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In this paper, we investigate infinite integral matrices A = (aij)i,j∈Z with
all 2 × 2 minors equal to 1. We show first that the fraction

ai−1,j + ai+1,j

aij

is either 0
0 or integral for all i, j ∈ Z. For a fixed i, this fraction is constant

on each interval j1 ≤ j ≤ j2 where it is defined. Hence if aij 6= 0 for all
i, j ∈ Z, the value ai,∞ of the above fraction satisfies

ai−1,j + ai+1,j = ai,∞aij ,

and similarly, there exist a∞,j ∈ Z with

ai,j−1 + ai,j+1 = a∞,jaij .

If, without the restriction aij 6= 0, these equations hold for some (necessarily
unique) ai,∞, a∞,j ∈ Z, the binary operation [i, j] := aij on Z will be called
a unimodular bracket . Thus if we set [∞,∞] := ∞, a unimodular bracket
can be regarded as a binary operation on Z ∪ {∞}. We will show that a
unimodular bracket is uniquely determined by the values [a,∞], [∞, b] and
some element M ∈ SL2(Z) (Proposition 3).

The skew-symmetric case

[a, b] + [b, a] = 0

will be studied in some detail. Such unimodular brackets are characterized
by the equation

[a, b][c, d] − [a, c][b, d] + [a, d][b, c] = 0

and a signature ε ∈ {−1, 1} which satisfies [a + 1, a] = ε for all a ∈ Z

(Proposition 5). Furthermore, they allow a characterization in terms of their
signature ε and the sequence an := [n,∞] = [∞, n], n ∈ Z (Theorem 1).
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A third characterization will be given in terms of the associated Farey se-
quence (Proposition 6). This implies, in particular, that the classical Farey
series [10] give rise to skew-symmetric unimodular brackets.

Farey series, or more generally, periodic Farey sequences, correspond
to those skew-symmetric unimodular brackets [ , ] which are periodic with
respect to both arguments. This implies that the sequence an := [n,∞] is
also periodic, while the converse is not true. A periodicity criterion for [ , ]
in terms of the sequence (an) is given in Theorem 2. The special case an > 0
(∀n ∈ Z) is related to Coxeter’s frieze patterns [6]. Conway and Coxeter
have shown [5] that frieze patterns are equivalent to triangulated polygons,
one of those ubiquitous combinatorial structures like rooted trees [11], non-
associative monomials, lattice paths ([17, 3.5]), etc., encountered in various
mathematical structures such as hypersurface cross ratios [13], sign types of
root systems An [14, 15, 16], tilting modules of type An [9], simply connected
algebras of class An [3], and so on.

In §4, we show that bimodules DBE over skew-fields D, E provide an
algebraic setting for skew-symmetric unimodular brackets. If the left di-
mensions an of the iterated (right resp. left) duals B∗n of B are finite, the
sequence (an)n∈Z defines a skew-symmetric unimodular bracket [ , ] of signa-
ture 1 with an = [n,∞]. There is a hereditary artinian ring H(B) naturally
associated to the bimodule B such that all the values of [ , ] are significant
for the representation theory of H(B)-mod. The Farey sequence (ωn)n∈Z of
[ , ] consists of the dimension vectors of the preprojective and preinjective
indecomposable H(B)-modules, viewed as objects of the derived category
Db(H(B)-mod). The other values [a, b] of the bracket belong to the hori-
zontal shifts of (ωn), which are the Farey sequences of the tilted hereditary
rings H(B∗n), n ∈ Z.

1. Unimodular operations on Z. Consider a binary operation

(1) Z × Z
[ , ]
−→ Z

on the ring Z of integers satisfying

(2) [a, b][a + 1, b + 1] − [a, b + 1][a + 1, b] = 1

for all a, b ∈ Z. It is convenient to replace the map (1) by an infinite matrix
A = (aij) over Z, with rows and columns indexed by Z, such that aij = [i, j]
for all i, j ∈ Z. Then (2) just says that the 2× 2 minors of A are equal to 1.
Let us call such an operation (1) unimodular . Our first observation concerns
the opposite operation [a, b]op := [b, a].

Proposition 1. The opposite of a unimodular operation is again uni-

modular.

Proof. This follows immediately from (2).
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Proposition 2. Every unimodular operation (1) satisfies

(3) [a, b + 1]([a − 1, b] + [a + 1, b]) = [a, b]([a− 1, b + 1] + [a + 1, b + 1])

for all a, b ∈ Z. Furthermore, [a, b] always divides [a − 1, b] + [a + 1, b].

