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Class number divisibility of relative quadratic function fields
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Introduction. Determining the class number of a number field or a
function field is one of the central problems in number theory since Gauss.
It is known that given an integer n, infinitely many number fields and func-
tion fields have class number divisible by n (see for example, Nagell [8] for
imaginary quadratic number fields, Yamamoto [12] for real quadratic num-
ber fields, and Friesen [1] for real quadratic function fields).

Recently, Kishi and Miyake [3] presented complete descriptions for qua-
dratic number fields to have their ideal class numbers divisible by 3. In fact,
they provided necessary and sufficient conditions for the ideal class numbers
of quadratic number fields to be divisible by 3. For the case of quadratic
function fields, however, there has been no result concerning necessary and
sufficient conditions for the ideal class number divisibility by 3, except for
the only necessary conditions for the ideal class number divisibility of real
quadratic function fields, for instance, in Friesen’s work [1].

In this paper, we find complete descriptions for quadratic function fields
whose ideal class number is divisible by 3. More importantly, we obtain
the results for quadratic extensions of any global function field K, and such
quadratic extensions are called relative quadratic extension fields of K. We
want to point out that this work is very general in the sense that the base
field K is not necessarily a rational function field any more, but it can be
any global function field.

Furthermore, we obtain necessary and sufficient conditions for the divisor
class number of a quadratic function field to be divisible by 3. And we also
find necessary conditions for relative quadratic extension fields of K to have
their divisor class numbers divisible by 3.

1. Preliminaries. We begin with some definitions and notations which
will be used throughout the paper.
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Let Fq denote a finite field of order q with q a power of a prime p > 3, and
let k = Fq(T ) be the rational function field over Fq with a transcendental
element T . Let P∞ be the prime at infinity (or the infinite place) of k defined
by the negative degree valuation, i.e. vP∞

(f) = −deg(f) for f ∈ k∗. For any
extension F of k in ksep (= the separable closure of k), let S(F ) denote the
set of all the primes at infinity of F lying above P∞. We also let Ok = Fq[T ]
be the ring of polynomials (or maximal order) of k, and OF the integral
closure of Ok in F .

We assume that K is a finite extension of k. A function field in one
variable T over a finite field is called a global function field. So, in fact, K is
a global function field with constant field Fqf , where f is the relative degree

of P∞ in K/k.
Throughout this paper, we fix the following notations:

℘∞ a fixed place (or prime divisor) of K lying above P∞,

v℘∞
a usual discrete valuation corresponding to a place ℘∞ of F ,

π℘∞
an element of K with v℘∞

(π℘∞
) = 1

(called prime element or uniformizing variable of ℘∞),

ClF the ideal class group of OF ,

JF the group of divisor classes of degree zero of F ,

which we simply call the divisor class group of F ,

hid(F ) |ClF |, the ideal class number of F ,

hdiv(F ) |JF |, the divisor class number of F ,

ζ3 a primitive cube root of unity.

We note that the triple F , OF and S(F ) is analogous to an algebraic
number field, its ring of integers and its primes at infinity. In fact, OF is the
ring of elements in F whose only poles are in S(F ). Most importantly, OF

is a Dedekind domain, and its ideal class group ClF is finite.
Any quadratic extension of a global function field K is called a relative

quadratic function field since quadratic extensions of k are often referred
to as quadratic function fields. We note that in this paper the base field
K is not necessarily a rational function field k, but it can be an arbitrary
global function field. For any finite algebraic extension F of K with the
constant field F of F , if the algebraic closure of F in F is F, then F is called
a geometric extension of K.

For any finite extension F of K, the S-unit group E(S) of F is defined
by

E(S) = {a ∈ F ∗ | v℘(a) = 0, ∀℘ 6∈ S}
with S = S(F ). In fact, E(S) is the unit group of OF . Furthermore, E(S) is
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finitely generated of rank |S| − 1, where |S| is the number of elements in S
(refer to [9] for details).

