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1. Statements of results. By the paper of Lagarias [4], the metri-
cal convergence of algorithms of simultaneous Diophantine approximation
has been clearly formulated as a problem of ergodic theory and dynami-
cal systems. Since then, much of the study was devoted to variants of the
Jacobi–Perron algorithm, which is a direct generalisation of the continued
fraction algorithm. There is another class of algorithms which includes the
algorithms of Selmer and Brun. This class appears to be more practical since
the operations of approximation consist of addition (subtraction) instead of
multiplication as in the case of the Jacobi–Perron type algorithms. In this
paper, we prove the almost everywhere strong convergence of a class of
two-dimensional algorithms of additive type (Corollary 2). The problem of
strong convergence concerns the speed of convergence of Diophantine quan-
tities qnx−pn, which typically attenuate oscillating as n goes to infinity. For
future reference, we formulate our criterion for arbitrary finite-dimensional
algorithms (Theorem 1).

Metric properties of Selmer’s algorithm have already been studied by
Schweiger [5]. Schweiger reduces Selmer’s algorithm by the jump transfor-
mation to Baldwin’s one, the ergodic properties of which are already estab-
lished. However, his argument covers one particular sequence of fractions
of approximation. Our method covers all the fractions given by the algo-
rithm, which is complementary to Schweiger [5] in this respect, and as a
consequence, we obtain information on the second Lyapunov exponent of
the system.

For a proof of the strong convergence of two-dimensional Brun’s al-
gorithm for the multiplicative case (cf. Remark 1.1), we refer to Broise-
Alamichel and Guivarc’h [1].

Definition 1.1. Let d be a positive integer. A sequence of rational

vectors in R
d, (p

(1)
n /qn, . . . , p

(d)
n /qn), is said to be weakly convergent to

(x1, . . . , xd) if
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lim
n→∞

∥∥∥∥(x1, . . . , xd) −

(
p
(1)
n

qn
, . . . ,

p
(d)
n

qn

)∥∥∥∥ = 0

where ‖ · ‖ denotes a fixed Euclidean norm in R
d. If the rate of convergence

is exponential, the sequence is called semi-weakly convergent . A sequence

of rational vectors (p
(1)
n /qn, . . . , p

(d)
n /qn) is said to be strongly convergent to

(x1, . . . , xd) if

lim
n→∞

‖qn(x1, . . . , xd) − (p(1)
n , . . . , p(d)

n )‖ = 0.

If the rate of convergence is exponential, the sequence is called exponentially

strongly convergent.

For future use, we axiomatize our criterion for algorithms we consider
to be strongly convergent. An additive Multidimensional Continued Fraction

(MCF) algorithm in dimension d is a triple (T, µ, M) satisfying the following
conditions (H1)–(H5):

(H1) There is a Markovian dynamical system T : ∆ → ∆ such that (a) ∆
is a compact connected d-dimensional manifold in R

d with piecewise
smooth boundary, (b) ∆ has a finite partition P, each element of
which has interior points, so that T (ξ) is a (modulo 0) union of mem-
bers of P for all ξ ∈ P, (c) T admits an invariant ergodic measure µ
on ∆ which is equivalent to Lebesgue measure, and (d) T is piecewise
continuous with non-vanishing Jacobian almost everywhere.

(H2) There exists a matrix-valued function M :∆→GL(d+1, {0, 1}) which
is constant on the interior of each element of P with

T
log+ ‖M(p)‖ dµ

< ∞.

Define a cocycle inductively by

Mn(p) = M(Tn−1(p))Mn−1(p)

for n ≥ 1, where M0 is the identity matrix.

(H3) Set

τ(p) = min{k : Mk(p) is strictly positive}

and τ(p) = ∞ if no such k exists. Then\
∆

τ(p) dµ < ∞.

Define 


p
(0,1)
n · · · p

(0,d)
n q

(0)
n

p
(1,1)
n · · · p

(1,d)
n q

(1)
n

...
...

...

p
(d,1)
n · · · p

(d,d)
n q

(d)
n




:= Mn(p).
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A MCF algorithm is said to be weakly convergent at p if all the convergents
(

p
(j,1)
n

q
(j)
n

, . . . ,
p
(j,d)
n

q
(j)
n

)

for 0 ≤ j ≤ d are weakly convergent at p; it is called strongly convergent if
all the convergents are strongly convergent.

(H4) The algorithm is weakly convergent at µ-almost every point p ∈ ∆.

Definition 1.2. A real matrix M is spectrally PV (Pisot–Vijayara-
ghavan) if there is a simple (and hence real) eigenvalue |λ| > 1 of M such
that all other eigenvalues are strictly less than one in modulus.

(H5) There exists an element ξ0 of P with ξ0 ⊂ T (ξ0) so that M(p) is
spectrally PV on the interior of ξ0 with a positive eigenvector for
the simple eigenvalue |λ| > 1.

Remark 1.1. Conditions (H1)–(H5) include the notion of additive al-
gorithm in the sense of Lagarias [4], where an additive MCF algorithm is
characterised by the fact that the number of allowable associated matrices
M(p) is finite. The Jacobi–Perron type algorithms are multiplicative since
it is infinite.

Given p = (x1, . . . , xd) ∈ ∆, define

D(j,i)
n = q(j)

n xi − p(j,i)
n for 0 ≤ j ≤ d and 1 ≤ i ≤ d,

̺(i)
n = max

0≤j≤d
{|D(j,i)

n |} for 1 ≤ i ≤ d.