Proof. Subtracting (2) from the similar equation

[a − 1, b][a, b + 1] − [a − 1, b + 1][a, b] = 1,

we get (3). Moreover, (2) implies that [a, b+1] and [a, b] are relatively prime.
Therefore, (3) shows that [a, b] divides [a − 1, b] + [a + 1, b].

In particular, Proposition 2 yields the implication

[a, b] = 0 ⇒ [a − 1, b] + [a + 1, b] = 0.

In other words, Proposition 2 states that at least one of the fractions

(4)
[a − 1, b] + [a + 1, b]

[a, b]
=

[a − 1, b + 1] + [a + 1, b + 1]

[a, b + 1]

exists and belongs to Z, and that (4) holds with the exception that one of

the fractions might be of the form 0
0 . Thus if [a, b] 6= 0 for all b ∈ Z, there is

a unique integer [a,∞] which satisfies

(5) [a − 1, b] + [a + 1, b] = [a,∞][a, b]

for all b ∈ Z. Similarly, if b is kept fixed and [a, b] 6= 0 for all a ∈ Z,
Proposition 1 can be applied to give an integer [∞, b] with

(6) [a, b − 1] + [a, b + 1] = [∞, b][a, b]

for all a ∈ Z.
In general, we can only infer that (5) holds for at most one [a,∞] ∈ Z, and

similarly for (6). So the occurrence of zeros in the range of the operation (1)
might cause some irregularity, which will be excluded from now on. (For a
further discussion of irregularities caused by zeros, see Example 3 in §2.)

Definition 1. A unimodular operation (1) will be called a unimodular

bracket if it admits an extension

(7) Z̃ × Z̃
[ , ]
−→ Z̃

to Z̃ := Z ∪ {∞} with [a, b] = ∞ ⇔ a = b = ∞ such that (5) and (6) hold.

By the above remarks, such an extension (7) is necessarily unique. On
the other hand, the sequences (un)n∈Z and (vn)n∈Z given by

(8) un = [n,∞], vn = [∞, n]

determine (7) up to an initial element in SL2(Z).
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Proposition 3. Let (un)n∈Z and (vn)n∈Z be sequences in Z, and M =(
p
r

q
s

)
∈ SL2(Z). Then there exists a unique unimodular bracket (7) which

satisfies (8) and

(9) p = [0, 0], q = [0, 1], r = [1, 0], s = [1, 1].

Proof. Starting with the initial matrix M ∈ SL2(Z), equation (6) with
a ∈ {0, 1} can be regarded as a recursive definition of [0, b] and [1, b] for all
b ∈ Z. As (6) implies

∣∣∣∣
[0, b] [0, b + 1]

[1, b] [1, b + 1]

∣∣∣∣ =
∣∣∣∣
[0, b] vb[0, b] − [0, b − 1]

[1, b] vb[1, b] − [1, b − 1]

∣∣∣∣ = −

∣∣∣∣
[0, b] [0, b − 1]

[1, b] [1, b − 1]

∣∣∣∣

=

∣∣∣∣
[0, b − 1] [0, b]

[1, b − 1] [1, b]

∣∣∣∣,

induction shows that (2) holds for a = 0. In this way, the horizontal shifts
of M are defined and belong to SL2(Z). Similarly, (5) yields all vertical
shifts of M . In the next step, we use (6) to define the horizontal shifts of
these vertical shifts. For adjacent vertical shifts of M , the horizontal shifts
thereof may overlap, but (6) shows that the resulting operation (1) is well
defined. By construction, (2) and (6) are satisfied. To show that (5) also
holds, it suffices to verify that the recursive rules (5) and (6) commute in
the following sense:

[0, 0] [0, 1] [0, 2]

M N

[1, 0] [1, 1] [1, 2]

P Q

[2, 0] [2, 1] [2, 2]

Starting with M , we get N =
(

[0, 1] [0, 2]

[1, 1] [1, 2]

)
∈ SL2(Z) by means of (6), and

then Q by means of (5). Similarly, we obtain P from M via (5), and we have
to show that P yields Q by (6). By induction, this will complete our proof.
Now (5) and (6) give

N =

(
[0, 1] v1[0, 1] − [0, 0]

[1, 1] v1[1, 1] − [1, 0]

)
,

Q =

(
[1, 1] v1[1, 1] − [1, 0]

u1[1, 1] − [0, 1] u1v1[1, 1] − u1[1, 0] − v1[0, 1] + [0, 0]

)
.

