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1. INTRODUCTION

1.1. Definition. Let N be the set of non-negative integers, and let
q > 1 be an integer. To every element n of N, one can associate a unique
representation

n =
∞
∑

k=0

ak(n)qk, 0 ≤ ak(n) ≤ q − 1.

Following Gelfond [2], a complex-valued arithmetic function f such that
f(0 · qk) = 1 for all k ≥ 0 and

f(n) =
∏

k≥0

f(ak(n)qk)

is called a q-multiplicative function.

1.2. Introductory remarks. Since the first investigations of Delange
[1], the study of q-additive functions, and q-multiplicative functions of mod-
ulus 1 has been developed by many authors. Apparently, the case of q-
multiplicative functions not of modulus 1 does not seem to have been so
popular, and concerning this topic, we can cite, as recent references, an
article of Spilker [6] and another one of Lee [4], both relating to the almost-
periodicity of q-multiplicative functions. In this article, we shall give some
results concerning a class of q-multiplicative functions satisfying a growth
condition.

2. RESULTS

We shall prove the following results:

Theorem 1. Let f be a non-negative q-multiplicative function. Then

(i)&(ii)⇔(iii)&(iv), where
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(i) 0 < lim sup
x→∞

1

x

∑

n≤x

f(n) < ∞,

(ii) if I(·) is the characteristic function of a subset of N then

lim
x→∞

1

x

∑

0≤n<x

I(n) = 0 ⇒ lim
x→∞

1

x

∑

0≤n<x

I(n)f(n) = 0,

(iii)
∑

r∈N

∑

0≤a≤q−1

(1 − f(aqr))2 < ∞,

(iv) lim sup
k→∞

∑

0≤r≤k

∑

0≤a≤q−1

(f(aqr) − 1) < ∞.

We also have

Theorem 2. Let f be a non-negative q-multiplicative function satisfying

conditions (i) and (ii) of Theorem 1. Then, for all r ≥ 0, f(·)r satisfies the

same conditions.

Now, for y in N, we define a function Fy−(·) by

Fy−(n) =
(

∏

0≤k≤y−1

f(ak(n)qk)
)

(

∏

0≤j≤y−1

1

q

∑

0≤a≤q−1

f(aqj)

)−1

.

We have the following result:

Proposition 3. Let f be a non-negative q-multiplicative function sat-

isfying conditions (i) and (ii) of Theorem 1. Then, given any ε > 0, there

exists a Y (ε) in N such that if y ≥ Y (ε), then

lim sup
x→∞

1

x

∑

0≤n≤x

∣

∣

∣

∣

Fy−(n) −
f(n)

∏

0≤r≤log x/log q

1
q

∑

0≤a≤q−1
f(aqr)

∣

∣

∣

∣

≤ ε,

which implies that

lim
x→∞

(

1

x

∑

0≤n≤x−1

f(n)

)(

∏

0≤r≤log x/log q

1

q

∑

0≤a≤q−1

f(aqr)

)−1

= 1.

Remark 1. Condition (ii) can be replaced, for instance, by: for any
ε > 0, there exists η > 0 such that, if I(·) is the characteristic function of a
subset of N then

lim sup
x→∞

1

x

∑

0≤n<x

I(n) ≤ η ⇒ lim sup
x→∞

1

x

∑

0≤n<x

I(n)f(n) ≤ ε.

The next result completes the first one in the general case.
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Theorem 4. Let f be a complex-valued q-multiplicative function. Define

a q-multiplicative function f∗ of modulus 1 or 0 by

f∗(n) =

{

f(n)|f(n)|−1 if f(n) 6= 0,

0 if f(n) = 0.

Suppose that

(i) 0 < lim sup
x→∞

1

x

∑

n≤x

|f(n)| < ∞,

(ii) if I(·) is the characteristic function of a subset of N then

lim
x→∞

1

x

∑

0≤n<x

I(n) = 0 ⇒ lim
x→∞

1

x

∑

0≤n<x

I(n)f(n) = 0.

Then

(S) the non-negative q-multiplicative function |f(·)| satisfies (ii).

Under conditions (i), (ii) and

(iii) 0 < lim sup
x→∞

∣

∣

∣

∣

1

x

∑

qr≤n≤x

f(n)

∣

∣

∣

∣

< ∞ for some r ≥ 0,

we have not only (S) but also

(S ′)
∑

k≥0

∑

0≤a≤q−1

(1 − Re f∗(aqk)) < ∞.

Moreover , (S) ⇔ (i)&(ii), and (S)&(S ′) ⇔ (i)&(ii)&(iii).

3. PROOFS

3.1. Proof of Theorem 1. The steps of the proof are the following:

1) we remark that there is a natural associated structure of a compact
space Zq equipped with a probability measure µ;

2) we study the structure of the open sets of this space, and prove that
they are disjoint unions of “elementary” components;

3) we build a (pre-)measure ν on these open sets;
4) we remark that it defines a Borel measure, still denoted by ν;
5) this Borel measure is absolutely continuous with respect to µ;
6) we give an explicit formula for dν/dµ and get Proposition 3;
7) from classical results of probability theory, we deduce Theorems 1

and 2.

Step 1: Compact space associated to a q-multiplicative function. Let
q > 1 be an integer, and f a q-multiplicative function. We denote by Zq the
compact space (Z/qZ)N equipped with the measure µ =

⊗

N µq, where µq
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is the uniform measure on the discrete space Z/qZ. An element a of Zq can
be written as a = (a0, a1, . . .), 0 ≤ ak ≤ q − 1, k ≥ 0, and an integer is an
element of Zq which has only a finite number of digits different from zero.
For a = (a0, a1, . . .) ∈ Zq and k ≥ 0 we set

xk−(a) = {aj}0≤j≤k−1, xk+(a) = {aj}j≥k.

These are two sequences of random variables on Zq. We have the identity

∏

0≤j≤k−1

1

q

∑

0≤a≤q−1

f(aqj) =
\

Zq

f(xk−) dµ.

Step 2: Open sets in Zq. We denote by (a, k(a)) the arithmetical pro-

gression {a + qk(a)n}n∈N, where a, k(a) ∈ N satisfy k(a) ≥ log a/log q, and
by Ia,k(a) its characteristic function. Note that Ia,k(a) is the restriction to N

of the characteristic function, still denoted Ia,k(a), of the elementary open
subset O(a,k(a)) of Zq defined by

O(a,k(a)) = (xk(a)−(a), xk(a)+(Zq)),

and that this function is continuous, which implies that

lim
x→∞

1

x

∑

0≤n<x

Ia,k(a)(n) = µ(O(a,k(a))).