(H6) For each i, 1 ≤ i ≤ d, there exists an integer l > 0 so that for almost
every point p one can find a subsequence {nk} and a constant C1 > 0
with the following properties:

(a) ̺
(i)
nk+1

≤ ̺
(i)
nk

for all k ≥ 1,

(b) ̺
(i)
nk+j ≤ C1̺

(i)
nk

for 1 ≤ j ≤ nk+1 − nk − 1 and all k ≥ 1,

(c) if T j(p), T j+1(p), . . . , T j+nl−1(p) ∈ ξ0 for n ≥ 1, then

#{{nk}k≥1 ∩ {j, j + 1, . . . , j + nl − 1}} ≥ n.

Theorem 1. Assume that an additive MCF algorithm (T, µ, M) in di-

mension d satisfies condition (H6). Then the algorithm is exponentially

strongly convergent for almost every point p ∈ ∆. Furthermore, the sec-

ond Lyapunov exponent of the system (T, µ, M) is strictly negative.

In [4] the algorithms of Brun and Selmer have been verified to be additive
MCF algorithms in our sense.

Corollary 2. The algorithms of Brun and Selmer in dimension two

satisfy condition (H6).
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2. Proof of Theorem 1 and Corollary 2. For a target vector p =
(x1, . . . , xd), an additive MCF algorithm in dimension d provides convergents

Cn(xi) =

(
p
(0,i)
n

q
(0)
n

,
p
(1,i)
n

q
(1)
n

, . . . ,
p
(d,i)
n

q
(d)
n

)

for n ≥ 1 and 1 ≤ i ≤ d. We say that the status of a convergent p
(j,i)
n /q

(j)
n

for xi is j. Notice that

(1)




p
(0,1)
n · · · p

(0,d)
n q

(0)
n

...
...

...

p
(d,1)
n · · · p

(d,d)
n q

(d)
n


 = M(Tn−1(p))




p
(0,1)
n−1 · · · p

(0,d)
n−1 q

(0)
n−1

...
...

...

p
(d,1)
n−1 · · · p

(d,d)
n−1 q

(d)
n−1


.

Multiplying by the matrix



−1 0 · · · 0 0

0 −1 · · · 0 0
...

...
...

...

0 0 · · · −1 0

x1 x2 · · · xd −1




from the right, we obtain

(2) v(i)
n = M(Tn−1(p))v

(i)
n−1

for 1 ≤ i ≤ d, where

v(i)
n :=




D
(0,i)
n

...

D
(d,i)
n


 .

Notice that ̺
(i)
n is the maximal norm of v

(i)
n . The problem of strong con-

vergence is to show how the vectors v
(i)
n are attracted to zero under the

“random” matrix (2). Equivalently, it is the problem to show how all ̺
(i)
n

converge to zero.

Lemma 3. Let a, b, c and d be positive real numbers with ad−bc ≤ 0.Then

a

b
≤

a + c

b + d
≤

c

d
.

Proof. Simply compute.

Define a special cone domain in R
d+1 by

Λd+1 = {(xi) ∈ R
d+1 : xi ≥ 0 ∀i} ∪ {(xi) ∈ R

d+1 : xi ≤ 0 ∀i}.
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Lemma 4. If the additive algorithm is weakly convergent at p, then the

sequences of vectors v
(i)
n never fall into Λd+1 for any n and 1 ≤ i ≤ d.

Proof. Fix i. Suppose that v
(i)
n falls into Λd+1 for some n. Then all the

convergents

(3) p(0,i)
n /q(0)

n , . . . , p(d,i)
n /q(d)

n

lie on the same side of xi on the real line. Since M(p) is a 0-1 matrix by (H2)
and since all the convergents at time n+1 are linear combinations of the con-
vergents at time n by (1), it follows from Lemma 3 that all the convergents
after time n remain in the convex hull (interval or point) spanned by (3).
Thus they never approach xi, which means there is no weak convergence.

Lemma 5. Let A be a spectrally PV (d + 1)× (d + 1) matrix which has

a positive eigenvector for the simple eigenvalue |λ| > 1. Then there exists a

uniform constant 0 < α < 1 such that if v and Amv stay in the complement

of the cone neighbourhood Λd+1 for sufficiently large m, then

‖Amv‖ ≤ α‖v‖.

Proof. Order the eigenvalues of A in modulus as

|λ| = |λ1| > 1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λd+1|.

Denote the projection of v onto the expanding eigenspace and its com-
plementary subspace by ve and vc respectively. Then v = ve + vc and
Av = λ1ve + Avc. It is obvious that there is a uniform constant δ > 0
such that ‖pe‖ ≤ δ‖pc‖ for any vector p = pe + pc /∈ Λd+1. Notice that A
can be decomposed, via a suitable invertible matrix P , into diagonal parts
and nilpotent parts:

P−1AP = λ1E1 +
D∑

j=2

(λjEj + Nj)

where Ej and Nj stand respectively for the identity and the nilpotent part
on the generalised eigenspace associated with λj , and D ≤ d + 1. Since

(λjEj + Nj)
n = λn

j Ej +

(
n

1

)
λn−1

j Nj + · · · +

(
n

l

)
λn−l

j N l
j

for some l, one can find an integer k so that

α := (δ + 1)D max
2≤j≤D

{‖P (λjEj + Nj)
kP−1‖} < 1.

Here ‖B‖ denotes the operator norm of a matrix B. Suppose that the hy-
pothesis is valid for m ≥ k. Then we obtain

‖Amv‖ ≤ (δ + 1)‖Amvc‖ ≤ (δ + 1)
D∑

j=2

‖P (λjEj + Nj)
mP−1vc‖ ≤ α‖v‖.
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It does not matter which norm is taken since we can take α as small as we
want, if necessary.

Remark 2.1. The idea of the proof of Lemma 5 is based on the elemen-
tary facts of the dynamical system theory. See [3] for example. Remember
the behaviour of the hyperbolic flow exp(tA)v on R

d+1. If the orbit stays
away from a neighbourhood Λd+1 of the expanding direction, then it neces-
sarily gets contracted.