The symmetric shape of Q shows that our claim is true.
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Example 1. The Fibonacci sequence (ϕn)n∈N, given by ϕn−1 + ϕn =
ϕn+1 and ϕ1 = ϕ2 = 1, extends naturally to a sequence (ϕn)n∈Z. By re-
peated application of the recursive definition, combined with a basic rule
for determinants, we get the following equations:

∣∣∣∣
ϕn+2 ϕn

ϕn+4 ϕn+2

∣∣∣∣ =
∣∣∣∣
ϕn+1 ϕn

ϕn+3 ϕn+2

∣∣∣∣ =
∣∣∣∣
ϕn−1 ϕn

ϕn+1 ϕn+2

∣∣∣∣ =
∣∣∣∣
ϕn−1 ϕn−2

ϕn+1 ϕn

∣∣∣∣

=

∣∣∣∣
ϕn ϕn−2

ϕn+2 ϕn

∣∣∣∣.

For n ∈ {0, 1}, these determinants are equal to ±1. Hence, by induction, we
get

(10)

∣∣∣∣
ϕn ϕn−2

ϕn+2 ϕn

∣∣∣∣ = (−1)n

for all n ∈ Z. Moreover, the definition of ϕn implies that

(11) ϕn−2 + ϕn+2 = 3ϕn

for all n ∈ Z. Therefore,

(12) [a, b] := ϕ2(a+b)−1

defines a unimodular bracket with [a,∞] = [∞, a] = 3 for all a ∈ Z. Note
that the bracket is commutative, and [a, b] > 0 for all a, b ∈ Z.

2. The skew-symmetric case. In this section, we consider operations
(1) which are skew-symmetric, i.e. which satisfy

(13) [a, b] + [b, a] = 0

for all a, b ∈ Z.

Proposition 4. For every skew-symmetric unimodular bracket (7),
there exists a unit ε ∈ Z

× such that the equations

(14) [a + 1, a] = ε,

(15) [a,∞] = [∞, a] = ε · [a + 1, a − 1]

hold for all a ∈ Z.

Proof. By (13), we have [a, a] = 0. Hence, (2) with b = a − 1 gives

(16) [a, a − 1][a + 1, a] = 1.

This implies that there is a unit ε ∈ Z
× which satisfies (14) for a ∈ Z. With

b = a − 1, (5) gives [a + 1, a − 1] = [a,∞] · ε. Similarly, with a = b + 1,
(6) gives [b + 1, b − 1] = [∞, b] · ε. This proves (15).

In what follows, we call ε the signature. Note that the opposite bracket
[ , ]op is of signature −ε.
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Theorem 1. There is a one-to-one correspondence between sequences

of integers (an)n∈Z together with a sign ε ∈ Z
×, and skew-symmetric uni-

modular brackets (7) of signature ε, given by

(17) an = [n,∞] = [∞, n] = ε · [n + 1, n − 1].

Proof. By Proposition 4, every skew-symmetric unimodular bracket with
signature ε defines a sequence (an) such that (17) holds. Conversely, Propo-
sition 3 implies that for every sequence (an)n∈Z in Z together with a sign
ε ∈ Z

×, there is a unique unimodular bracket (7) with an = [n,∞] = [∞, n]
and (

[0, 0] [0, 1]

[1, 0] [1, 1]

)
=

(
0 −ε

ε 0

)
.

It remains to show that this bracket is skew-symmetric. Using (5) and (6),
we get [2, 0] = a1[1, 0] − [0, 0] = a1ε, [2, 1] = a1[1, 1] − [0, 1] = ε, and
[1, 2] = a1[1, 1] − [1, 0] = −ε, [2, 2] = a1[2, 1] − [2, 0] = a1ε − a1ε = 0. Hence

(
[1, 1] [1, 2]

[2, 1] [2, 2]

)
=

(
0 −ε

ε 0

)
.

By induction, we obtain
(

[n, n] [n, n + 1]

[n + 1, n] [n + 1, n + 1]

)
=

(
0 −ε

ε 0

)

for all n ∈ Z. Hence (13) holds for |a − b| ≤ 1. Assume now that for a
particular pair a, b ∈ Z, (13) has been shown. Then (5) and (6) give

([a− 1, b] + [b, a− 1]) + ([a + 1, b] + [b, a + 1]) = [a,∞][a, b] + [∞, a][b, a] = 0.

By induction, this proves (13) for all a, b ∈ Z.