We have the following lemma:

Lemma 5. Let O be an open set in Zq, and IO its characteristic function.

Then there exists a subset A(O) of N such that IO can be written as IO =
∑

a∈A(O) Ia,k(a), i.e. O can be written as the disjoint union
⋃

a∈A(O) O(a,k(a)).

Proof. If O is an open set, then for a given a in O, there exists an
elementary open set O(xk(a)−(a),k(a)) such that O(xk(a)−(a),k(a)) ⊆ O. So, O =
⋃

a∈O O(xk(a)−(a),k(a)). Now, if O(xk(a)−(a),k(a)) ∩ O(xk(b)−(b),k(b)) 6= ∅, then one

of these two sets is contained in the other. As a consequence, O can be
written as a disjoint union

⋃

c∈A(O) O(c,k(c)), and so IO =
∑

c∈A(O) Ic,k(c).

Step 3: Definition of a measure ν on the open sets of Zq. Given a
non-negative q-multiplicative function f such that

0 < S = lim sup
x→∞

1

x

∑

0≤n<x

f(n) < ∞,

we can define a measure ν on the open sets of Zq in the following way.
First, we remark that

(1) 0 < S′ = lim sup
k→∞

1

qk

∑

0≤n≤qk−1

f(n) < ∞.
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For let xi be a sequence such that

1

2
S ≤

1

xi

∑

0≤n<xi

f(n).

Then a fortiori,
1

2
S ≤

1

xi

∑

0≤n≤qlogq(xi)+1−1

f(n)

and so
(

qlogq(xi)+1

xi

)−1(1

2
S

)

≤
1

qk(xi)+1

∑

0≤n≤qk(xi)+1−1

f(n).

Since (qlogq(xi)+1/xi)
−1 ≥ 1/q, this shows that there is some S′ ≥ 1

2qS, hence

> 0, such that

0 < S′ ≤ lim sup
k→∞

1

qk

∑

0≤n≤qk−1

f(n) < ∞.

Now, for a given Ia,k(a), if k ≥ k(a), we have

1

qk

∑

0≤n≤qk−1

f(n)Ia,k(a)(n)

=
f(a)

∑

0≤n≤qk(a)−1 f(n)

(

1

qk

∑

0≤n≤qk−1

f(n)

)

= f(a)
(

∏

0≤k≤k(a)−1

∑

0≤b≤q−1

f(bqk)
)−1

(

1

qk

∑

0≤n≤qk−1

f(n)

)

,

and so we shall define ν(Ia,k(a)) by

ν(Ia,k(a)) =
1

S′
lim sup

k→∞

1

qk

∑

0≤n≤qk−1

f(n)Ia,k(a)(n),

i.e.

ν(Ia,k(a)) =
1

S′
f(a)

(

∏

0≤k≤k(a)−1

∑

0≤b≤q−1

f(bqk)
)−1

lim sup
k→∞

1

qk

∑

0≤n≤qk−1

f(n),

which gives

ν(Ia,k(a)) =
1

S′
f(a)

(

∏

0≤k≤k(a)−1

∑

0≤b≤q−1

f(bqk)
)−1

S′

= f(a)
(

∏

0≤k≤k(a)−1

∑

0≤b≤q−1

f(bqk)
)−1

.

Remark 2. ν is well defined due to the very special structure of the
open sets of Zq.
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Remark 3. By (1), there exists a sequence K of positive integers k such
that

lim
k∈K
k→∞

1

qk

∑

0≤n≤qk−1

f(n) = lim sup
r→∞

1

qr

∑

0≤n≤qr−1

f(n).

We fix such a sequence. The important point in the choice of K is not
the mere existence of the lim sup, but the fact that the sequence of averages
q−k

∑

0≤n≤qk−1 f(n), k ∈ K, has a limit point not equal to zero. This remark

will be useful for the proof of Theorem 4.

Step 4: ν is a Borel measure. We now consider the set A of complex-
valued continuous functions defined on Zq by

A =
{

h =
∑

la∈L

laIa,k(a); L finite, la ∈ C

}

.

This is an algebra of step functions, and we can assume that Ia,k(a)Ia′,k(a′)

= 0 if (a, k(a)) 6= (a′, k(a′)). By the Stone–Weierstrass theorem ([3, p. 101,
note 1.a]), this algebra is dense for the uniform topology in the set of
complex-valued continuous functions on Zq. We define ν(h) by ν(h) =
∑

la∈L laν(Ia,k(a)). Note that this definition agrees with the definition of

ν(Ia,k(a)) given above and does not depend on the way h is written, since

1

qk

∑

0≤n≤qk−1

f(n)h(n)

=
1

qk

∑

0≤n≤qk−1

f(n)
∑

la∈L

laIa,k(a)(n)

=
(

∑

la∈L

laf(a)
(

∏

0≤k≤k(a)−1

∑

0≤b≤q−1

f(bqk)
)−1) 1

qk

∑

0≤n≤qk−1

f(n),

and so

1

S′
lim
k∈K
k→∞

1

qk

∑

0≤n≤qk−1

f(n)h(n)

=
1

S′

(

∑

la∈L

laf(a)
(

∏

0≤k≤k(a)−1

∑

0≤b≤q−1

f(bqk)
)−1)

lim
k∈K
k→∞

1

qk

∑

0≤n≤qk−1

f(n)

=
∑

la∈L

laf(a)
(

∏

0≤k≤k(a)−1

∑

0≤b≤q−1

f(bqk)
)−1

= ν(h) =
∑

la∈L

laν(Ia,k(a)).
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Observe also that ν(1) = 1. Now, it is immediate that, given ε > 0, if
h, h′ ∈ A satisfy supt∈Zq

|h′(t)−h(t)| ≤ ε, then |ν(h′−h)| ≤ ε, since h′−h can

be written as
∑

la∈L laIa,k(a) with Ia,k(a)Ia′,k(a′) = 0 if (a, k(a)) 6= (a′, k(a′)),

and so |la| ≤ ε. Hence we get

|h′ − h| =
∑

la∈L

|la|Ia,k(a) ≤
∑

la∈L

εIa,k(a),

which gives

ν(|h′ − h|) ≤
∑

la∈L

|la|ν(Ia,k(a)) ≤ ε
∑

la∈L

ν(Ia,k(a)) ≤ εν(1) ≤ ε · 1 = ε.