Proof of Theorem 1. For each i, we will find a constant 0 < γ < 1 so
that for almost every p = (x1, . . . , xd) ∈ ∆ there exists an integer n(p) with

̺(i)
n ≤ γn for all n ≥ n(p).

We may assume by (H4) that the algorithm is weakly convergent at p.
By (H1), the dynamics of T can be described by a subshift of finite type

through a Markov partition P. We have µ(ξ) > 0 for all ξ ∈ P because µ
detects interior points by (H1)(c). Moreover, by (H1)(d) and (H5),

Γn := ξ0 ∩ T−1ξ0 ∩ · · · ∩ T−(n−1)ξ0

has a positive µ-measure for every n ≥ 1.
Observe that, by Birkhoff’s ergodic theorem,

(4) lim
n→∞

1

n

n−1∑

k=0

χE(T k(p)) = µ(E) µ-a.e. p

where χE denotes the indicator function of a measurable set E.
The orbit makes a consecutive visit of length i to ξ0 if

T j−1(p) 6∈ ξ0, T j(p), T j+1(p), . . . , T j+i−1(p) ∈ ξ0, T j+i(p) 6∈ ξ0

for some j. Define an l-block to be the event that

T j(p), T j+1(p), . . . , T j+l−1(p) ∈ ξ0

for some j. We view a consecutive visit of length i as concatenation of
[i/l] l-blocks plus a residual block, where [x] denotes the integral part of a
real number x. For example, we regard a consecutive visit of length 2l as
concatenation of two l-blocks, while a consecutive visit of length 2l − 1 as
one l-block plus a residual block.

Set Γ := Γl for l in (H6). Suppose that we have L consecutive visits in
the orbit O = {p, T (p), . . . , Tnk−1(p)} with lengths i1, . . . , iL. Notice that
Tnk−1(p) may be in the middle of the last consecutive visit of length iL. In
that case, we pretend that the last consecutive visit to ξ0 ends at Tnk−1(p)
and reset iL. Then the number of l-blocks in the orbit O is equal to

L∑

j=1

[
ij
l

]
.
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Since
nk−1∑

j=0

χΓ (T j(p)) =
L∑

j=1

max{ij − l + 1, 0},

(H6)(c) implies

k

nk

≥
1

nk

L∑

j=1

[
ij
l

]
≥

1

nk

(
1

l

nk−1∑

j=0

χΓ (T j(p))

)
.

Thus, by (4) and µ(Γ ) > 0, there are a uniform constant 0 < γ1 < 1 and an
integer k(p) such that nk ≥ k ≥ γ1nk for all k ≥ k(p) (a.e. p).

On the other hand, if T j(p) ∈ ξ0 for a ≤ j ≤ a+b−1, then M(T j(p)) = A
for a ≤ j ≤ a+b−1, where A is a spectrally PV matrix. Since the algorithm
is weakly convergent at p, Lemma 4 holds. Thus we can apply Lemma 5 to
v(i) via (2). Lemma 5 implies that there are a constant 0 < α < 1 and
an integer m > 0 such that if T j(p) ∈ ξ0 for a ≤ j ≤ a + m − 1, then

̺
(i)
a+m ≤ α̺

(i)
a .

Put N = ([m/l] + 3)l. A consecutive visit of length N includes at least
[m/l]+3 members of the subsequence {nk}. The difference of the beginning
and ending of these members in this consecutive visit is more than m. Thus
we can take a sub-subsequence {nkb

} so that

(5) ̺(i)
nkb+1

≤ α̺(i)
nkb

if b is odd.

We use the property ̺
(i)
nk+1

≤ ̺
(i)
nk

if b is even. Considering the number of
N -blocks, we obtain

b

nkb

≥
2

nkb

(
1

N

nkb
−1∑

a=0

χΓN
(T a(p))

)
.

By (4) and µ(ΓN) > 0, there are a uniform constant 0 < γ2 < 1 and an
integer b(p) such that 2nkb

≥ b ≥ 2γ2nkb
for all b ≥ b(p) (a.e. p). Combining

this with (5), we have

̺(i)
nkb

≤ exp(−βb) ≤ exp(−2βγ2nkb
)

for some β > 0 and all b ≥ 1. Since

nkb+j

nkb

≤
nkb+1

nkb

≤
b + 1

b

b

nkb

nkb+1

b + 1
≤

3

4γ2

for 1 ≤ j ≤ kb+1 − kb − 1, there exist γ3 > 0 and an integer k1(p) > 0 so
that

̺(i)
nk

≤ exp(−γ3nk) for all k ≥ k1(p).
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Now (H6)(b) implies that for 1 ≤ j ≤ nk+1 − nk − 1,

̺
(i)
nk+j ≤ C1 exp(−γ3nk) = C1 exp

(
−

γ3nk

2

)
exp

(
−

γ3nk

2

)

≤ exp

(
−

3γ3

4γ1
(nk + j)

)

since
nk + j

nk

≤
nk+1

nk

≤
k + 1

k

k

nk

nk+1

k + 1
≤

3

2γ1

for all k ≥ k1(p) (resetting k1(p) if necessary).
Notice that ̺n ≤ γn for some 0 < γ < 1 and 1 ≤ i ≤ d imply the

semi-weak convergence, if only q
(j)
n > 0 for some j. Using the argument in

[4], we have

lim
n→∞

1

n
log q(j)

n = λ1 a.e.

for 0 ≤ j ≤ d, where λ1 > 0 is the first Lyapunov exponent. As a conse-
quence, there exists δ > 1 so that for almost every point p one can find an
integer N(p) > 0 so that

∣∣∣∣xi −
p
(j,i)
n

q
(j)
n

∣∣∣∣ ≤
1

(q
(j)
n )δ

for all n ≥ N(p), 1 ≤ i ≤ d and 0 ≤ j ≤ d.
Let λ2 be the second Lyapunov exponent of the algorithm (T, µ, M).