Our next result shows that apart from the signature condition (14), skew-
symmetric unimodular brackets can be characterized by a single equation
(cf. [6, §5]).

Proposition 5. A binary operation (1) satisfying (14) for some fixed

ε ∈ Z
× is a skew-symmetric unimodular bracket if and only if

(18) [a, b][c, d] − [a, c][b, d] + [a, d][b, c] = 0

for all a, b, c, d ∈ Z.

Proof. Assume first that (18) holds. For c = d, this gives [a, b][c, c] = 0,
whence [c, c] = 0 for all c ∈ Z. Next, we set c = a. This gives [a, b][a, d] +
[a, d][b, a] = 0, which shows that [ , ] is skew-symmetric. Therefore, the sub-
stitution c = a + 1, d = b + 1 yields

[a, b][a + 1, b + 1] − [a, a + 1][b, b + 1] + [a, b + 1][b, a + 1] = 0.



Unimodular brackets 385

Hence

[a, b][a + 1, b + 1] − [a, b + 1][a + 1, b] = [a, a + 1][b, b + 1] = ε2 = 1.

This proves that [ , ] is unimodular. Inserting b = a− 1, d = a + 1 into (18),
we get

[a, a − 1][c, a + 1] − [a, c][a− 1, a + 1] + [a, a + 1][a − 1, c] = 0,

which gives [a − 1, c] + [a + 1, c] = ε[a + 1, a − 1][a, c]. Thus (5) holds with
[a,∞] = ε[a+1, a−1]. By the skew-symmetric property, this also implies (6)
with [∞, b] = ε[b + 1, b − 1].

Conversely, let [ , ] be a skew-symmetric unimodular bracket. Let us keep
b, c, d fixed and denote equation (18) by E(a). Assume that E(a) holds
for a particular a ∈ Z. Multiply E(a) by [a,∞]. Then (5) implies that
E(a − 1) ⇔ E(a + 1). Thus by induction, it suffices to prove E(b) and
E(b + 1). As E(b) is trivial, we just have to show that (18) holds in the
special case a = b + 1. By a similar reduction, we may also assume that
c = d + 1. So (18) turns into [b + 1, d + 1][b, d]− [b + 1, d][b, d + 1] = 1, that
is, the unimodularity condition (2).

Definition 2. A sequence (ωn)n∈Z of vectors ωn =
(
xn

yn

)
will be called

a Farey sequence if

(19)

∣∣∣∣
xn+1 xn

yn+1 yn

∣∣∣∣ = 1

for all n ∈ Z.

Traditionally, for any positive integer m, the finite sequence of reduced
fractions p

q ∈ [0, 1] with 0 < q ≤ m is called the Farey series Fm of order m.

For example, F7 looks as follows:

0

1
,
1

7
,
1

6
,
1

5
,
1

4
,
2

7
,
1

3
,
2

5
,
3

7
,
1

2
,
4

7
,
3

5
,
2

3
,
5

7
,
3

4
,
4

5
,
5

6
,
6

7
,
1

1
.

The remarkable thing is that any pair of successive fractions xn

yn
, xn+1

yn+1
sat-

isfies (19), while three successive fractions a
b , c

d , e
f are related by c

d = a+e
b+f

([10, Theorems 28 and 29]). Note that every Farey series can be extended
to a periodic Farey sequence in the sense of Definition 2. For example,
F3 =

{
0
1 , 1

3 , 1
2 , 2

3 , 1
1

}
gives rise to the Farey sequence

. . . ,
(
0
1

)
,
(
1
3

)
,
(
1
2

)
,
(
2
3

)
,
(
1
1

)
,
(
1
0

)
,
(

0
−1

)
,
(
−1
−3

)
,
(
−1
−2

)
,
(
−2
−3

)
,
(
−1
−1

)
,
(
−1
0

)
, . . .

of period 12. If we regard these vectors as fractions, the period becomes 6,
and we get F3 with an additional infinite fraction 1

0 .
By definition, every unimodular operation gives rise to Farey sequences

in horizontal and in vertical direction. For a unimodular bracket (7), we
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define its Farey sequence (ωn) by

(20) ωn :=

(
[n, 0]

[n,−1]

)
.

Proposition 6. A skew-symmetric unimodular bracket (7) is uniquely

determined by its signature ε and its Farey sequence (ωn). Explicitly , the

bracket is given by the formula

(21) [a, b] = ε · det(ωa, ωb).

Proof. This follows by inserting c = 0, d = −1 into (18).