As a consequence, ν defines a continuous linear form on the set of
complex-valued continuous functions defined on Zq. By the Riesz repre-
sentation theorem ([3, p. 129, (11.37)]), this shows that ν is a Borel measure
on Zq.

Step 5: Absolute continuity of ν with respect to µ. Let B be a Borel
subset of Zq. Then, given ε > 0, there exists an open set O and a compact
set K such that K ⊆ B ⊆ O and µ(O − K) ≤ ε. Since ν(1) = 1 and ν
is defined on the open sets of Zq, we know that ν(K) can be defined by
ν(K) = 1 − ν(Zq − K), and to prove that B is ν-measurable, using the
Lusin criterion ([5, p. 68, (vii)]), it will be sufficient to show that given
a sequence {Oj}j∈N∗ of open sets such that limj→∞ µ(Oj) = 0, we have
limj→∞ ν(Oj) = 0.

Assume the contrary, i.e. that there exists a sequence {Oj}j∈N∗ of open
sets such that limj→∞ µ(Oj) = 0 and ν(Oj) ≥ 2λ > 0 for some λ > 0. Due to
the structure of the open sets of Zq described above, any Oj can be written
as a disjoint union

⋃

a∈A(Oj)
O(a,k(a)). Since ν(Oj) =

∑

a∈A(Oj)
ν(O(a,k(a)))

and each term of this sum is non-negative, we can find an αj such that the
open set Oj,αj

=
⋃

a∈A(Oj), k(a)≤αj
O(a,k(a)) satisfies ν(Oj,αj

) ≥ λ. Note that

the characteristic function Ij of Oj,αj
is periodic with period qαj and that

limj→∞ µ(Oj,αj
) = 0 since from Oj,αj

⊆ Oj , we have µ(Oj,αj
) ≤ µ(Oj), and

limj→∞ µ(Oj) = 0.
From now on, to simplify notation, we write Oj for Oj,αj

.
Recalling (1), let Xj be a sequence of positive integers such that

S′ = lim
j→∞

1

qXj

∑

0≤n≤qXj−1

f(n),

and moreover, Xj − αj and Xj+1 − Xj tend to infinity as j → ∞. Observe

that this implies that qαj divides qXj . Then define a subset of N, with
characteristic function I, by I(n) = Ij−1(n) for qXj ≤ n < qXj+1 .
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We will prove that

(2) lim
x→∞

1

x

∑

0≤n<x

I(n) = 0.

Indeed, given x, there exists a unique i such that qXi ≤ x < qXi+1 . We have
∑

0≤n<x

I(n) =
∑

0≤n<qXi−1

I(n) +
∑

qXi−1≤n<qXi

I(n) +
∑

qXi≤n<x

I(n)

=
∑

0≤n<qXi−1

I(n) +
∑

qXi−1≤n<qXi

Ii−1(n) +
∑

qXi≤n<x

Ii(n).

Now,
∑

0≤n<qXi−1

I(n) ≤ qXi−1 ,

∑

qXi−1≤n<qXi

Ii−1(n) ≤
qXi − qXi−1

qαi−1

∑

0≤n≤qαi−1−1

Ii−1(n)

= (qXi − qXi−1)µ(Oi−1),

since Ii−1 is a periodic function with period qαi−1 . Moreover, using the qαi-
periodicity of Ii, we have

∑

qXi≤n<x

Ii(n) ≤
∑

qXi≤n<qαi([x/qαi ]+1)

Ii(n) =

([

x

qαi

]

+1−qXi−αi

)

∑

0≤n<qαi

Ii(n).

Hence
∑

qXi≤n<x

Ii(n) ≤

([

x

qαi

]

+ 1 −
qXi

qαi

)

(qαiµ(Oi))

and therefore
∑

qXi≤n<x

Ii(n) ≤ (x + qαi − qXi)µ(Oi) ≤ xµ(Oi).

So, for x such that qXi ≤ x < qXi+1 , we have
∑

0≤n<x

I(n) ≤ qXi−1 + (qXi − qXi−1)µ(Oi−1) + xµ(Oi),

which gives

1

x

∑

0≤n<x

I(n) ≤
qXi−1

x
+

qXi − qXi−1

x
µ(Oi−1) + µ(Oi)

≤
qXi−1

qXi
+ µ(Oi−1) + µ(Oi)

since qXi ≤ x. But Xi −Xi−1 → ∞ as i → ∞, and µ(Oj) = o(1) as j → ∞.
As a consequence, we get (2).
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We shall now prove that

(3) lim sup
x→∞

1

x

∑

0≤n<x

f(n)I(n) ≥ λS′ > 0.

We have
∑

0≤n<qXj+1

f(n)I(n) =
∑

0≤n<qXj

f(n)I(n) +
∑

qXj≤n<qXj+1

f(n)I(n)

=
∑

0≤n<qXj

f(n)(I(n) − Ij(n)) +
∑

0≤n<qXj+1

f(n)Ij(n)

≥
∑

0≤n<qXj+1

f(n)Ij(n) −
∑

0≤n<qXj

f(n).

Now, by condition (i) of Theorem 1, we have
∑

0≤n<qXj f(n) = O(qXj).

Moreover,
∑

0≤n<qXj+1

f(n)Ij(n) =
(

∑

0≤n<qαj

f(n)Ij(n)
)

∑

0≤n<qXj+1−αj

f(qαjn)

=
{(

∑

0≤n<qαj

f(n)Ij(n)
)(

∑

0≤n<qαj

f(n)
)−1}

×
{(

∑

0≤n<qαj

f(n)
)(

∑

0≤n<qXj+1−αj

f(qαjn)
)}

= ν(Oj)
∑

0≤n<qXj+1

f(n).

By choice of the Xj ,

lim sup
x→∞

1

x

∑

0≤n<x

f(n)I(n) ≥ lim inf ν(Oj)
1

qXj+1

∑

0≤n<qXj+1

f(n),

and since ν(Oj) ≥ λ, we get (3). This contradicts hypothesis (ii) of Theo-
rem 1, and so ν is absolutely continuous with respect to µ.

Step 6: Explicit derivative of the measure ν. Since ν is a probability
measure absolutely continuous with respect to µ, the Radon–Nikodym the-
orem ([3, p. 144, (12.17)]) shows that there exists a non-negative integrable
function, say h, such that if B is a Borel subset of Zq, then ν(B) =

T
B h dµ.