For a finite algebraic extension F of K with constant field F, the S-

regulator of F , denoted by R
(q)
S , is defined by the determinant of the (s− 1)

× (s− 1) minors of M , where M is the (s− 1)× s matrix whose ijth entry
is logq |ei|℘j

, where S := S(F ) = {℘1, . . . , ℘s}, s = |S|, {e1, . . . , es−1} is a
set of S-units whose projection to E(S)/F

∗ is a basis.
A separable extension of a function field K/k is said to be real if the

prime at infinity P∞ splits completely in K; the rank of the unit group in
this case is maximal as it is for totally real number fields. On the other hand,
we call a separable extension K/k imaginary if there is only one prime lying
above P∞ in K; then the rank of the unit group is minimal as it is for purely
imaginary number fields.

The group of S-divisors of F , denoted by DS , is defined to be the sub-
group of DF generated by the primes not in S. A divisor of the form

(a)S =
∏

P 6∈S

P vP (a)

for some a ∈ F ∗ is called a principal S-divisor. Let PS be the set of all the
principal S-divisors. Then DS/PS is isomorphic to ClF (we can refer to [11,
Theorem 14.5]).

Consider a map τ : DF → DS defined by

τ(D) =
∏

P 6∈S(F )

P vP (D),

where DF is the group of divisors of F .
The relation between the divisor class group and the ideal class group

is given in the following theorem. We can refer to [11, Lemma 14.3 and
Proposition 14.1] for details.

Theorem 1.1. Let F be any finite extension of K, d = gcd{deg(℘) |
℘ ∈ S(F )}, and R

(q)
S be the S-regulator of F with S = S(F ). From the map

τ defined as above the following exact sequence is induced :

(1) 0 → Ker(τ) → JF
τ→ ClF → Z/dZ → 0.

Then Ker(τ) has the order dR
(q)
S /

∏
℘∈S deg(℘), and the cokernel of τ is

cyclic of order d.

The Hilbert class field of F with respect to OF , denoted by HF , is the
maximal unramified abelian extension of F in Fsep in which every prime in
S(F ) splits completely, where Fsep is the separable closure of F .

We quote from [10, Theorem 1.3] the following important result of class
field theory.
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Theorem 1.2. [HF : F ] is finite. The Artin symbol ( · , HF /F ) induces

an isomorphism

ClF ≃ Gal(HF /F ).

The constant field of HF is Fqδ , where S(F ) = {℘1, . . . , ℘s} and δ is the

greatest common divisor of {deg(℘i) | 1 ≤ i ≤ s}.
The following class-field-theoretic interpretation results immediately

from the theory of the Hilbert class field [10].

Theorem 1.3. Let A be a finite abelian group. Then ClF contains a

subgroup isomorphic to A if and only if there exists an unramified abelian

extension H of F with Gal(H/F ) ∼= A in which every place from S(F ) splits

completely.

When L1/L2 is a finite algebraic extension of fields, p is a prime of L2,
and P is a prime of L1 lying above p, we denote by e(P/p) the ramification

index of P over p and by f(P/p) the relative degree of P over p. We note
that the ramification index and the relative degree behave transitively in
towers. In detail, let L3 ⊆ L2 ⊆ L1 be a tower of function fields with L1/L2

and L2/L3 finite algebraic extensions. If P is a prime of L1, and p and P
are the primes lying below P in L2 and L3 respectively, then

e(P/P ) = e(P/p) · e(p/P ), f(P/P ) = f(P/p) · f(p/P ).

If L1/L2 is a Galois extension and g primes of L1 lie above p, then

e(P/p) · f(P/p) · g = [L1 : L2].

In addition, for any primes P, P′ lying over p,

e(P/p) = e(P′/p) and f(P/p) = f(P′/p).

Hence, when L1/L2 is a Galois extension, eL1/L2
(p) (resp. fL1/L2

(p)) denotes
the ramification index (resp. relative degree) of p in L1/L2, and gL1/L2

(p) is
the total number of primes of L1 lying above p.