Then it is obvious that λ2 < 0 since
d∑

i=1

d∑

j=0

|q(j)
n xi − p(j,i)

n | = exp(λ2n(1 + o(1)))

(see (4.21) in [4]).

In the following sections, condition (H6) will be verified for the algo-
rithms of Selmer and Brun in dimension two.

3. The algorithm of Selmer [7]. Consider a three-dimensional sim-
plex

Ω2+1 = {b = (b1, b2, b3) : 0 ≤ b1 ≤ b2 ≤ b3}.

Define a transformation T̃ : Ω2+1 → Ω2+1 obtained from

σb = (b1, b2, b3 − b1)

by making necessary permutations of coordinates to have the image in Ω2+1.
Finally, a transformation T : ∆′ → ∆′ is obtained by a commutative diagram

T ◦ π = π ◦ T̃ , where π(b1, b2, b3) = (b1/b3, b2/b3) is the quotient map and

∆′ = {(x, y) : 0 ≤ x ≤ y ≤ 1}.
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There is a natural partition

∆′ = ∆(0) ∪ ∆(1) ∪ ∆(2)

= {(x, y) ∈ ∆ : x + y ≤ 1} ∪ {(x, y) ∈ ∆ : x ≥ 1/2}

∪ {(x, y) ∈ ∆ : x + y ≥ 1, x ≤ 1/2}

such that

T (x, y) =





(
x

1 − x
,

y

1 − x

)
if (x, y) ∈ ∆(0),

(
1 − x

y
,
x

y

)
if (x, y) ∈ ∆(1),

(
x

y
,
1 − x

y

)
if (x, y) ∈ ∆(2).

Since T (∆(0)) = ∆′ and T (∆(j)) = ∆(1)∪∆(2) (injectively onto) for j = 1
and 2, the map T is transient on ∆(0). Thus one needs to consider the
dynamical system T : ∆ → ∆ on the invariant domain ∆ := ∆(1) ∪ ∆(2).
Set (xn, yn) = Tn(x, y) for n > 0 and (x0, y0) = (x, y). Let

ε(x, y) =

{
1 if (x, y) ∈ ∆(1),

2 if (x, y) ∈ ∆(2).

Define a coding {εn} of the orbit by εn = ε(xn, yn) and ε0 = ε(x, y). Then,
using the row vector u1 = (x1, y1, 1), the equation

(6) u0 = θ(x, y)u1M(x, y)

defines the associated 3 × 3 matrices M(x, y), where θ(x, y) = 1/(x1 + y1).
This paper adopts the same matrix representation as in [4]. Often the trans-
posed matrix is used.

Two-dimensional Selmer’s algorithm has only two matrices allowable:

M(x, y) =




0 0 1

1 0 1

0 1 0


 if ε0 = 1, M(x, y) =




1 0 1

0 0 1

0 1 0


 if ε0 = 2.

Then two recursive equations are obtained:

q
(0)
n+1 = q(2)

n , q
(1)
n+1 = q(0)

n + q(2)
n , q

(2)
n+1 = q(1)

n if εn = 1,(7)

q
(0)
n+1 = q(0)

n + q(2)
n , q

(1)
n+1 = q(2)

n , q
(2)
n+1 = q(1)

n if εn = 2.(8)

If we set p
(j)
n := p

(j,1)
n and r

(j)
n := p

(j,2)
n , then the same recursive equations

hold for p
(j)
n and r

(j)
n . The following facts are well known (see [4], [6] for

example):

• µ is ergodic and has an invariant density dxdy/xy.
• Selmer’s algorithm is weakly convergent at almost every point in ∆.



10 K. Nakaishi

And it is easy to see that

• M(x, y) is spectrally PV on ∆(1) with a positive eigenvector.

We will verify (H6) only for ̺
(2)
n . Similar results for ̺

(1)
n can be easily ob-

tained. Set D
(j)
n := D

(j,2)
n = q

(j)
n y − r

(j)
n and ̺n := ̺

(2)
n = max0≤j≤2{|D

(j)
n |}.

Definition 3.1. A triple of convergents Cn = (r
(0)
n /q

(0)
n , r

(1)
n /q

(1)
n , r

(2)
n /q

(2)
n )

at time n is said to be balanced for y if

|D(j)
n | ≥ |D(k)

n | ≥ |D(l)
n |, {j, k, l} = {0, 1, 2},

and y lies between r
(j)
n /q

(j)
n and r

(k)
n /q

(k)
n on the real line. We use the con-

vention that 0/0 = 0 and 1/0 = ∞.

Let

(A, B, C) =

(
r
(0)
n

q
(0)
n

,
r
(1)
n

q
(1)
n

,
r
(2)
n

q
(2)
n

)
.

Definition 3.2. Any triple Cn = (A, B, C) has a constellation which
belongs to one of the following types:

(G1) A ≤ y ≤ B and y ≤ C (or A ≥ y ≥ B and y ≥ C).
(G2) A ≤ y ≤ C and B ≤ y (or A ≥ y ≥ C and B ≥ y).
(B) B ≤ y ≤ C and y ≤ A (or B ≥ y ≥ C and y ≥ A).

If Cn is of type (B), it is said to have a bad constellation. Otherwise Cn is
said to have a good constellation.

Lemma 6. Suppose that the algorithm is weakly convergent at (x, y).
The following cases never happen to Cn:

(a) Cn is of type (G1) with |D
(2)
n | ≥ |D

(0)
n |.

(b) Cn is of type (G2) with |D
(0)
n | ≥ |D

(2)
n | and |D

(1)
n | ≥ |D

(2)
n |.

(c) Cn is of type (B) with |D
(2)
n | ≥ |D

(1)
n |.

(d) Cn is of type (G1) with |D
(1)
n | ≥ |D

(0)
n | ≥ |D

(2)
n |.