We have defined on Zq the two sequences of random variables xk−(a) =
{aj}0≤j≤k−1 and xk+(a) = {aj}j≥k for a = (a0, a1, . . .) ∈ Zq. Now, given
some a in Zq, we consider the sequence of open subsets Ok of Zq defined by
Ok = (xk−(a), xk+(Zq)). Each characteristic function IOk

is continuous and

since µ(Ok) = 1/qk, we have
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ν(Ok)

µ(Ok)
= f(xk−(a))

(

∏

0≤r≤k−1

1

q

∑

0≤b≤q−1

f(bqr)
)−1

(4)

=
1

µ(Ok)

\
Ok

h(t) dµ(t) =
1

µ(Ok)

\
Zq

h(t)IOk
(t) dµ(t)

=
\

xk+(Zq)

h(xk−(a), xk+(t)) dµ(xk+(t)).

By a direct application of a classical result of Jessen ([7, p. 108]), we find
that the quotient (4) converges in L1(Zq, µ) and µ-almost surely to h.

Remark 4. As a consequence, we obtain Proposition 3, since by the
Cauchy criterion, given any ε > 0, there exists a Y (ε) such that if z ≥ y
≥ Y (ε), then\

Zq

∣

∣

∣

∣

f(xy−(t))
∏

0≤r≤y−1
q−1

∑

0≤b≤q−1

f(bqr)
−

f(xz−(t))
∏

0≤r≤z−1
q−1

∑

0≤b≤q−1

f(bqr)

∣

∣

∣

∣

dµ(t) ≤ ε,

which can be written as

1

qz

∑

0≤n≤qz−1

∣

∣

∣

∣

f(xy−(n))
∏

0≤r≤y−1
q−1

∑

0≤b≤q−1

f(bqr)
−

f(n)
∏

0≤r≤z−1
q−1

∑

0≤b≤q−1

f(bqr)

∣

∣

∣

∣

≤ ε,

which implies immediately that

lim
x→∞

(

1

x

∑

0≤n≤x−1

f(n)

)(

∏

0≤r≤logq x−1

1

q

∑

0≤b≤q−1

f(bqr)

)−1

= 1.

Step 7 (The end !)

Step 7.1: Consequence of the continuity of ν

Lemma 6. If ν is continuous, then 1/2 ≤ f(aqk) ≤ 3/2 except for a

finite set of aqk, and

lim sup
k→∞

k
∑

r=0

∑

0≤a≤q−1

(1 − f(aqr))2 < ∞.

Proof. First of all, we remark that since f satisfies condition (ii) of The-
orem 1, and by (1), we have

card{(a, k); 0 ≤ a ≤ q − 1, k ≥ 0, f(aqk) = 0} < ∞.

For we have
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1

qk
card{n; 0 ≤ n ≤ qk − 1, f(n) 6= 0}

=
∏

0≤r≤k−1

1

q
card{(a, r); f(aqr) 6= 0, 0 ≤ a ≤ q − 1}

=
∏

0≤r≤k−1

(

1 −
1

q
card{(a, r); f(aqr) = 0, 0 ≤ a ≤ q − 1}

)

,

and this is o(1) if

lim sup
k→∞

∑

0≤r≤k−1

1

q
card{(a, r); f(aqr) = 0, 0 ≤ a ≤ q − 1} = ∞,

which implies that

lim sup
k→∞

1

qk

∑

0≤n≤qk−1

f(n) = 0,

a contradiction with (1).
As a consequence, there exists some k such that the restriction of f to

qkN is never zero. To simplify notation, we shall assume that f(aqk) is never
zero ab initio.

Now, since the limit of the sequence

f(xk−(a))

(

∏

0≤r≤k−1

1

q

∑

0≤b≤q−1

f(bqr)

)−1

(see (4)) exists µ-almost surely, applying the three series theorem ([7, p. 88,
Corollaire 1]) to the logarithm of this sequence, we deduce that for any
c > 0,

∑

{(a,k); |log(f(aqk)/q−1
∑

0≤b≤q−1 f(bqk)|>c}

q−1 < ∞,

and since f(0 · qr) = 1 for all r, this shows that
∣

∣

∣

∣

log

(

1

q

∑

0≤b≤q−1

f(bqk)

)∣

∣

∣

∣

≤ c

except for a finite number of k, and similarly, from
∑

{(a,k); |log(f(aqk)/q−1
∑

0≤b≤q−1 f(bqk)|>c}

q−1 < ∞,

we conclude that |log f(aqk)| ≤ 2c except for a finite number of a and k.
Since c can be chosen as small as we want, there exists some κ such that for
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k ≥ κ, we have

(5)
1

2
≤

1

q

∑

0≤b≤q−1

f(bqk) ≤
3

2
and

1

2
≤ f(aqk) ≤

3

2

for all a. As above, to simplify notation, we shall assume that this holds ab
initio.

Now, it is a famous result of Kakutani ([7, p. 109]) that ν is absolutely
continuous if and only if the product

(6)
∏

0≤k≤y

(q−1
∑

0≤b≤q−1

√

f(bqk))2

q−1
∑

0≤b≤q−1 f(bqk)

tends to a positive limit as y → ∞. Since it is a product of positive numbers
less than or equal to 1, this is equivalent to

∑

k≥0

1

q−1
∑

0≤b≤q−1 f(bqk)

(

1

q

∑

0≤b≤q−1

f(bqk)−

(

1

q

∑

0≤b≤q−1

√

f(bqk)

)2)

< ∞,

and by (5) it means that

∑

k≥0

(

1

q

∑

0≤b≤q−1

f(bqk) −

(

1

q

∑

0≤b≤q−1

√

f(bqk)

)2)

< ∞.

By a classical formula of Lagrange, this is exactly

(7)
1

2q2

∞
∑

k=0

∑

0≤a,b≤q−1

(
√

f(aqk) −
√

f(bqk))2 < ∞.

Now, since f(0 · qk) = 1 for all k, this is equivalent to
∞

∑

k=0

∑

0≤a≤q−1

(1 −
√

f(aqk))2 < ∞,

and by (5), this can be written as
∞

∑

k=0

∑

0≤a≤q−1

(1 − f(aqk))2 < ∞.