Remark. Note that the Farey sequence (20) always contains the vectors

ω0 =
(0
ε

)
and ω−1 =

(
−ε
0

)
. Equation (21) shows that if the Farey sequence

(ωn) is periodic with period p, the bracket [ , ] is doubly periodic with pe-
riod (p, p).

Example 2. A skew-symmetric analogue to Example 1 is given by

(22) [a, b] := ϕ2(a−b).

By (10) and (11), this is a (skew-symmetric) unimodular bracket of signa-
ture 1 with [a,∞] = [∞, a] = 3 for all a ∈ Z.

Example 3. The Farey series F3 gives rise to a doubly periodic skew-
symmetric unimodular bracket, consisting of the horizontal and vertical
translations of the following matrix:

0 −1 −1 −2 −1 −1 0 1 1 2 1 1

1 0 −1 −3 −2 −3 −1 0 1 3 2 3

1 1 0 −1 −1 −2 −1 −1 0 1 1 2

2 3 1 0 −1 −3 −2 −3 −1 0 1 3

1 2 1 1 0 −1 −1 −2 −1 −1 0 1

1 3 2 3 1 0 −1 −3 −2 −3 −1 0

0 1 1 2 1 1 0 −1 −1 −2 −1 −1

−1 0 1 3 2 3 1 0 −1 −3 −2 −3

−1 −1 0 1 1 2 1 1 0 −1 −1 −2

−2 −3 −1 0 1 3 2 3 1 0 −1 −3

−1 −2 −1 −1 0 1 1 2 1 1 0 −1

−1 −3 −2 −3 −1 0 1 3 2 3 1 0

The positive part below the main diagonal of zeros is a frieze pattern in the
sense of Coxeter [6]. (To get his pictures, we have to apply a rotation of
angle π/4 in the positive direction.) The whole range of the bracket consists
of an alternating sequence of positive and negative frieze patterns, separated
by diagonals of zeros. The conditions (5) and (6) ensure that all these frieze
patterns are of the same type. If we drop conditions (5) and (6), we get
a multitude of unimodular operations just by patching together arbitrary
positive and negative frieze patterns, with the only restriction that adjacent
ones differ in sign.
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3. Periodicity. A finite sequence of integers, modulo the equivalence
relation generated by

(a1, . . . , an) ∼ (a2, . . . , an, a1),

(a1, . . . , an) ∼ (a1, . . . , an, a1, . . . , an, . . . , a1, . . . , an),

will be called a cycle. (The right-hand side of the second equivalence has
n ·m terms, with m ≥ 2 arbitrary.) Thus a cycle is tantamount to a periodic
sequence, up to shift. A cycle (a1, . . . , an) with different terms ai can also
be regarded as a cyclic permutation.

Assume that a skew-symmetric unimodular bracket (7) is given. By the
remark that follows Proposition 6, such a bracket is doubly periodic with
period (p, p) if and only if the associated Farey sequence (ωn) is periodic
with period p. By Theorem 1, the periodicity of (ωn) merely depends on the
sequence an := [n,∞], and an obvious necessary condition for the periodicity
of (ωn) is that (an) is periodic. However, as Example 2 shows, this condition
is not sufficient.

In the present section, we characterize the sequences (an)n∈Z for which
(ωn) is periodic. For simplicity, we call the bracket itself periodic if its asso-
ciated Farey sequence is so. If (an) has period p, the cycle (a1, . . . , ap) will
be called the characteristic cycle of the bracket. For instance, the bracket
of Example 3 has the characteristic cycle (1, 3), which could also be writ-
ten, e.g., as (3, 1, 3, 1, 3, 1). Note that the characteristic cycle determines the
bracket up to signature, and up to translation. Thus it makes sense to call
a cycle (a1, . . . , ap) of finite type if the skew-symmetric unimodular brackets
admitting (a1, . . . , ap) as a characteristic cycle are periodic. The set of cycles
of finite type will be denoted by F.

Theorem 2.

(a) Every cycle (c1, . . . , cp) of finite type contains a term ci with |ci| ≤ 1.
(b) (a, 0, b, c1, . . . , cp) ∈ F ⇔ (a + b, c1, . . . , cp) ∈ F.

(c) (a, 1, b, c1, . . . , cp) ∈ F ⇔ (a − 1, b − 1, c1, . . . , cp) ∈ F.

(d) (a,−1, b, c1, . . . , cp) ∈ F ⇔ (a + 1, b + 1, c1, . . . , cp) ∈ F.

(e) The cycles (a, b) ∈ F are (0, 0), (1, n), (−1,−n) with n ∈ {1, 2, 3}.