Proof. Suppose (a). We may assume that A ≤ y ≤ B and y ≤ C. If
εn = 1, then

D
(0)
n+1 = D(2)

n , D
(1)
n+1 = D(0)

n + D(2)
n , D

(2)
n+1 = D(1)

n

and if εn = 2, then

D
(0)
n+1 = D(0)

n + D(2)
n , D

(1)
n+1 = D(2)

n , D
(2)
n+1 = D(1)

n .

Since D
(2)
n + D

(0)
n < 0, all the convergents at time n + 1 are larger than y.

Hence there is no weak convergence by Lemma 4. Consequently, (a) never
happens.
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Suppose (b). We may assume that C ≤ y ≤ A and y ≤ B. If εn = 1, then

the constellation at time n + 1 is of type (G1) with |D
(0)
n+1| ≤ |D

(2)
n+1|, which

satisfies (a), and hence this case is impossible. If εn = 2, then the next

constellation is of type (B) with |D
(2)
n+1| ≥ |D

(1)
n+1|. Thus, whichever value

εn+1 takes, the constellation at time n+2 satisfies (b) again. Repeating such
return to (b) implies that the convergent C remains throughout the whole
process, though its status changes. This contradicts the weak convergence.
Consequently, (b) never happens as well.

Suppose (c). We may assume that B ≤ y ≤ A and y ≤ C. Whichever
value εn takes, Cn+1 has a constellation which satisfies (b). Hence (c) never
appears.

Suppose (d). We may assume that A ≤ y ≤ B and y ≤ C. If εn = 1,
then Cn+1 has a constellation which satisfies (c). If εn = 2, then Cn+1 has a
constellation which satisfies (a). Hence (d) never happens.

Lemma 7. Suppose that the algorithm is weakly convergent at (x, y).

(a) The triples of convergents Cn = (r
(0)
n /q

(0)
n , r

(1)
n /q

(1)
n , r

(2)
n /q

(2)
n ) gener-

ated by the algorithm are balanced for all n.

(b) For any integer k, four consecutive triples (Ck, Ck+1, Ck+2, Ck+3)
with εk+j = 1 (0 ≤ j ≤ 3) include at least one constellation of

type (B).

Proof. The proof proceeds by induction and dividing into cases. It is
easy to verify that C1 is balanced. Suppose that a triple of convergents Cn

at time n is balanced.

Case I: |D
(2)
n | ≥ |D

(0)
n | ≥ |D

(1)
n |. Being balanced implies that y lies

between A and C. Possible constellations are therefore (G1) and (G2). Since
the constellation of type (G1) is prohibited by Lemma 6(a), the possible
constellation at time n is of type (G2). If εn = 1, then the constellation at

time n + 1 is of type (G2) with ̺n+1 = |D
(0)
n+1|. For balance at time n + 1,

the inequality

|D
(1)
n+1| = |D(0)

n + D(2)
n | ≤ |D

(2)
n+1| = |D(1)

n |

must hold, for if not, Lemma 6(b) holds for Cn+1, contrary to weak conver-
gence. Thus Cn+1 must be balanced with

|D
(0)
n+1| ≥ |D

(2)
n+1| ≥ |D

(1)
n+1| (→ Case V (G2)).

If εn = 2, then the constellation at time n + 1 is of type (G2) with ̺n+1 =

|D
(1)
n+1|. For balance at time n + 1, the inequality

|D
(0)
n+1| = |D(0)

n + D(2)
n | ≤ |D

(2)
n+1| = |D(1)

n |
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must hold, for if not, Lemma 6(b) holds for Cn+1. Thus Cn+1 must be bal-
anced.

Case II: |D
(2)
n | ≥ |D

(1)
n | ≥ |D

(0)
n |. Being balanced implies that y lies

between B and C. Possible constellations are therefore (B) and (G2). Since
the constellation of type (B) is prohibited by Lemma 6(c), the possible
constellation at time n is of type (G2). If εn = 1, then the constellation at

time n + 1 is of type (G2) with ̺n+1 = |D
(0)
n+1|. For balance at time n + 1,

the inequality

|D
(1)
n+1| = |D(0)

n + D(2)
n | ≤ |D

(2)
n+1| = |D(1)

n |

must hold, for if not, Lemma 6(b) holds for Cn+1. Thus Cn+1 must be bal-
anced with

|D
(0)
n+1| ≥ |D

(2)
n+1| ≥ |D

(1)
n+1| (→ Case V (G2)).

If εn = 2, then the constellation at time n + 1 is of type (G2) with ̺n+1 =

|D
(1)
n+1|. For balance at time n + 1, the inequality

|D
(0)
n+1| = |D(0)

n + D(2)
n | ≤ |D

(2)
n+1| = |D(1)

n |

must hold, for if not, Lemma 6(b) holds for Cn+1. Thus Cn+1 must be bal-
anced.

Case III: |D
(1)
n | ≥ |D

(0)
n | ≥ |D

(2)
n |. Being balanced implies that y lies

between A and B. Possible constellations are therefore (G1) and (B). Since
the constellation of type (G1) is prohibited by Lemma 6(d), the constellation
must be of type (B). If εn = 1, then the constellation at time n + 1 is of

type (G2) and easily seen to be balanced. If |D
(0)
n + D

(2)
n | ≥ |D

(1)
n |, then

|D
(1)
n+1| ≥ |D

(2)
n+1| ≥ |D

(0)
n+1| (→ Case IV (G2))

and if |D
(0)
n + D

(2)
n | ≤ |D

(1)
n |, then

|D
(2)
n+1| ≥ |D

(1)
n+1| ≥ |D

(0)
n+1| (→ Case II (G2)).

If εn = 2, then the constellation at time n+1 is also of type (G2) and easily
seen to be balanced.