We note the following well known facts. Suppose that F ′/F is a finite
separable extension of function fields, F1, F2 are intermediate fields of F ′/F
such that F ′ = F1F2 (the compositum of F1 and F2), and P is a prime of F .
If P splits completely in F1/F and F2/F , then P also splits completely in
F ′/F . In addition, if P is unramified in F1/F and F2/F , then it is also
unramified in F ′/F .

2. A criterion for ideal class number divisibility by 3. In this
section we find the complete description for the relative quadratic function
fields whose ideal class numbers are divisible by 3. Kishi and Miyake [3]
worked on the ideal class number divisibility by 3 for the case of quadratic
number fields. We use the notations introduced in Section 1.
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Let g(X) = X3 − tX − t with t ∈ K∗ (not necessarily t ∈ O). In fact,
the v℘∞

values of coefficients of g(X) are not necessarily nonnegative at ℘∞;
but, we can make them nonnegative at ℘∞ by repeating the parametrization
X → πX, where π denotes π℘∞

for ℘∞. If v℘∞
(t) is negative even, i.e.

v℘∞
(t) = 2n < 0, then we obtain

(2) g̃(X) = X3 − (tπ2n)X − (tπ3n) = X3 − t′X − t′′,

with t′ = tπ2n and t′′ = tπ3n. Thus, v℘∞
(t′) = 0 and v℘∞

(t′′) > 0. On the
other hand, if v℘∞

(t) is negative odd, that is, v℘∞
(t) = 2n + 1 < 0, then we

get

(3) g̃(X) = X3 − (tπ2(n+1))X − (tπ3(n+1)) = X3 − t′X − t′′,

where t′ = tπ2(n+1) and t′′ = tπ3(n+1); so, v℘∞
(t′) = 1, v℘∞

(t′′) > 1. There-
fore, we have the following two possible cases:

v℘∞
(t′) = 0, v℘∞

(t′′) > 0 or v℘∞
(t′) = 1, v℘∞

(t′′) > 1.

Furthermore, when v℘∞
(t) is a positive integer, by the repetition of the

parametrization X → X/π, we may assume that g̃(X) has v℘∞
(t′′) < 3,

where

(4) g̃(X) = X3 −
(

t

π2n

)
X −

(
t

π3n

)
= X3 − t′X − t′′,

with t′ = t/π2n and t′′ = t/π3n. We note that v℘∞
(t′) > v℘∞

(t′′).
We therefore have seen the following:

(i) If v℘∞
(t) = 2n is negative even, then with t′ = tπ2n and t′′ = tπ3n

as in (2), we have v℘∞
(t′) = 0, v℘∞

(t′′) > 0.

(ii) If v℘∞
(t) = 2n + 1 is negative odd, then with t′ = tπ2(n+1) and

t′′ = tπ3(n+1) as in (3), we have v℘∞
(t′) = 1, v℘∞

(t′′) > 1.
(iii) If v℘∞

(t) is a positive integer, then with t′ = t/π2n and t′′ = t/π3n

as in (4), we have v℘∞
(t′′) < 3, v℘∞

(t′) > v℘∞
(t′′).

In any of these three cases, g̃(X) generates the same cubic field as g(X).
The following theorem is the main result of this section.

Theorem 2.1. If the ideal class number of K is divisible by 3, then the

ideal class number of any quadratic extension F of K is also divisible by 3.
If the ideal class number of K is not divisible by 3, then for any quadratic

extension F of K, the ideal class number of F is divisible by 3 if and only

if F can be represented as K(
√

d) with d defined as follows.

Let g(X) = X3 − tX − t with t ∈ K∗, d = 4t − 27 be nonsquare, and ut

be the unit part of t with respect to ℘∞, that is,

ut = t · (π℘∞
)−v℘∞

(t).
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Assume g(X) is irreducible over K, and all the zeroes of t have order divisible

by 3, equivalently , 3 | vP (t) for any prime P in K such that vP (t) > 0. In

addition, we assume that g(X) satisfies one of the following conditions:

(i) v℘∞
(t) is odd.

