
ACTA ARITHMETICA

121.3 (2006)

Extreme values of the Riemann zeta-function

on short zero intervals
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R. R. Hall (York)

1. Introduction. We are interested in the distribution of the extreme
values taken by the function |ζ(1/2 + it)| between adjacent zeros, condi-
tional on the zero spacing. This study was initiated in [5], and continued by
Steuding [7]. Suppose that {tn : n ∈ N} denotes the sequence of zeros in R

+

counted according to multiplicity and arranged in non-decreasing order, and
N0(T ) := card{n : 0 < tn ≤ T}. We write ln := tn+1−tn, and we consider the
intervals (tn, tn+1) satisfying the condition ln ≤ 2πθ/log tn; these are rela-
tively short if θ ∈ R

+ is small, because we expect thatN0(T ) ∼ (T/2π) log T ,
so that ln equals approximately 2π/log tn on average, moreover we know un-
conditionally that N0(T ) ≍ T log T . The question arises whether the zeta-
function is also relatively small on such intervals, or if it has tall spikes, how
often these occur. A complication in this problem is that we do not know
the frequency of these short intervals. According to Montgomery’s pair cor-
relation conjecture, the number of the intervals specified above with tn ≤ T
is ≪ θ3N0(T ), but actually nothing has been proved in this direction.

Following [5], we define

Mn := max{|ζ(1/2 + it)| : tn ≤ t ≤ tn+1},(1)

M (k)(T, θ) :=
∑

n≤N

{

M2k
n : ln ≤ 2πθ

log T

}

(k ≥ 0).(2)

In the sum (2), N = N0(T ). Also M (k)(T,∞) denotes the sum in which ln
is unrestricted. In [5], we showed that

(3) M (k)(T, θ) ≤ Hk(θ){1 +O(1/log T )}T logk2+1 T (k = 1, 2)

where Hk(θ) is an increasing, continuous, bounded function satisfying, in
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the two cases,

(4)

H1(θ) =
π3θ3

480

(

0 < θ ≤ θ1 =
5
√

2

π
√

3

)

,

H2(θ) =
πθ3

840

(

0 < θ ≤ θ2 =

√
35

π
√

3

)

.

In the range θk < θ <∞, each Hk(θ) is a rather complicated transcendental
function, which was evaluated for some typical values and which levels off
towards the value obtained in the unrestricted case, respectively:

(5)

H1(∞) =
5 + 2

√
10

3
√

75 + 60
√

10
= .23200260 . . . ,

H2(∞) =
28 +

√
2086

6π2
√

2940 + 210
√

2086
= .10968770 . . . /π2.

The first of the constants in (5) is not far from the best possible since
Conrey and Ghosh [2] established that, on the Riemann Hypothesis, actually

(6) M (1)(T,∞) =

{

e2 − 5

4π
+ o(1)

}

T log2 T

(

e2 − 5

4π
= .19011504 . . .

)

;

probably there is a similar formula when h = 2 with a constant not much
smaller than that given in (5). Conrey [1] showed that

(7)

{
√

21

90π2
+ o(1)

}

T log5 T ≤M (2)(T ) ≤
{
√

15

30π2
+ o(1)

}

T log5 T,

these constants being .0509175 . . . /π2 and .1290994 . . . /π2 respectively. The
upper bound in (7) is unconditional but the lower bound depends on the
hypothesis that Hardy’s function Z(t) has only one stationary point in each
interval (tn, tn+1); it is well known that this follows from the Riemann Hy-
pothesis. For small θ we have Hk(θ) ≪ θ3 from (4), and recently Steuding
[7] has given a simpler and more transparent proof of this result in the case
k = 2, albeit with a weaker constant π/140. He also obtains H1(θ) ≤ πθ/6.
I cannot improve my bound for H1(θ) for any value of θ, but I offer the
following result about H2(θ).

Theorem 1. The inequality (3) is valid with

(8) H2(θ) =
π3θ5

100800

(

θ ≤ θ2 =
6
√

14

π
√

17
= 1.73316908 . . .

)

.

In the range θ2 ≤ θ < ∞, H2(θ) increases continuously towards the limit

.1079199/π2, with some values given in the following table.
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Table 1

τ ψ(τ) u θ π2H2(θ)

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

5

4.88903944 . . .

4.58070935 . . .

4.12676086 . . .

3.57041875 . . .

2.93619379 . . .

2.24438114 . . .

1.52929734 . . .

.84806601 . . .

.28526769 . . .

0

0

.03656627 . . .

.07223527 . . .

.10666825 . . .

.14059931 . . .

.17579172 . . .

.21472579 . . .

.26061358 . . .

.31755016 . . .

.38748063 . . .

.44061115 . . .

1.7331690 . . .

1.7468410 . . .

1.7867108 . . .

1.8472815 . . .

1.9182403 . . .

1.9892810 . . .

2.0550451 . . .