Case IV: |D
(1)
n | ≥ |D

(2)
n | ≥ |D

(0)
n |. Being balanced implies that y lies

between B and C. Possible constellations are therefore (G2) and (B). For
both cases, if εn = 1, then the constellation at time n + 1 is of type (G2)
and easily seen to be balanced with

|D
(2)
n+1| ≥ |D

(0)
n+1| ≥ |D

(1)
n+1| (→ Case I (G2)).

If εn = 2, then the constellation at time n+1 is also of type (G2) and easily
seen to be balanced.
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Case V: |D
(0)
n | ≥ |D

(2)
n | ≥ |D

(1)
n |. Being balanced implies that y lies

between A and C. Possible constellations are therefore (G1) and (G2).
Suppose that the constellation at time n is of type (G2). If εn = 1, then
the constellation at time n + 1 is of type (G1) and easily seen to be bal-

anced. If |D
(0)
n + D

(2)
n | ≥ |D

(2)
n |, then |D

(1)
n+1| ≥ |D

(0)
n+1| ≥ |D

(2)
n+1|. But

this shows that Cn+1 is of type (G1) in Case III, which is not allowed.

If |D
(1)
n | ≤ |D

(0)
n + D

(2)
n | ≤ |D

(2)
n |, then

|D
(0)
n+1| ≥ |D

(1)
n+1| ≥ |D

(2)
n+1| (→ Case VI (G1))

and if |D
(0)
n + D

(2)
n | ≤ |D

(1)
n |, then

|D
(0)
n+1| ≥ |D

(2)
n+1| ≥ |D

(1)
n+1| (→ Case V (G1)).

If εn = 2, then the constellation at time n + 1 is also of type (B) and easily
seen to be balanced.

Suppose that the constellation at time n is of type (G1). If εn = 1, then
the constellation at time n + 1 is of type (B). For balance at time n+ 1, the
inequality

|D
(1)
n+1| = |D(0)

n + D(2)
n | ≥ |D

(2)
n+1| = |D(1)

n |

must hold, for if not, Lemma 6(c) holds for Cn+1. Thus Cn+1 must be bal-
anced. Furthermore, it has

|D
(1)
n+1| ≥ |D

(0)
n+1| ≥ |D

(2)
n+1| (→ Case III (B))

if |D
(0)
n + D

(2)
n | ≥ |D

(2)
n |, and

|D
(0)
n+1| ≥ |D

(1)
n+1| ≥ |D

(2)
n+1| (→ Case VI (B))

if |D
(0)
n + D

(2)
n | ≤ |D

(2)
n |. Similarly, if εn = 2, then the constellation at time

n + 1 is of type (G1). For balance at time n + 1, the inequality

|D
(0)
n+1| = |D(0)

n + D(2)
n | ≥ |D

(2)
n+1| = |D(1)

n |

must hold, for if not, Lemma 6(a) holds for Cn+1. A contradiction. Thus
Cn+1 must be balanced.

Case VI: |D
(0)
n | ≥ |D

(1)
n | ≥ |D

(2)
n |. Being balanced implies that y lies

between A and B. Possible constellations are therefore (G1) and (B). Sup-
pose that the constellation at time n is of type (B). If εn = 1, then the
constellation at time n + 1 is of type (G2) and easily seen to be balanced
with

|D
(1)
n+1| ≥ |D

(2)
n+1| ≥ |D

(0)
n+1| (→ Case IV (G2)).

If εn = 2, then the constellation at time n+1 is also of type (G2) and easily
seen to be balanced.



14 K. Nakaishi

Suppose that the constellation at time n is of type (G1). If εn = 1, then
the constellation at time n + 1 is of type (B). For balance at time n+ 1, the
inequality

|D
(1)
n+1| = |D(0)

n + D(2)
n | ≥ |D

(0)
n+1| = |D(2)

n |

must hold, for if not, Lemma 6(c) holds for Cn+1, contrary to weak con-

vergence. Thus Cn+1 must be balanced. If |D
(0)
n + D

(2)
n | ≤ |D

(1)
n |, then

|D
(2)
n+1| ≥ |D

(1)
n+1| ≥ |D

(0)
n+1|. But this type (B) in Case II is not allowed.

Thus |D
(0)
n + D

(2)
n | ≥ |D

(1)
n | and

|D
(1)
n+1| ≥ |D

(2)
n+1| ≥ |D

(0)
n+1| (→ Case IV (B)).

Similarly, if εn = 2, then the constellation at time n+1 is of type (G1). For
balance at time n + 1, the inequality

|D
(0)
n+1| = |D(0)

n + D(2)
n | ≥ |D

(1)
n+1| = |D(2)

n |

must hold, for if not, Lemma 6(a) holds for Cn+1. Thus Cn+1 must be bal-
anced. This completes the proof of (a).

The statement (b) follows by tracing four successive triples starting with
an arbitrary Ck with εk = 1, εk+1 = 1, εk+2 = 1 and εk+3 = 1.

If Cn has a bad constellation (see Definition 3.2) then it may happen that
̺n < ̺n+1; otherwise ̺n ≥ ̺n+1. However, we have the following proposition.

Proposition 8. Suppose that the triple Cn = (r
(0)
n /q

(0)
n , r

(1)
n /q

(1)
n , r

(2)
n /q

(2)
n )

at time n has a bad constellation with ̺n < ̺n+1 and that the next bad con-

stellation occurs at time n + τ . Then there is an integer l ≤ τ such that

̺n+1 ≤ 2̺n, ̺n+1 = · · · = ̺n+l, ̺n ≥ ̺n+l+1 ≥ · · · ≥ ̺n+τ .

Proof. A bad constellation is a constellation of type (B) so that C and
A are located on the same side of y. Remember that by Lemma 7 the triples
generated by the algorithm are balanced. We consider several cases. As-
sume that Cn has a bad constellation which, as mentioned before, must be
balanced.