(ii) v℘∞
(t) = 2n is negative even, ut is nonsquare in Fqf , and

(
t′

℘∞

)
=

−1 with t′ = tπ2n as in (2).

(iii) v℘∞
(t) = 2n is negative even, ut is square in Fqf , and

(
t′

℘∞

)
= 1

with t′ = tπ2n as in (2).

The polynomial discriminant of g(X) is t2d, and is not a square; thus the

minimal splitting field L of g(X) contains a quadratic function field K(
√

d),
and Gal(L/K) ≃ S3, the symmetric group. If K1, K2 and K3 are the fixed
fields of the three elements of order 2 in Gal(L/K), then K(θ) is certainly
one of Ki’s. We also observe that all Ki’s are isomorphic and their composite
field is L.

The first part of Theorem 2.1 is proved in the following proposition.

Proposition 2.2. If the ideal class number of K is divisible by 3, then

the ideal class number of any quadratic extension F of K is also divisible

by 3.

Proof. Let P∞ be a prime of F lying above ℘∞. If the ideal class number
of K is divisible by 3, then from Theorem 1.2 or Theorem 1.3, it follows that

there exists an unramified cyclic cubic extension field K̃ of K where ℘∞

splits completely. Therefore, K̃ ⊆ HK , where HK is the Hilbert class field

of K. Let M be the composite field of K̃ and F . Since ℘∞ splits completely

in K̃, ℘∞ should split completely in M . This implies that P∞ in F splits
completely in M . Therefore, M is an unramified cyclic cubic extension of F
in which P∞ splits completely, so M is contained in the Hilbert class field
HF of F . The assertion therefore follows immediately by Theorem 1.3.

In the rest of this section we will prove the second part of Theorem 2.1.
We note that 3 |hid(K) if and only if there exists an unramified cyclic

cubic extension field L of K which splits completely at ℘∞ by Theorem 1.3.
It is therefore sufficient to find necessary and sufficient conditions under
which K has an unramified cyclic cubic extension field L where ℘∞ splits
completely.

Every cyclic cubic extension of a quadratic extension field of K is the
splitting field L of a cubic equation of the form

(5) X3 − tX − t = 0

with t in K∗ as in [3, Section 2]. In detail, let a cubic extension K(θ) of K
be generated by an irreducible polynomial of θ over K, Irr(θ) = X3−aX−b
with b 6= 0. Then without loss of generality we may assume that a 6= 0 since
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Irr
(
θ + 1/θ

)
= X3 − 3X −

(
b + 1/b

)
also generates the same field K(θ). As

both a and b are nonzero, we can use

Irr

(
a

b
θ

)
= X3 − a3

b2
X − a3

b2

as the generating polynomial of K(θ). We note that Gal(K(θ)/K) ≃ S3

(= symmetric group on three elements).

L

K(θ)

o
o

o
o

K(
√

d)

K
p

p
p

We need to determine the conditions under which L/K(
√

d) is unramified
at every finite prime; for that the following lemma is necessary. (We can also
refer to [6, Lemma 2.2].)

Lemma 2.3. Let P be a prime of K (or finite place of K), and P be a

prime of K(
√

d) lying above P . Then P is totally ramified in K(θ) if and

only if P is ramified in L/K(
√

d), where θ is a root of equation (5).

Proof. Let P ′ be the prime in L lying above P . First, we observe that
P cannot be totally ramified in L/K. Otherwise, the inertia group I(P ′/P )
of P in L/K is of order 6, and it cannot be cyclic; but I(P ′/P ) has to
be cyclic since L/K is tamely ramified. Thus, we also note that the inertia
group of P in L/K is of order at most 3.