Step 7.2: Proof of Theorem 2. We remark that the statement is evident
for r = 0. Now, if 0 < r ≤ 1, it will be sufficient to prove it for r = 1/2.
For if

(8) 0 < lim sup
x→∞

1

x

∑

0≤n<x

f(n)1/2 < ∞,

then using the Hölder inequality, for 1/2 < r < 1 we get

0 < lim sup
x→∞

1

x

∑

0≤n<x

f(n)r < ∞,
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and also if I is the characteristic function of a subset of N then

lim
x→∞

1

x

∑

0≤n<x

I(n) = 0 ⇒ lim
x→∞

1

x

∑

0≤n<x

I(n)f(n)r = 0.

So, the conclusion will be satisfied in the range ]1/2, 1[ ∪ {1}, and by it-
eration, in ]1/22, 1/2[ ∪ {1/2} ∪ ]1/2, 1]. The case r = 1/2 will be solved
shortly using the Hölder inequality, and so, the conclusion will be satisfied

in
⋃

k>0]1/2k, 1], i.e. in ]0, 1].

Now, (8) is an immediate consequence of the absolute continuity of ν
with respect to µ, for the product (6) converges to a positive number, say L,
as y → ∞, and so, for y large enough,

2L−1/2
∏

0≤k≤y

(

1

q

∑

0≤b≤q−1

f(bqk)

)1/2

≥
∏

0≤k≤y

1

q

∑

0≤b≤q−1

√

f(bqk)

≥
1

2
L−1/2

∏

0≤k≤y

(

1

q

∑

0≤b≤q−1

f(bqk)

)1/2

,

which yields

0 < lim sup
k→∞

1

qk

∑

0≤n≤qk−1

f(n)1/2 < ∞.

To obtain the result for r > 1, it will be sufficient to prove it for the
exponent 2. For if it holds for 2, it will hold for all positive powers of 2, and
hence for all r ≥ 1 by the Hölder inequality. Now, by (5) and (7), we have

∞
∑

k=0

∑

0≤a,b≤q−1

(f(aqk) − f(bqk))2

≤
∞

∑

k=0

∑

0≤a,b≤q−1

(
√

f(aqk) −
√

f(bqk))2(
√

f(aqk) +
√

f(bqk))2

≤

(

2 ·
3

2

)2 ∞
∑

k=0

∑

0≤a,b≤q−1

(
√

f(aqk) −
√

f(bqk))2 < ∞.

Since, by the Lagrange formula,

1

2q2

∞
∑

k=0

∑

0≤a,b≤q−1

(f(aqk) − f(bqk))2

=
∑

k≥0

((

1

q

∑

0≤b≤q−1

f(bqk)2
)

−

(

1

q

∑

0≤b≤q−1

f(bqk)

)2)

and since 1/2 ≤ f(bqk) ≤ 3/2, this gives
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∑

k≥0

1

q−1
∑

0≤b≤q−1 f(bqk)2
·
1

q

∑

0≤b≤q−1

f(bqk)2 −
1

q

(

∑

0≤b≤q−1

f(bqk)
)2

< ∞,

and so the product (6) converges to a positive limit, say L′, as y → ∞. We
can now conclude in the same way as above in the case r = 1/2.

Step 7.3: End of proof of Theorem 1. First, we remark that

lim sup
k→∞

∏

0≤r≤k

1

q

∑

0≤a≤q−1

f(aqr) =
∏

0≤r≤k

(

1 −
1

q

∑

0≤a≤q−1

(1 − f(aqr))

)

.

Now, since

0 < S′ = lim sup
k→∞

∏

0≤r≤k

1

q

∑

0≤a≤q−1

f(aqr) < ∞

and logarithm is a continuous increasing function on ]0,∞[, we get

log lim sup
k→∞

∏

0≤r≤k

(

1 −
1

q

∑

0≤a≤q−1

(1 − f(aqr))

)

= lim sup
k→∞

log
∏

0≤r≤k

(

1 −
1

q

∑

0≤a≤q−1

(1 − f(aqr))

)

= log S′,

and since −1/2 ≤ 1 − f(aqr) ≤ 1/2, we obtain

lim sup
k→∞

∑

0≤r≤k

−1

q

∑

0≤a≤q−1

(1−f(aqr))+O

(

1

q

(

∑

0≤a≤q−1

(1−f(aqr))
)2

)

= log S′.

Now, we remark that

1

q

(

∑

0≤a≤q−1

(1 − f(aqr))
)2

≤
1

q

∑

0≤a≤q−1

(1 − f(aqr))2,

and since
∑

r∈N

∑

0≤a≤q−1

(1 − f(aqr))2 < ∞,

we conclude that

lim sup
k→∞

∑

0≤r≤k

−1

q

∑

0≤a≤q−1

(1 − f(aqr)) < ∞,

i.e.

lim sup
k→∞

∑

0≤r≤k

∑

0≤a≤q−1

(f(aqr) − 1) < ∞.

Hence we have shown that conditions (iii) and (iv) of Theorem 1 hold.
Conversely, assuming that (iii) and (iv) hold, we deduce immediately

that −1/2 ≤ 1 − f(aqr) ≤ 1/2 if r is large enough. It is harmless to assume
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that it is so for all r. Now, we reverse the argument:

lim sup
k→∞

∑

0≤r≤k

∑

(f(aqr) − 1) < ∞

implies that

lim sup
k→∞

∑

0≤r≤k

−1

q

∑

0≤a≤q−1

(1 − f(aqr)) < ∞,

and since
∑

r∈N

∑

0≤a≤q−1(1 − f(aqr))2 < ∞, we find that

lim sup
k→∞

log
∏

0≤r≤k

(

1 −
1

q

∑

0≤a≤q−1

(1 − f(aqr))

)

< ∞.

Now, since logarithm is a continuous increasing function on ]0,∞[, we have

lim sup
k→∞

log
∏

0≤r≤k

(

1 −
1

q

∑

0≤a≤q−1

(1 − f(aqr))

)

= log lim sup
k→∞

∏

0≤r≤k

(

1 −
1

q

∑

0≤a≤q−1

(1 − f(aqr))

)

and so

0 < lim sup
k→∞

∏

0≤r≤k

1

q

∑

0≤a≤q−1

f(aqr) < ∞.