Proof. Assume that a skew-symmetric unimodular bracket (7) with as-
sociated Farey sequence (ωn) and an := [n,∞] admits a characteristic cycle
(a1, . . . , ap). Consider the matrices

(23) Un :=

(
0 −1

1 n

)
=

(
0 −1

1 0

)(
1 n

0 1

)
∈ SL2(Z)

with n ∈ Z. By (5) and (20), we have

(24) (ωn−1, ωn)Uan = (ωn, ωn+1).
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Here (ωi, ωi+1) denotes the square matrix with columns ωi and ωi+1. Thus
(a1, . . . , ap) is of finite type if and only if

(25) (Ua1 · · ·Uap)
r = 1 for some r ≥ 1.

To prove (a), let (x, y) denote the second row of the matrix (ωn−1, ωn).
Then (24) implies that the second row of (ωn, ωn+1) is (y, any−x). If |an| > 1,
we have

|any − x| − |y| ≥ |any| − |x| − |y| ≥ 2|y| − |x| − |y| = |y| − |x|.

For n = 0, we have |x| = 0 < 1 = |y|. Thus if |an| > 1 for all n, we infer
that the second coordinate of ωn is unbounded, whence (a1, . . . , ap) cannot
be of finite type.

The equivalences (b), (c), (d) follow from the identities

(26) UaU0Ub = −Ua+b, UaU1Ub = Ua−1Ub−1, UaU−1Ub = −Ua+1Ub+1,

which are easily verified. To prove (e), suppose that (a, b) ∈ F. For a = 0,
we have

U0UbU0Ub = −U0U2b =

(
1 2b

0 1

)
,

a translation in SL2(Z). Hence (0, b) ∈ F ⇔ b = 0. For a = 1, we have

(1, b) ∈ F ⇔ (1, b, 1, b) ∈ F ⇔ (1, b − 1, b − 1) ∈ F ⇔ (b − 1, 1, b − 1) ∈ F

⇔ (b − 2, b − 2) ∈ F.

By (a), this is possible only if |b − 2| ≤ 1, i.e. b ∈ {1, 2, 3}. Similarly,

(−1, b) ∈ F ⇔ (b + 2, b + 2) ∈ F ⇒ b ∈ {−1,−2,−3}.

To complete the proof, we only have to note that the order of U1Ub or
U−1U−b with b ∈ {1, 2, 3} is 3, 4, or 6, respectively.

Remarks. 1. Theorem 2 provides a reduction algorithm which reduces
arbitrary cycles to cycles (a, b) with two terms. Moreover, the two-termed
cycles of finite type allow a further reduction to (0, 0):

(1, 3) = (1, 3, 1, 3, 1, 3)
(c)
−→ (1, 3, 1, 2, 2)

(c)
−→ (1, 2, 1, 2)

(c)
−→ (1, 1, 1)

(c)
−→ (0, 0).

This includes a reduction of (1, 2) = (1, 2, 1, 2) and (1, 1) = (1, 1, 1). In a
similar fashion, the cycles (−1, b) with b ∈ {−1,−2,−3} reduce to (0, 0).

2. An interesting special case arises when (an) consists of positive inte-
gers only. The periodic brackets with this property are equivalent to Cox-
eter’s frieze patterns [6] which are in one-to-one correspondence with tri-
angulated polygons [5]. According to Theorem 2, the reduction of such a
periodic bracket can be achieved by a single rule (c). This can be visual-
ized by dismantling triangulated polygons. For example, the cycle (1, 3) =
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(1, 3, 1, 3, 1, 3) corresponds to the triangulated hexagon

(27) 1

31

3

1 3

The number at each vertex counts the number of triangles touching that
vertex. If a vertex 1 is removed according to rule (c), the triangle at this
vertex has to be removed, which implies that the numbers at the two adja-
cent vertices are diminished by 1. So the above reduction of the cycle (1, 3)
looks as follows:

1

31

3

1 3

2
1

3

1
2

21

2 1
1

1

1

4. Bimodules over skew-fields. In what follows, we give a repre-
sentation-theoretic interpretation of skew-symmetric unimodular brackets
(cf. [7]). For basic concepts, we refer to [1, §4] and the literature cited there,
and to [8].

Let DBE be a bimodule over skew-fields D and E. The left and right

duals of B are defined respectively by

(28) B∗(−1) := HomD(B, D), B∗1 := HomE(B, E).