If P is ramified in L/K(
√

d), then the inertia group of P in L/K has

order 3; hence K(
√

d)/K is unramified at P . We then have two possible

cases: P splits or is inert in K(
√

d). If P is inert in K(
√

d), then eL/K(P ) = 3,
fL/K(P ) = 2 and gL/K(P ) = 1. Thus, there is only one prime in K(θ)
above P . If P is inert in K(θ), then this contradicts fL/K(P ) = 2, so P

must be totally ramified in K(θ). In the case that P splits in K(
√

d), there
are two primes in L above P , each with ramification index 3 and relative
degree 1. It is also easy to see that P must be totally ramified in K(θ).

For the other direction, assume that P is totally ramified in K(θ). Then
there are at most two primes in L lying above P . For a contradiction, we
assume that P is unramified in L. As L/K(

√
d) is a Galois extension, we

have only two possibilities: P splits completely in L, or P is inert in L. It
is easy to find contradictions in both cases.

In the following lemma, we find the conditions for L/K(
√

d) to be an
unramified extension at finite places.
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Lemma 2.4. Let P be a prime of K (or finite place of K). Then P is

totally ramified in K(θ) if and only if vP (t) 6≡ 0 (mod 3) for any prime P
with vP (t) > 0.

Proof. Let P̃ be a prime of K(θ) above P . We then observe that

v
P̃
(θ) =

1

3
vP (N(θ)) =

1

3
vP (t),

where N(θ) denotes the norm of θ from K(θ) to K. Thus, the result follows
immediately.

It thus follows from Lemmas 2.3 and 2.4 that a necessary and sufficient
condition for L/K(

√
d) to be an unramified extension is that vP (t) ≡ 0

(mod 3) for any prime P with vP (t) > 0.
As before, ℘∞ denotes a prime of K (or infinite place of K) lying above

P∞ in k. Throughout what follows, let P∞ be a prime of K(
√

d) lying

above ℘∞, P̃∞ a prime of L lying above ℘∞, and P∞ a prime of K(θ) lying
above ℘∞.

It remains to determine the conditions under which P∞ splits completely
in L/K(

√
d). In the following lemma, we observe how ℘∞ splits in K(θ)/K

depending on the coefficients of g̃(X).

Lemma 2.5. The following is the splitting behavior of ℘∞ in K(θ)/K
depending on the coefficients of g(X).

If v℘∞
(t) is a positive integer , then ℘∞ is totally ramified in K(θ).

If v℘∞
(t) is a negative integer , then with g̃(X) = X3 − t′X − t′′ such

that v℘∞
(t′) and v℘∞

(t′′) are positive integers as given in (2) and (3), we

have the following two cases:

(i) If v℘∞
(t) = 2n is negative even, we have t′ = tπ2n as in (2).

Then
(

t′

℘∞

)
= 1 if and only if ℘∞ splits completely in K(θ), and(

t′

℘∞

)
= −1 if and only if ℘∞ splits into two primes in K(θ) with

℘∞ = P1P2.

(ii) If v℘∞
(t) = 2n + 1 is negative odd , then with t′ = tπ2(n+1) as

in (3), ℘∞ splits into two primes with ramification in K(θ), i.e.

℘∞ = P1P2
2 .

Proof. We use the method of Newton polygon and Kummer’s Crite-

rion [2, Theorem 23].
If v℘∞

(t) is a positive integer, as seen in (4) we may assume that v℘∞
(t′′)

< 3. As v℘∞
(t′) > v℘∞

(t′′), the Newton polygon of g̃(X) with respect to ℘∞

has only one side of slope 1/3 or −1/3, therefore ℘∞ is totally ramified
in K(θ).

If v℘∞
(t) is negative even, then from (2) we have v℘∞

(t′) = 0, v℘∞
(t′′)

> 0. Thus, Newton polygon has only one side of positive slope, so ℘∞ splits
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into two primes or three primes in K(θ). And we have g̃(X) ≡ X(X2 − t′)
(mod ℘∞). Our assertion therefore follows immediately depending on the

conditions
(

t′

℘∞

)
= 1 or

(
t′

℘∞

)
= −1.