The same computation as above shows that the product (6) tends to a
positive limit as y → ∞, and so, by the Kakutani Theorem, the sequence of
functions

(9) f(xk−(·))

(

∏

0≤r≤k−1

1

q

∑

0≤b≤q−1

f(bqr)

)−1

converges in L1(Zq, µ). As a consequence, by the Cauchy criterion, given
any ε > 0, there exists a Y (ε) such that if z ≥ y ≥ Y (ε), we have\
Zq

∣

∣

∣

∣

f(xy−(t))
∏

0≤r≤y−1
q−1

∑

0≤b≤q−1

f(bqr)
−

f(xz−(t))
∏

0≤r≤z−1
q−1

∑

0≤b≤q−1

f(bqr)

∣

∣

∣

∣

dµ(t) ≤ εq−1,

which can be written as

1

qz

∑

0≤n≤qz−1

∣

∣

∣

∣

f(xy−(n))
∏

0≤r≤y−1
q−1

∑

0≤b≤q−1

f(bqr)
−

f(n)
∏

0≤r≤z−1
q−1

∑

0≤b≤q−1

f(bqr)

∣

∣

∣

∣

≤ εq−1.

Denoting by z the expression [log x/log q] + 1, if I(·) is the characteristic
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function of a subset of N and limx→∞ x−1
∑

0≤n<x I(n) = 0, we have

1

x

∑

0≤n≤x

∣

∣

∣

∣

f(xy−(n))
∏

0≤r≤y−1
q−1

∑

0≤b≤q−1

f(bqr)
−

f(n)
∏

0≤r≤z
q−1

∑

0≤b≤q−1

f(bqr)

∣

∣

∣

∣

I(n)

≤
qz

x
·

1

qz

∑

0≤n≤qz−1

∣

∣

∣

∣

f(xy−(n))
∏

0≤r≤y−1
q−1

∑

0≤b≤q−1

f(bqr)
−

f(n)
∏

0≤r≤z
q−1

∑

0≤b≤q−1

f(bqr)

∣

∣

∣

∣

I(n)

≤ q ·
1

qz

∑

0≤n≤qz−1

∣

∣

∣

∣

f(xy−(n))
∏

0≤r≤y
q−1

∑

0≤b≤q−1

f(bqr)
−

f(n)
∏

0≤r≤z
q−1

∑

0≤b≤q−1

f(bqr)

∣

∣

∣

∣

≤ q · q−1ε ≤ ε.

Now, we remark that

f(xy−(n))
∏

0≤r≤y
q−1

∑

0≤b≤q−1

f(bqr)
≤ C(y) < ∞,

and so
∣

∣

∣

∣

1

x

∑

0≤n≤x

f(xy−(n))
∏

0≤r≤y
q−1

∑

0≤b≤q−1

f(bqr)
I(n)

−
1

x

∑

0≤n≤x

f(n)
∏

0≤r≤z
q−1

∑

0≤b≤q−1

f(bqr)
I(n)

∣

∣

∣

∣

=

∣

∣

∣

∣

1
∏

0≤r≤z
q−1

∑

0≤b≤q−1

f(bqr)

1

x

∑

0≤n≤x

f(n)I(n) + o(1)

∣

∣

∣

∣

as x → ∞

≤ ε,

since x−1C(y)
∑

0≤n≤x I(n) = o(1) as x → ∞. Hence

lim sup
x→∞

1
∏

0≤r≤z
q−1

∑

0≤b≤q−1

f(bqr)

∑

0≤n≤x

f(n)I(n) ≤ ε,

which gives

lim sup
x→∞

∑

0≤n≤x

f(n)I(n) ≤ ε lim sup
x→∞

∏

0≤r≤z

1

q

∑

0≤b≤q−1

f(bqr) ≤ εΛ.

Hence

lim sup
x→∞

∑

0≤n≤x

f(n)I(n) = 0.
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3.2. Proof of Theorem 4. Most of the arguments given above which
rely on classical probability theory apply in this general case of complex-
valued q-multiplicative functions, and so the details will be given only when
necessary.

Step 1: (S) holds. This is a consequence of the following result:

Proposition 7. Let f be an arithmetical function satisfying the condi-

tion

0 < S = lim sup
x→∞

1

x

∑

0≤n<x

|f(n)| < ∞.

Assume that for any sequence I(n) with values 0 or 1 we have

lim
x→∞

1

x

∑

0≤n<x

I(n) = 0 ⇒ lim
x→∞

∣

∣

∣

∣

1

x

∑

0≤n<x

I(n)f(n)

∣

∣

∣

∣

= 0.

Then also

lim
x→∞

1

x

∑

0≤n<x

I(n) = 0 ⇒ lim
x→∞

1

x

∑

0≤n<x

I(n)|f(n)| = 0.

Proof. Let M be a positive integer. We can assume that I(n) takes
the value 0 when f(n) = 0. If f(n) 6≡ 0, we denote by f∗ the arithmeti-
cal function f · |f |−1. Now, when f∗ is of modulus 1, for integers k in
[0, M −1], we define a sequence Ik,M (n) with values 0 or 1 by Ik,M (n) = 1 if
arg f∗(n) ∈ [2πk/M, 2π(k + 1)/M [, and 0 elsewhere. It is clear that I(n) =
∑

0≤k≤M−1 Ik,M (n). Now, we remark that

1

x

∑

0≤n<x

I(n)|f(n)| =
1

x

∑

0≤n<x

(

∑

0≤k≤M−1

Ik,M (n)
)

|f(n)|

=
1

x

∑

0≤k≤M−1

(

∑

0≤n<x

Ik,M (n)|f(n)|
)

=
1

x

∑

0≤k≤M−1

∣

∣

∣
e2iπk/M

∑

0≤n<x

Ik,M (n)|f(n)|
∣

∣

∣
.

Observe that

e2iπk/M
∑

0≤n<x

Ik,M (n)|f(n)| =
∑

0≤n<x

Ik,M (n)|f(n)|e2iπk/M

=
∑

0≤n<x

Ik,M (n)|f(n)|(e2iπk/M − f∗(n)) +
∑

0≤n<x

Ik,M (n)|f(n)|f∗(n)

=
∑

0≤n<x

Ik,M (n)|f(n)|(e2iπk/M − f∗(n)) +
∑

0≤n<x

Ik,M (n)f(n).
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Hence
1

x

∑

0≤n<x

I(n)|f(n)|

=
1

x

∣

∣

∣

∣

∑

0≤k≤M−1

(

∑

0≤n<x

Ik,M (n)|f(n)|(e2iπk/M − f∗(n))

+
1

x

∑

0≤n<x

Ik,M (n)f(n)

)∣

∣

∣

∣

≤
1

x

∑ ∑

0≤k≤M−1

(

∑

0≤n<x

Ik,M (n)|f(n)| |e2iπk/M − f∗(n)|
)

+
1

x

∣

∣

∣

∑

0≤n<x

I(n)f(n)
∣

∣

∣
,

and this can be written as
1

x

∑

0≤n<x

I(n)|f(n)|

≤
1

x

∑

0≤k≤M−1

(

∑

0≤n<x

Ik,M (n)|f(n)| |e2iπk/M − f∗(n)|
)

+ o(1), x → ∞.