These are (E, D)-bimodules. Inductively, we define B∗0 := B and

(29) B∗(−n−1) := (B∗(−n))∗(−1), B∗(n+1) := (B∗n)∗1

for n ∈ N. A bimodule B is said to be of finite dualization [7] if

(30) (B∗m)∗n ∼= B∗(m+n)

is an isomorphism of bimodules for all m, n ∈ Z. An equivalent condition
says that the dimension sequence

(31) an :=

{
dimD B∗n for n ∈ Z even,

dimE B∗n for n ∈ Z odd,
is finite.

For a bimodule DBE of finite dualization, consider the hereditary ar-
tinian ring

(32) H(B) :=

(
E 0

B D

)
.

Any object of H(B)-mod, the category of finitely generated left H(B)-



390 W. Rump

modules, is given by a pair
(X

Y

)
consisting of a finite-dimensional left E-

vector space X and a finite-dimensional left D-vector space Y , together with
a D-linear map B ⊗E X → Y . The dimension vector

(
x
y

)
of
(
X
Y

)
, given by

(33) x := dimE X, y := dimD Y,

describes the corresponding element in the Grothendieck group K0(H(B)).
The dimension vectors of the indecomposable projective H(B)-modules

P0 :=
(

0
D

)
and P1 :=

(
E
B

)
are ω0 :=

(
0
1

)
and ω1 :=

(
1
a0

)
, respectively. Using

the Auslander–Reiten translate τ , we define, more generally,

(34) Pn :=

{
τ−n/2P0 for n ∈ N even,

τ−(n−1)/2P1 for n ∈ N odd.
Then

(35) HomH(B)(Pn, Pn+1) ∼= B∗n.

Hence, by (31), the preprojective component of H(B) looks as follows:

(36)

P1 P3 P5

· · ·

P0

(a
0
,a1

)
→

P2

(a
2
,a3

)
→

(a
1 ,a

2 )
→

P4

(a
4
,a5

)
→

(a
3 ,a

4 )→

In particular, the dimension vector ωn of Pn satisfies

(37) ωn−1 + ωn+1 = anωn.

The indecomposable injective H(B)-modules are I1 :=
(E

0

)
and I2 :=

(B∗(−1)

D

)
,

with structure maps B⊗E E → 0 and B⊗E B∗(−1) → D, respectively. There-
fore, we have

(38) HomH(B)(I2, I1) ∼= B∗(−2).

So the preinjective component of H(B) is of the form

(39)

I5 I3 I1

· · ·

I6

(a−
6
,a−

5
)
→

I4

(a−
4
,a−

3
)
→

(a
−
5 ,a

−
4 )
→

I2

(a−
2
,a−

1
)
→

(a
−
3 ,a

−
2 )
→

Furthermore, we have

(40) Ext1H(B)(I1, P0) ∼= B∗(−1).

In fact, an extension of P0 by I1 amounts to a commutative diagram

B ⊗E 0 → B ⊗E E == B ⊗E E

D
↓

======= D
↓

→ 0,
↓

whence Ext1H(B)(I1, P0) ∼= HomD(B, D) = B∗(−1).
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In the derived category Db(H(B)-mod), the two components (36) and
(39) of the Auslander–Reiten quiver of H(B) make up one component of
one-termed complexes if the preinjective indecomposables are modified by
a shift of one step to the right. By (40), the unified component looks as
follows:

(41)

I3[−1] I1[−1] P1

· · · · · ·

I2[−1]

(a
−

2
,a−

1
)
→

(a
−

3 ,a
−

2 )→

P0

(a
0
,a1

) →
(a
−

1 ,a
0 )→

P2

(a
1 ,a

2 )
→

As an element of the Grothendieck group of Db(H(B)-mod), the dimension
vector ω−n of In[−1] is negative for all n > 0. In particular, we have ω−1 =(
−1
0

)
and ω−2 =

(
−a−1

−1

)
. Therefore, (37) holds for all n ∈ Z. By Theorem 1,

the dimension sequence (31) defines a skew-symmetric unimodular bracket
of signature 1, and (37) implies that (ωn)n∈Z is the corresponding Farey
sequence.

Thus we have shown that every bimodule DBE gives rise to a skew-
symmetric unimodular bracket via (31), such that the dimension vectors
of the combined preprojective-preinjective component of Db(H(B)-mod)
coincide with the vectors of the associated Farey sequence. Now we will show
that all the values [a, b] of the bracket are significant for the representation
theory of H(B).