Case I: ̺n = |D
(1)
n | and εn = 1. By assumption, Cn is of type (B). We

may assume that B ≤ y ≤ A and y ≤ C.

Subcase Ia: |D
(1)
n | ≥ |D

(0)
n +D

(2)
n |. Since ̺n = ̺n+1 = |D

(1)
n |, ̺n+k does

not increase for 1 ≤ k ≤ τ until a next bad constellation at time τ .

Subcase Ib: |D
(1)
n | ≤ |D

(0)
n + D

(2)
n |. In this case, Cn+1 is of type (G2)

with |D
(1)
n+1| ≥ |D

(2)
n+1| ≥ |D

(0)
n+1|. Clearly

̺n = |D(1)
n | ≤ ̺n+1 = |D

(1)
n+1| = |D(0)

n + D(2)
n | ≤ 2̺n.
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Whatever the value of εn+1, the next triple Cn+2 is of type (G2) with

̺n+2 = |D
(2)
n+2| = |D

(1)
n+1| = ̺n+1.

Furthermore, we obtain

|D
(2)
n+1| ≥ |D

(0)
n+2|, |D

(2)
n+1| ≥ |D

(1)
n+2|.

If εn+2 = 2, then Cn+3 is, irrespective of εn+1, of type (G2) with

̺n+3 = |D
(1)
n+3| = |D

(2)
n+2| = ̺n+2.

Moreover, we have

|D
(2)
n+1| ≥ |D

(0)
n+3|, |D

(2)
n+1| ≥ |D

(2)
n+3|

and |D
(1)
n+3| ≥ |D

(2)
n+3| ≥ |D

(0)
n+3| since Cn+3 must be balanced. This is exactly

the same situation as Cn+1. Thus we can repeat the same argument until we
get εn+2k = 1 (k ≥ 1) for the first time.

If εn+2k = 1, then Cn+2k+1 is also of type (G2) with

̺n+2k+1 = |D
(0)
n+2k+1| = |D

(2)
n+2k| = ̺n+2k = ̺n+1.

It follows inductively that the 2nd and 3rd maximal element of Cn+j in

modulus is less than |D
(2)
n+1| for 1 ≤ j ≤ 2k + 1. In particular

(9) |D
(2)
n+2k−1| ≤ |D

(2)
n+1| ≤ ̺n+1.

Since Cn+2k+1 must be balanced, we have

|D
(1)
n+2k+1| ≤ |D

(2)
n+2k+1|.

This inequality is equivalent to

D
(1)
n+2k−1 + 2D

(2)
n+2k−1 + D

(0)
n+2k−1 ≥ 0

irrespective of εn+2k−1. Thus

(10) |D
(2)
n+2k+1+D

(0)
n+2k+1| ≤ |D

(0)
n+2k−1+D

(1)
n+2k−1+D

(2)
n+2k−1| ≤ |D

(2)
n+2k−1|.

Observe

D
(2)
n+2k+1 =





D
(2)
n+2k−1 if εn+2k−1 = 1,

D
(0)
n+2k−1 + D

(2)
n+2k−1 if εn+2k−1 = 2.

Then, by (10), we have

̺n+2k+2 =





|D
(2)
n+2k−1 + D

(0)
n+2k−1| if εn+2k−1 = 1,

|D
(2)
n+2k−1| if εn+2k−1 = 2.

The triple Cn+2k+2 may have the next bad constellation (type (B)!). As a

consequence, we have ̺n+2k+2 ≤ |D
(2)
n+2k−1|. Combining this with (9), it

follows that ̺n+2k+2 ≤ ̺n+1. Obviously ̺n+τ ≤ · · · ≤ ̺n+2k+2 ≤ ̺n+1.
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Case II: ̺n = |D
(1)
n | and εn = 2.

Subcase IIa: |D
(1)
n | ≥ |D

(0)
n +D

(2)
n |. Since ̺n+1 = |D

(2)
n+1| = |D

(1)
n | = ̺n,

there is no increase.

Subcase IIb: |D
(1)
n | ≤ |D

(0)
n + D

(2)
n |. Since |D

(0)
n+1 + D

(2)
n+1| ≤ |D

(1)
n |,

̺n+2 = ̺n. Clearly ̺n+1 = |D
(0)
n + D

(2)
n | ≤ 2̺n.

Case III: ̺n = |D
(2)
n |. This assumption implies that Cn+1 is not bal-

anced. Hence this case is impossible.

Case IV: ̺n = |D
(0)
n | and εn = 1. For balance at time n, |D

(1)
n | ≥ |D

(2)
n |.

Then Cn+1 faces the same situation as the triple at time n + 1 in Case I.
Repeating the same argument yields this case.

Case V: ̺n = |D
(0)
n | and εn = 2. For balance at time n, |D

(1)
n | ≥ |D

(2)
n |.

Since |D
(0)
n + D

(1)
n + D

(2)
n | ≤ |D

(0)
n |, we have ̺n+2 ≤ ̺n.

Verification of (H6). Let nk be the subsequence for which the triple Cnk

has a bad constellation. Then Proposition 8 gives (a) and (b) of (H6) with
C1 = 2. Condition (c) follows by Lemma 7(b) with l = 4. This completes
the proof of Corollary 2 for the algorithm.

4. The algorithm of Brun [2]. Consider a three-dimensional simplex

Ω2+1 = {b = (b1, b2, b3) : 0 ≤ b1 ≤ b2 ≤ b3}.

Define a transformation T̃ : Ω2+1 → Ω2+1 obtained from

σb = (b1, b2, b3 − b2)

by making necessary permutations of coordinates to have an image in Ω2+1.
A transformation T : ∆ → ∆ is obtained by a commutative diagram T ◦π =

π ◦ T̃ , where π(b1, b2, b3) = (b1/b3, b2/b3) is the quotient map and

∆ = {(x, y) : 0 ≤ x ≤ y ≤ 1}.

