k + 1 \quad \text{with} \quad \begin{cases} 279/262 - 1/k < \alpha \le 6 & \text{if } k \ge 201, \\ 1 + 12/k < \alpha \le 6 & \text{if } k < 201. \end{cases}$$

Further we consider $\pi(n+k-1) - \pi(\max(n-1,2k))$, which is

$$= \pi((\alpha+1)k) - \pi(\alpha k) \quad \text{for } \alpha \ge 2,$$

$$\ge \pi\left(\left[\frac{541}{262}k\right]\right) - \pi(2k) \quad \text{for } \alpha < 2 \text{ and } k \ge 201,$$

$$\ge \pi(2k+13) - \pi(2k) \quad \text{for } \alpha < 2 \text{ and } k < 201.$$

By using exact values of the π function we check that

$$\pi(2k+13) - \pi(2k) > 0 \quad \text{for } k < 201,$$

$$\pi\left(\left[\frac{541}{262}k\right]\right) - \pi(2k) > 0 \quad \text{for } 201 \le k \le 2616$$

Thus we may suppose that k > 2616 if $\alpha < 2$. Also

$$\left[\frac{541}{262}\,k\right] \ge \frac{540}{262}\,k \quad \text{ for } k > 2616.$$

Now we apply Lemma 6 with $X = \alpha k, \theta = 1/\alpha, l = 0$ if $\alpha \ge 2$ and $X = 2k, \theta = 4/131, l = 1$ if $\alpha < 2$ to get

$$\pi(n+k-1) - \pi(\max(n-1,2k)) > 0$$

for $X > X_0 = 5393/(1+1/\alpha)$ if $\alpha \ge 2$ and $X > X_1 = 5393/(1+4/131)$ if $\alpha < 2$. Further when $\alpha < 2$, we observe that $X = 2k > X_1$ since k > 2616. Thus the assertion follows for n < 2k.

It remains to consider the case $\alpha \geq 2$ and $X \leq 5393(1+1/\alpha)^{-1}$. Then $2k \leq n < n+k-1 = X(1+1/\alpha) \leq 5393$. Now we apply Lemma 4 with $\mathfrak{N} = 5393, k_0 = 35$ and (6) to conclude that $P(\Delta(n,k)) > 2k$.

4. Proof of Theorem 1(b). In view of Lemma 7 and Theorem 1(a), we may assume that $k \ge 17$ and $k < n \le \frac{279}{262}k$. Let $X = \frac{279}{262}k$, $\theta = \frac{245}{279}$, l = 0.

Then for $k < n \leq X$, we see from Lemma 6 that

$$\pi(2k) - \pi(n-1) \ge \pi((1+\theta)X) - \pi(X) > 0$$

for $X > X_0 = 5393(1+\theta)^{-1}$ which is satisfied for k > 2696 since $(1+\theta)X = 2k$. Thus we may suppose that $k \leq 2696$. Now we check with exact values of the π function that $\pi(2k) - \pi(\frac{279}{262}k) > 0$. Therefore

$$P(\Delta(n,k)) \ge P(n(n+1)\cdots 2k) \ge p_{\pi(2k)}.$$

Further we apply Lemma 6 with X = 1.97k, $\theta = 3/197$ and l = 25. We calculate that $X_l \leq 284000$. We conclude by Lemma 6 that

$$\pi(2k) - \pi(1.97k) = \pi((1+\theta)X) - \pi(X) > 0$$

for k > 145000. Let $k \le 145000$. Then we check that $\pi(2k) - \pi(1.97k) > 0$ is valid for $k \ge 680$ by using exact values of the π function. Thus

(12)
$$p_{\pi(2k)} > 1.97k$$
 for $k \ge 680$.

Therefore we may suppose that k < 680. Now we observe that for n > k+13,

$$\pi(n+k-1) - \pi(1.97k) \ge \pi(2k+13) - \pi(1.97k) > 0;$$

the latter inequality can be checked by using exact values of the π function. Hence the assertion follows since n < 1.97k.

5. Proof of Theorem 2. By Theorem 1(b), we may assume that $n \leq k+13$. Also we may suppose that k < 680 by (12). For $k \leq 16$, we calculate $P(\Delta(n,k))$ for all the pairs (n,k) given in the statement of Lemma 7. We find that either $P(\Delta(n,k)) > 1.95k$ or (n,k) is an exception stated in Theorem 1(a). Thus we may suppose that $k \geq 17$. Now we check that $\pi(n+k-1) - \pi(1.95k) > 0$ except when $(n,k) \in [k+1,k,h]$ for $k \in A_h$ with $1 \leq h \leq 11$, and the assertion follows.

6. Proof of Corollary 1. We calculate $P(\Delta(n,k))$ for all (n,k) with $k \leq 270$ and $k+1 \leq n \leq k+11$. This contains the set of exceptions given in Theorem 2. We find that $P(\Delta(n,k)) > 1.8k$ unless $(n,k) \in B$. Hence the assertion (5) follows from Theorem 2.

References

- [1] P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Ph.D. thesis, Univ. de Limoges, 1998.
- M. Faulkner, On a theorem of Sylvester and Schur, J. London Math. Soc. 9 (1934), 282–288.
- [3] D. Hanson, On a theorem of Sylvester and Schur, Canad. Math. Bull. 16 (1973), 195–199.
- [4] S. Laishram and T. N. Shorey, Number of prime divisors in a product of consecutive integers, Acta Arith. 113 (2004), 327–341.

- [5]
- L. Moser, Insolvability of $\binom{2n}{n} = \binom{2a}{a}\binom{2b}{b}$, Canad. Math. Bull. (2) 6 (1963), 167–169. N. Saradha and T. N. Shorey, Almost squares and factorisations in consecutive inte-[6]gers, Compositio Math. 138 (2003), 113-124.
- [7]J. J. Sylvester, On arithmetical series, Messenger of Mathematics 21 (1892), 1-19, 87-120, and Mathematical Papers, Vol. 4, 1912, 687-731.

School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Mumbai 400005, India E-mail: shanta@math.tifr.res.in shorey@math.tifr.res.in

> Received on 14.2.2005 and in revised form on 4.7.2005

(4944)