If v℘∞
(t) is negative odd, we have v℘∞

(t′) = 1, v℘∞
(t′′) > 1 by (3).

Hence, there are two sides in the Newton polygon, and one of them is of
slope 1/2. We therefore have ℘∞ = P1P2

2 .

The following lemma shows explicit necessary and sufficient conditions
on t for ramification behavior of ℘∞ in K(

√
d)/K with d = 4t−27. It can be

proved in a similar way to [11, Proposition 14.6], thus the proof is omitted.

Lemma 2.6. In each of the three possible cases for the ramification of

℘∞ in K(
√

d)/K with d = 4t − 27, we have the following explicit criteria:

(i) K(
√

d) is totally ramified at ℘∞ if and only if v℘∞
(t) is odd.

(ii) K(
√

d) is inert at ℘∞ if and only if v℘∞
(t) is even and ut is a

nonsquare in Fqf .

(iii) K(
√

d) splits completely at ℘∞ if and only if v℘∞
(t) is even and ut

is a square in Fqf .

Now we determine the conditions under which P∞ splits completely
in L/K(

√
d). We have three possible cases for the ramification of ℘∞ in

K(
√

d)/K. In the following proposition, for each case we find the necessary

and sufficient conditions for P∞ to split completely in L/K(
√

d).

Proposition 2.7. Depending on the ramification of ℘∞ in K(
√

d), we

find the following conditions for P∞ to split completely in L/K(
√

d):

(i) Assume that K(
√

d) is totally ramified at ℘∞. Then P∞ splits com-

pletely in L/K(
√

d).

(ii) Assume that K(
√

d) is inert at ℘∞. Then P∞ splits completely in

L/K(
√

d) if and only if v℘∞
(t) = 2n is negative even and

(
t′

℘∞

)
=

−1 with t′ = tπ2n.

(iii) Assume that K(
√

d) splits completely at ℘∞. Then P∞ splits com-

pletely in L/K(
√

d) if and only if v℘∞
(t) = 2n is negative even and(

t′

℘∞

)
= 1 with t′ = tπ2n.

Proof. Let P∞ be a prime of K(
√

d) lying above ℘∞, and let P̃∞ be a
prime of L lying above P∞.

(i) We assume that K(
√

d) is totally ramified at ℘∞. Since L/K(
√

d)

cannot be totally ramified at P∞, L/K(
√

d) is either inert at P∞, or splits
completely at P∞.

We claim that P∞ splits completely in L/K(
√

d). If L/K(
√

d) is in-
ert at P∞, then ℘∞ is neither totally ramified nor totally inert in L/K,
but rather a mix of being ramified and being inert. The relative degree
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f(P̃∞/℘∞) must be 3; so ℘∞ is totally inert in each of the cubic subfields
of L, hence the inertia field would be L. This contradicts the fact that L/K
is ramified.

(ii) Suppose that ℘∞ is inert in K(
√

d). It is then easy to verify that

L/K(
√

d) should split completely at ℘∞ if and only if K(θ) splits into two
primes such that each of their relative degree is 1 and 2 with ℘∞ = P1P2

in L, and this will only happen in the case that v℘∞
(t) is negative even and

( t′

℘∞

) = −1 from Lemma 2.5.

(iii) Assume that ℘∞ splits completely in K(
√

d). Then it is easy to see

that P∞ in K(
√

d) splits completely in L if and only if ℘∞ splits completely

in K(θ), equivalently v℘∞
(t) is negative even and

(
t′

℘∞

)
= 1 by Lemma 2.5.

Combining Lemma 2.3 through Proposition 2.7, we have completed prov-
ing Theorem 2.1.

In particular, when K is just a rational function field k = Fq(T ), the fol-
lowing corollary is obtained immediately. We recall that vP∞

(g) = −deg(g)
for g ∈ k∗, and we note that P∞ =

(
1
T

)
.