Now, we remark that

Ik,M (n)|f(n)| |e2iπk/M − f∗(n)| = Ik,M (n)|f(n)|O(1/M)

with the O uniform in M , since arg f∗(n) ∈ [2πk/M, 2π(k + 1)/M [. This
gives

1

x

∑

0≤k≤M−1

(

∑

0≤n<x

Ik,M (n)|f(n)| |e2iπk/M − f∗(n)|
)

= O

(

1

M

)

·
1

x

∑

0≤k≤M−1

(

∑

0≤n<x

Ik,M (n)|f(n)|
)

= O

(

1

M

)

·
1

x

∑

0≤n<x

(

∑

0≤k≤M−1

Ik,M (n)
)

|f(n)|

= O

(

1

M

)

·
1

x

∑

0≤n<x

I(n)|f(n)|

≤ O

(

1

M

)

·
1

x

∑

0≤n<x

|f(n)| = O

(

1

M

)

· O(1) = O

(

1

M

)

,

since by hypothesis, x−1
∑

0≤n<x |f(n)| = O(1). Hence

1

x

∑

0≤n<x

I(n)|f(n)| = O

(

1

M

)

+ o(1), x → ∞,



A characterization of q-multiplicative functions 331

and since M can be as large as we want, we get

lim
x→∞

1

x

∑

0≤n<x

I(n)|f(n)| = 0.

Step 2. This is only a simple remark:

Proposition 8. If for some r ≥ 0,

0 < lim sup
x→∞

∣

∣

∣

∣

1

x

∑

qr−1≤n≤x

f(n)

∣

∣

∣

∣

< ∞,

then

0 < lim sup
k→∞

∣

∣

∣

∣

1

qk

∑

qr−1≤n≤qk−1

f(n)

∣

∣

∣

∣

< ∞.

Proof. First, we may assume that r = 0, since the shifted function n 7→
f(qrn) is q-multiplicative. Now, the result is due to the structure of the
formula for the summatory function of a q-multiplicative function. For if x
is a positive integer, written as x =

∑

0≤r≤k arq
r with ak 6= 0, we have

Sx(f) =
∑

0≤n≤x

f(n) =
(

∑

0≤a≤ak−1

f(aqk)
)(

∏

0≤j≤k−1

∑

0≤a≤q−1

f(aqj)
)

+ f(akq
k)

∑

0≤n≤x−akqk

f(n).

This gives

|Sx(f)| ≤
(

∑

0≤a≤ak−1

|f(aqk)|
)∣

∣

∣

∏

0≤j≤k−1

∑

0≤a≤q−1

f(aqj)
∣

∣

∣

+ |f(akq
k)|

∣

∣

∣

∑

0≤n≤x−akqk

f(n)
∣

∣

∣
.

Since |f(·)| satisfies the hypothesis of Theorem 1, the conclusion of Step 7.1
gives

∞
∑

k=0

∑

0≤a≤q−1

(1 − |f(aqk)|)2 < ∞,

and so

|Sx(f)| ≤ ak(1+o(1))
∣

∣

∣

∏

0≤j≤k−1

∑

0≤a≤q−1

f(aqj)
∣

∣

∣
+(1 + o(1))

∣

∣

∣

∑

0≤n≤x−akqk

f(n)
∣

∣

∣
.

Iterating, we find that if

lim sup
k→∞

∣

∣

∣

∣

1

qk

∑

0≤n≤qk−1

f(n)

∣

∣

∣

∣

= 0,
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then

lim sup
x→∞

∣

∣

∣

∣

1

x
Sx(f)

∣

∣

∣

∣

= 0,

which contradicts the hypothesis.

Step 3. A simple modification of the argument presented in Step 4 of
the proof of Theorem 1 leads to the fact that if as above, we define on Zq a
sequence of random variables xk−(a) = (ajq

j)0≤j≤k for a = (a0, a1, . . .) ∈ Zq,
then the sequence of functions (9) converges in L1(Zq, µ) and µ-almost surely

to some limit g.

Step 4: (S ′) holds. First, we recall that in Step 7.1 above, we have
proved that it is harmless to assume that f(aqk) is never zero. A consequence
is that the limit of the sequence of functions (9), which converges in L1(Zq, µ)
and µ-a.s., is positive µ-a.s. For if we denote this limit by Φ(·), we have µ-a.s.,

Φ(t) =
∏

r≥0

|f(ak(t))|

(

1

q

∑

0≤b≤q−1

|f(bqr)|

)−1

,

and so, µ-a.s.,\
Φ(t) dµ(xk−(t)) =

∏

k≤r

|f(ak(t))|

(

1

q

∑

0≤b≤q−1

|f(bqr)|

)−1

.

A classical result of Jessen ([7, p. 108]) shows that
T
Φ(t) dµ(xk−(t)) con-

verges in L1(Zq, µ) and µ-a.s. to
T
Φ(t) dµ(t), i.e. to 1. Hence we see that

∏

k≤r |f(ak(t))|(q
−1

∑

0≤b≤q−1 |f(bqr)|)−1 tends to 1 µ-a.s. as k → ∞, which

implies immediately that Φ(t) is positive µ-a.s.
Now, since the sequence of functions (9) converges in L1(Zq, µ), we infer

that\
Zq

∣

∣

∣

∣

f(xk−(a))

(

∏

0≤r≤k−1

1

q

∑

0≤b≤q−1

f(bqr)

)−1∣
∣

∣

∣

dµ

=

(

∏

0≤r≤k

1

q

∑

0≤b≤q−1

|f(bqr)|

)
∣

∣

∣

∣

∏

0≤r≤k

1

q

∑

0≤b≤q−1

f(bqr)

∣

∣

∣

∣

−1

has a positive finite limit. This implies that

f(xk−(a))
∏

0≤r≤k−1

q−1
∑

0≤b≤q−1

f(bqr)
·

∏

0≤r≤k−1

q−1
∑

0≤b≤q−1

|f(bqr)|

|f(xk−(a))|

×

|
∏

0≤r≤k−1

q−1
∑

0≤b≤q−1

f(bqr)|

∏

0≤r≤k−1

q−1
∑

0≤b≤q−1

|f(bqr)|
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converges µ-a.s., since each of the three factors of this product does. Since
f(xk−(a)) = f∗(xk−(a))|f(xk−(a))|, this product is equal to f∗(xk−(a))̟k,
where ̟k is defined by

∏

0≤r≤k−1

1

q

∑

0≤b≤q−1

f(bqr) = ̟k

∣

∣

∣

∣

∏

0≤r≤k−1

1

q

∑

0≤b≤q−1

f(bqr)

∣

∣

∣

∣

.