To this end, we consider the (H(B), H(B∗1))-bimodule T := P2 ⊕ P1.
Explicitly, P2 is given by the right-hand map of the short exact sequence

(42) D →֒ B ⊗E B∗1
։ C.

Here the embedding D →֒B ⊗E B∗1 comes from the identification B⊗E B∗1

= EndEop(B). Thus

(43) T =

(
B∗1 E

C B

)
.

Since T is a tilting module (see [12]), T defines an adjunction

(44) H(B∗1)-mod
C−

⇄

C+

H(B)-mod

with C− = T ⊗H(B∗1) − and C+ = HomH(B)(T,−). These functors coincide
with the reflection functors [2, 7], defined as follows. Note first that for any
X ∈ E-mod, there is a natural identification

(45) B ⊗E X = HomE(B∗1, E) ⊗E X = HomE(B∗1, X).

For
(X

Y

)
∈ H(B)-mod, given by f : B ⊗E X → Y , the H(B∗1)-module

C+
(X

Y

)
is given by the adjoint map B∗1 ⊗D Z → X of the kernel ker f :
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Z ֌ B ⊗E X = HomE(B∗1, X). Similarly, for
(U
V

)
∈ H(B∗1)-mod, given

by g : B∗1 ⊗D U → V , the H(B)-module C−
(U
V

)
is given by the cokernel

B ⊗E V ։ W of the adjoint map ǧ : U → HomE(B∗1, V ) = B ⊗E V .
The explicit form of C+ and C− shows that C−C+M ∼= M holds for

indecomposable M 6∼= P0, while C+P0 = 0. Similarly, C+C−N ∼= N holds
for indecomposable N ∈ H(B∗1)-mod with N 6∼= J0 :=

(
D
0

)
. Now it is

well-known that tilting modules gives rise to derived equivalences [4]. For
the artinian rings H(B), we thus have an equivalence

(46) H : Db(H(B)-mod) −→∼ Db(H(B∗1)-mod).

The object map of H is given by

(47) H(M) = HomDb(H(B)-mod)(T, M) ∼=

{
C+M for M 6∼= P0,

J0[−1] for M ∼= P0,

for M ∈ H(B)-mod. Here, the case M ∼= P0 results from the fact that
Ext1H(B)(P2, P0) ∼= D. So the component (41) of Db(H(B)-mod) is mapped

onto the corresponding preprojective-preinjective component of the derived
category Db(H(B∗1)-mod). With regard to the preprojective indecompos-
ables in these components, the equivalence (46) amounts to a shift of one
step to the left.

On the level of dimension vectors, H induces the following bijection:

(48) H

(
x

y

)
=

(
a0x − y

x

)
.

In particular, this gives a bijective correspondence between the Farey se-
quences:

(49) H

(
[n, 0]

[n,−1]

)
=

(
[n, 1]

[n, 0]

)
.

Thus we have proved

Theorem 3. Let D, E be skew-fields. For any (D, E)-bimodule B of

finite dualization, the dimension sequence (31) defines a unique skew-

symmetric unimodular bracket of signature 1 with an = [n,∞] for n ∈ Z.

The preprojective or preinjective modules over the hereditary artinian

ring (32) form an Auslander–Reiten component (41) of the derived category

Db(H(B)-mod), and the dimension vectors of the indecomposables of this

component constitute the Farey sequence of the bracket. The horizontal trans-

lations of the bracket correspond to tiltings of H(B).

Remarks. 1. If we consider right H(B)-modules instead of left modules,
the dimension sequence (31) turns into the sequence (a1−n), and the Farey
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sequence is changed into

(50) ω′

n =

(
[2, 1 − n]

[1, 1 − n]

)
.

In other words, the Farey sequence of H(B)op is obtained from the H(B)-
modules P1, P2 via successive tilting.

2. Theorem 3 implies that H(B) is representation-finite if and only if
the associated bracket is periodic. Since the terms an of the dimension
sequence (31) are all positive, it follows that the dimension sequences of
representation-finite rings H(B) can be described by triangulated polygons.
For example, a hereditary artinian ring of type G2 corresponds to the tri-
angulated hexagon (27). However, up to cyclic permutation, there are three
other triangulated hexagons

3

21

3

2 1

4

12

2

2 1

3

12

3

1 2

which lead to dimension sequences of type I2(6). In contrast to G2, they
are non-cristallographic in the sense that the Auslander–Reiten translate τ
induces a non-linear map on the Grothendieck group of Db(H(B)-mod). In
this respect, the Coxeter diagram I2(6) should be distinguished from G2.
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