Corollary 2.8. For any quadratic extension F of k = Fq(T ), the ideal

class number of F is divisible by 3 if and only if F can be represented as

k(
√

d) with d defined as follows.

Let g(X) = X3 − tX − t with t ∈ k∗, d = 4t − 27 be nonsquare, and

ut ∈ Fq be the leading coefficient of t. Assume g(X) is irreducible over k,
and all the zeroes of t have order divisible by 3, equivalently , 3 | vP (t) for

any prime P in k such that vP (t) > 0. In addition, we assume that g(X)
satisfies one of the following conditions:

(i) deg(t) is odd.

(ii) deg(t) = 2n is positive even, ut is nonsquare in Fq, and
(

t′

℘∞

)
= −1

with t′ = t/T 2n as in (2).

(iii) deg(t) = 2n is positive even, ut is square in Fq, and
(

t′

℘∞

)
= 1 with

t′ = t/T 2n as in (2).

Remark 2.9. We want to point out that the following result by Friesen
[1] can be derived immediately from Theorem 2.1 for the ideal class number
divisibility by 3.

Let f ∈ Fq[T ] \ Fq, a ∈ F
∗
q , and M = f6 + a2. If M is monic and

squarefree, then the ideal class number of the real quadratic function field

k(
√

M) is divisible by 3.

In Corollary 2.8, we let 4t = f6+a2+27 such that f is a monic polynomial
in Fq[T ] \ Fq and a ∈ F

∗
q ; so d = 4t − 27 = f6 + a2. Then certainly such
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t satisfies all the conditions (with condition (iii)) in Corollary 2.8. It thus

follows that the ideal class number of k(
√

d) = k(
√

f6 + a2) is divisible by 3.

3. Divisor class number divisibility by 3. Let K(
√

d) with d =
4t − 27 be defined as in Section 2, and let q be an odd prime such that
q ≡ −1 (mod 3), so that ζ3 /∈ Fq. In this section we work on the divisor
class numbers of relative quadratic function fields F in terms of divisibility
by 3. Basically, we use the relation between the divisor class group and the
ideal class group, some results on the divisor class group rank in [7], and the
results obtained in Section 2.

If A is an abelian group and m is a positive integer, the m-rank of A
is defined to be the maximal number r such that A contains a subgroup
isomorphic to the direct sum of r copies of Z/mZ. We define A(m) as the
maximal subgroup of A of exponent m. In fact A(m) ≃ A/Am.

The composite field of K(ζ3) and F has another geometric quadratic
extension F ′ of K. In fact, F and F ′ are related by reflection characters

(refer to [4] for details), and their 3-ranks of the ideal class groups can be
compared as in Theorem 3.1 below. This is a special case of [7, Theorem 3.3]
(or refer to [4]), so the proof is omitted. It compares the 3-ranks of two ideal
class groups ClF and ClF ′ .

Theorem 3.1. Let r be the 3-rank of ClF , r′ be the 3-rank of ClF ′ , and

let the degree of ℘∞ be odd. Then r′ = r or r′ = r + 1.

We also have a clear relationship between two divisor class groups JF

and JF ′ (a special case of [7, Theorem 2.1]):

Theorem 3.2. Let q be an odd prime such that q ≡ −1 (mod 3). Then

JF (3) is isomorphic to JF ′(3).

We can deduce the following lemma from Theorem 1.1 (or refer to [7,
Lemma 2.5]).

Lemma 3.3. Let F be a quadratic extension of K such that ℘∞ in K
is ramified or inert in F and deg(℘∞) is not divisible by 3. Then JF (3) ≃
ClF (3).

What follows is the main result of this section. For any quadratic ex-
tension of K such that there is only one prime in F lying above ℘∞, we
obtain sufficient and necessary conditions for the divisor class number of F
to be divisible by 3. On the other hand, for any quadratic extension of K
such that ℘∞ splits completely in F , we also find necessary conditions for
its divisor class number divisibility by 3.