Explicitly

T (x, y) =





(
x

1 − y
,

x

1 − y

)
if y ≤ 1/2,

(
x

y
,
1 − y

y

)
if y ≥ 1/2, x + y ≤ 1,

(
1 − y

y
,
x

y

)
if x + y ≥ 1.
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There is a natural partition

∆ = ∆(1) ∪ ∆(2) ∪ ∆(3)

= {(x, y) ∈ ∆ : y ≤ 1/2} ∪ {(x, y) ∈ ∆ : y ≥ 1/2 and x + y ≤ 1}

∪ {(x, y) ∈ ∆ : x + y ≥ 1}

such that T (∆(j)) = ∆ for j = 1, 2, 3. Set (xn, yn) = Tn(x, y) for n > 0 and
(x0, y0) = (x, y). Let ε(x, y) = j if (x, y) ∈ ∆(j) for 1 ≤ j ≤ 3 and define a
coding {εn} of the orbit by εn = ε(xn, yn) and ε0 = ε(x, y). Then, using the
row vector u1 = (x1, y1), the equation

u0 = θ(x, y)u1M(x, y)

defines the associated 3 × 3 matrices M(x, y), where

θ(x, y) =

{
1/(1 + y1) if ε = 1, 2,

1/(1 + x1) if ε = 3.

Two-dimensional Brun’s algorithm has three matrices M(x, y) allowable:



1 0 0

0 1 1

0 0 1


 if ε0 = 1,




1 0 0

0 0 1

0 1 1


 if ε0 = 2,




0 0 1

1 0 0

0 1 1


 if ε0 = 3.

Then three recursive equations are obtained:

q
(0)
n+1 = q(0)

n , q
(1)
n+1 = q(1)

n + q(2)
n , q

(2)
n+1 = q(2)

n if εn = 1,(11)

q
(0)
n+1 = q(0)

n , q
(1)
n+1 = q(2)

n , q
(2)
n+1 = q(1)

n + q(2)
n if εn = 2,(12)

q
(0)
n+1 = q(2)

n , q
(1)
n+1 = q(0)

n , q
(2)
n+1 = q(1)

n + q(2)
n if εn = 3.(13)

If we set p
(j)
n := p

(j,1)
n and r

(j)
n := p

(j,2)
n , then the same recursive equations

hold for these p
(j)
n and r

(j)
n . The following facts are well known (see [4], [6]

for example):

• µ is an T -invariant ergodic measure which is equivalent to Lebesgue
measure.

• Brun’s algorithm is weakly convergent almost everywhere.

And it is easy to verify

• M(x, y) is spectrally PV on ∆(3) with a positive eigenvector.

We will verify (H6) only for ̺
(2)
n . Similar results for ̺

(1)
n can be easily ob-

tained. Set D
(j)
n := D

(j,2)
n = q

(j)
n y − r

(j)
n and ̺n := ̺

(2)
n = max0≤j≤2{|D

(j)
n |}.
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Definition 4.1. A triple Cn = (r
(0)
n /q

(0)
n , r

(1)
n /q

(1)
n , r

(2)
n /q

(2)
n ) generated

by Brun’s algorithm is said to have a bad constellation if r
(1)
n /q

(1)
n and

r
(2)
n /q

(2)
n are on the same side of y on the real line. Otherwise Cn is said

to have a good constellation.

We know that ̺n+1 > ̺n only if Cn has a bad constellation.

Proposition 9. Suppose that the algorithm is weakly convergent at

(x, y). Then ̺n+1 ≤ ̺n for all n.

Proof. First consider the following constellation Ck = (A, B, C):

B ≤ y ≤ A, y ≤ C (or B ≥ y ≥ A, y ≥ C)

with |D
(1)
k | ≤ |D

(2)
k |. Then, whatever the value of εk, all fractions in Ck+1 are

on one side of y. By Lemma 4, we have no weak convergence at this point.
This constellation Ck is said to be of prohibited type.

Suppose that Cn has a bad constellation. The proof proceeds by induction
and dividing into cases.

Case I: |D
(0)
n | ≤ |D

(1)
n | and |D

(0)
n | ≤ |D

(2)
n |. Recursive equations (11)

and (12) imply that the fraction r
(0)
n /q

(0)
n never disappears as long as εn+k

takes the value in {1, 2} for k ≥ 0. By weak convergence, it follows that
there is a minimal integer k ≥ 0 with εn+k = 3. Then Cn+k is of prohibited
type. Hence this case is impossible.

Case II: |D
(1)
n | ≤ |D

(0)
n | ≤ |D

(2)
n |. If εn = 3, then Cn+1 is of prohibited

type. If εn = 1 or 2, then Cn+1 is as in Case I. This case is also impossible.

Case III: |D
(2)
n | ≤ |D

(0)
n | ≤ |D

(1)
n |. If εn = 3, then Cn+1 is of prohibited

type. If εn = 2, then Cn+1 is as in Case II. If εn = 1, then Cn+1 is as in
Case III. This repetition of Case III eventually stops by weak convergence.
Thus this case never happens.

Case IV: ̺n = |D
(0)
n |.

Subcase I: |D
(1)
n + D

(2)
n | ≤ |D

(0)
n |. Then ̺n+1 ≤ ̺n.

Subcase II: |D
(1)
n + D

(2)
n | ≥ |D

(0)
n |. If εn = 3, then Cn+1 is of prohibited

type. If εn = 2, then Cn+1 is as in Case II. If εn = 1, then Cn+1 is as in
Case III. Hence this subcase is impossible.

Verification of (H6). There is no need to take a subsequence by Propo-
sition 9. Thus this algorithm satisfies (H6), which completes the proof of
Corollary 2.
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