So, |̟k| = 1, and f∗(xk−(a))̟k converges µ-a.s. to limit F ∗(a); consequen-

tly, the symmetrized sequence f∗s
k (a, b) defined by f∗(xk−(a))f∗(xk−(b))

converges µ2-a.s. to F ∗(a)F ∗(b). Since all these functions have modulus 1,

there exists an open set O such that
T
O F ∗(a)F ∗(b) dµ2(a, b) 6= 0, and due

to the structure of the open sets of Zq, the same holds for an elementary set
(r, k(r)) × (s, k(s)). This implies that

lim
k→∞

\
(r,k(r))×(s,k(s))

f∗s
k dµ2 6= 0,

and computing the value of this integral shows that there exists some t in
N such that

(10) lim
k→∞

∣

∣

∣

∣

∏

t≤r≤k

1

q

∑

0≤b≤q−1

f∗(bqr)

∣

∣

∣

∣

2

exists and is not zero.

Using the Lagrange identity (for complex numbers), we see immediately that
this is equivalent to

lim
k→∞

∑

k≥t

∑

0≤a≤q−1

(1 − Re f∗(aqk)) < ∞,

and as a consequence,

lim
k→∞

∑

k≥0

∑

0≤a≤q−1

(1 − Re f∗(aqk)) < ∞.

This is assertion (S ′).

Step 5. It remains to prove that

1) (S) ⇔ (i)&(ii),
2) (S)&(S ′) ⇔ (i)&(ii)&(iii).

The proof of 1) is immediate, since if we have (S), we know, by Theo-
rem 1, that for any r positive,

0 < lim sup
x→∞

1

x

∑

n≤x

|f(n)|r < ∞,
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and as a consequence, if I(·) is the characteristic function of a subset of N

and limx→∞
1
x

∑

0≤n<x I(n) = 0, then

lim sup
x→∞

∣

∣

∣

∣

1

x

∑

0≤n<x

I(n)f(n)

∣

∣

∣

∣

≤ lim sup
x→∞

1

x

∑

0≤n<x

I(n)|f(n)| = 0

by applying the Hölder inequality for some exponent r > 1.
It remains to prove that if conditions (S) and (S ′) are fulfilled, then (iii)

holds true.
Since

∑

k≥0

∑

0≤a≤q−1

(1 − Re f∗(aqk)) < ∞,

using the Lagrange identity (for complex numbers), we deduce that there
exists some t in N such that (10) holds. This implies that the sequence of
functions F ∗

y−(x) defined on Zq by

F ∗
y−(x) =

(

∏

t≤k≤y

f∗(ak(x)qk)
)

(

∏

t≤j≤y

1

q

∑

0≤a≤q−1

f∗(aqj)

)−1

is a bounded martingale convergent in L∞(Zq, dµ). Similarly, the sequence
of functions Fy−(x) defined on Zq by

Fy−(x) =
(

∏

t≤k≤y

|f(ak(x)qk)|
)

(

∏

t≤j≤y

1

q

∑

0≤a≤q−1

|f(aqj)|

)−1

is a martingale convergent in L1(Zq, dµ).
Hence the sequence F ∗

y−(x)Fy−(x) converges in L1(Zq, dµ). Now, since

lim
y→∞

\
|F ∗

y−(x)Fy−(x)| dµ(x)

= lim
y→∞

\
Fy−(x)

(

∏

t≤j≤y

∣

∣

∣

∣

1

q

∑

0≤a≤q−1

f∗(aqj)

∣

∣

∣

∣

)−1

dµ(x)

= lim
y→∞

(

∏

t≤j≤y

∣

∣

∣

∣

1

q

∑

0≤a≤q−1

f∗(aqj)

∣

∣

∣

∣

)−1

6= 0,

there exists an open set O such that

lim
y→∞

\
O

F ∗
y−(x)Fy−(x) dµ(x) 6= 0,

and so there exists an elementary set O(a,k(a)) such that

lim
y→∞

\
O(a,k(a))

F ∗
y−(x)Fy−(x) dµ(x) 6= 0.
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This implies that the limit of the product
(

∏

k(a)≤k≤y

1

q

∑

0≤a≤q−1

f(ak(x)qk)

)

·

(

∏

k(a)≤j≤y

1

q

∑

0≤a≤q−1

f∗(aqj)

)−1

×

(

∏

k(a)≤j≤y

1

q

∑

0≤a≤q−1

|f(aqj)|

)−1

exists and is not zero, and a fortiori, the limit of
∣

∣

∣

∣

∏

k(a)≤k≤y

1

q

∑

0≤a≤q−1

f(ak(x)qk)

∣

∣

∣

∣

·

∣

∣

∣

∣

∏

k(a)≤j≤y

1

q

∑

0≤a≤q−1

f∗(aqj)

∣

∣

∣

∣

×

(

∏

k(a)≤j≤y

1

q

∑

0≤a≤q−1

|f(aqj)|

)−1

exists and is not zero. Now, since

lim
y→∞

∣

∣

∣

∣

∏

k(a)≤j≤y

1

q

∑

0≤a≤q−1

f∗(aqj)

∣

∣

∣

∣

exists and is not zero, and

0 < lim sup
y→∞

∏

k(a)≤j≤y

1

q

∑

0≤a≤q−1

|f(aqj)| < ∞,

we get

0 < lim sup
y→∞

∣

∣

∣

∣

∏

k(a)≤k≤y

1

q

∑

0≤a≤q−1

f(ak(x)qk)

∣

∣

∣

∣

< ∞,

and so there exists some r ≥ 0 such that

0 < lim sup
x→∞

∣

∣

∣

∣

1

x

∑

qr≤n≤x

f(n)

∣

∣

∣

∣

< ∞.
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Institut de mathématiques (UMR 75867 du CNRS)
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