Theorem 3.4. Let F be a quadratic extension of K such that deg(℘∞)
is odd and is not divisible by 3. Then we have the following two cases:
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Assume that there is only one prime in F lying above ℘∞ (that is, ℘∞

is inert or ramified in F ). Then the divisor class number hdiv(F ) of F is

divisible by 3 if and only if F can be represented as K(
√

d) such that d is

defined as in Theorem 2.1 (with condition (i) or (ii)).

Let ℘∞ split completely in F . If F can be represented as K(
√

d) such

that d is defined as in Theorem 2.1 with condition (iii), then the divisor

class number hdiv(F ) of F is divisible by 3.

Proof. We first assume that ℘∞ is inert or totally ramified in F/K. Then
F is imaginary, so the regulator of F is trivial. From Lemma 3.3, it follows
immediately that ClF (3) ≃ JF (3). If F can be written as K(

√
d) such that

d is defined as in Theorem 2.1 with condition (i) or (ii), then 3 |hid(F ) by
Theorem 2.1. It thus follows immediately that 3 |hdiv(F ) since ClF (3) ≃
JF (3). For the converse, assuming that 3 |hdiv(F ), we have 3 |hid(F ) since

ClF (3) ≃ JF (3). Thus, from Theorem 2.1, F must be represented as K(
√

d)
such that d is defined as in Theorem 2.1 with condition (i) or (ii).

Now we assume that ℘∞ splits completely in F/K. Then it is easy to
see that ℘∞ is inert or totally ramified in F ′/K (refer to [7, Lemma 2.5]).

Then if F can be written as K(
√

d) such that d is defined as in Theorem 2.1
with condition (iii), then 3 |hid(F ) by Theorem 2.1. This implies that r ≥ 1,
thus r′ ≥ 1 by Theorem 3.1, i.e. ClF ′ contains Z/3Z as a subgroup. We have
ClF ′(3) ≃ JF ′(3) by Lemma 3.3. From Theorem 3.2 we also have JF ′(3) ≃
JF (3), therefore JF (3) contains Z/3Z as a subgroup; so 3 |hdiv(F ).

In particular, when the base field K is just a rational function field
k = Fq(T ), we can obtain necessary and sufficient conditions for the divi-
sor class number of F to be divisible by 3 with an additional condition for
the real quadratic case. Therefore, if the base field K is a rational func-
tion field Fq(T ), then the result of the following corollary is stronger than
Theorem 3.4.

Corollary 3.5. Let k be a rational function field Fq(T ), and F be

a quadratic function field. Then the divisor class number hdiv(F ) of F is

divisible by 3 if and only if F can be represented as k(
√

d) with d defined as

in Corollary 2.8.

For the proof of Corollary 3.5 we need the following result in [5] on the
condition distinguishing the 3-rank difference between two ideal class groups
ClF and ClF ′ . This is a special case of the result in [5, Theorem 3.1].

Theorem 3.6. Let F and F ′ be quadratic function fields defined as be-

fore, F be real , and F ′ be imaginary. If 3 does not divide the regulator R of

F , then r′ = r. Equivalently , if r′ = r + 1, then 3 divides R.
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Proof of Corollary 3.5. We have two possible cases: either F is imaginary,
or F is real. It is sufficient to show the sufficient condition for the divisor
class number of F to be divisible by 3 when F is real; the other case follows
immediately from Theorem 3.4.

If 3 |hdiv(F ), then JF (3) contains Z/3Z as a subgroup. In fact, JF (3) ≃
JF ′(3) by Theorem 3.2. Furthermore, JF ′(3) ≃ ClF ′(3) by Lemma 3.3; this
implies that r′ ≥ 1. From Theorem 3.6, we have r′ = r since the regulator
of F is not divisible by 3. Thus, r ≥ 1, that is, 3 |hid(F ). Therefore, from

Theorem 2.1, F can be represented by K(
√

d) as described in Corollary 2.8.
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