2.1186181 . . .

2.2024813 . . .

2.4188151 . . .

∞

.04747811 . . .

.04935892 . . .

.05492413 . . .

.06350647 . . .

.07343739 . . .

.08269191 . . .

.08999126 . . .

.09531191 . . .

.09968077 . . .

.10440673 . . .

.10791999 . . .

The first two columns are explained in the course of the proof below.
The improvement obtained over the results in [5] decreases as θ increases: for
example the new bound is better by a factor 7/72 at the old θ2 = π−1

√

35/3
but at infinity the results are barely distinguishable.

The correct interpretation of this result is not clear. We now have H1(θ)
≪ θ3 and H2(θ) ≪ θ5. If these bounds represented the true orders of mag-
nitude then it would be awkward to match them with the pair correlation
conjecture; indeed, H1(θ) would be essentially the same as the frequency of
the short intervals and for this to happen, the behaviour of the Mn would
have to be more or less independent of θ. An alternative model would be that
the Mn were usually smaller on these short intervals, with occasional large
spikes dominating the sumM (1)(T, θ). In either scenarioH2(θ) would appear
to have to be of the order at least θ3, whereas we know that H2(θ) ≪ θ5.

As in [5] our method involves an inequality relating the maximum mod-
ulus of a function on an interval between zeros to certain integral means of
the function and some of its derivatives. The new inequality occupies most
of the paper. It involves the parameters λ, µ, ν which ideally would be cho-
sen optimally, however I am not yet able to prove the inequality in the most
general case; I choose some parameters that I can cope with, which may not
be optimal. This affects the various constants given above and Table 1, but
not the exponent 5 of θ.

2. An extremal problem. The results in [5] depended on the following
inequality.

Lemma 1. Let y(x) be real-valued on [a, b], y(a) = y(b) = 0. Suppose

that y is twice differentiable, y′′ ∈ L2[a, b], and that
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(9)

b\
a

y(x)2 dx = A,

b\
a

y′(x)2 dx = B,

b\
a

y′′(x)2 dx = C.

Put M := max{|y(x)| : a < x < b}. Then, for arbitrary µ > λ > 0, we have

M2 ≤ λ2µ2A+ (λ2 + µ2)B + C

2(µ2 − λ2)
(10)

×
{

1

λ
tanh

λL

2
− 1

µ
tanh

µL

2

}

(L := b− a).

There are two useful features here: first that upper bound is linear in A,
B and C, which is essential for the application, and second that the factor
involving L on the right is ≪ L3 for small L. The inequality is sharp in the
sense that it becomes false in general if any factor < 1 be introduced on the
right-hand side. The question as to whether a sharp bound for M in terms
of A,B,C (in the case that (9) is internally consistent) may be derived from
(10) by choosing λ and µ in an optimal fashion, is interesting in itself but
not relevant to the application to the zeta-function (because we should, in
optimizing, lose the linearity in A,B,C).

The idea in [5] was to apply Lemma 1 with [a, b] = [tn, tn+1] and y =
Z,Z2 respectively to bound the sums M (1)(T, θ) and M (2)(T, θ). I have
nothing to add when k = 1, but observe now that this strategy disregards
some information when k = 2, namely that in this case y = Z2 has double

zeros at tn and tn+1. With this in mind, we look for a version of Lemma 1
containing the extra hypothesis that y′(a) = y′(b) = 0, and it emerges that
(9) may be usefully supplemented by the equation

(11)

b\
a

y′′′(x)2 dx = D;

clearly we need to add the hypothesis that y′′ is differentiable and y′′′ ∈
L2[a, b]. Since these moments of Z(t) and its derivatives may all be evaluated,
these are acceptable prices. We want an inequality corresponding to Lemma1
of the following shape, in which the factor F (λ, µ, ν;L) on the right is sharp
and, for fixed λ, µ, ν, has the property that F (λ, µ, ν;L)≪L5 when L→ 0.

Conjectural inequality. Let y(x) be real-valued on [a, b] and y(a)
= y′(a) = y(b) = y′(b) = 0. Suppose that y is three times differentiable,
y′′′ ∈ L2[a, b], and that

(12)

b\
a

y(x)2 dx = A,

b\
a

y′′(x)2 dx = C,

b\
a

y′(x)2 dx = B,

b\
a

y′′′(x)2 dx = D.
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Put M := max{|y(x)| : a < x < b}. Then, for arbitrary ν > µ > λ > 0, we

have

M2 ≤ {λ2µ2ν2A+ (λ2µ2 + µ2ν2 + ν2λ2)B + (λ2 + µ2 + ν2)C +D}(13)

× F (λ, µ, ν;L),

in which L = b− a.

In order to define F we introduce the functions

C(λ, µ, ν; t) :=
coth(λt/2)

(µ2 − λ2)(ν2 − λ2)λ
(14)

+
coth(µt/2)

(ν2 − µ2)(λ2 − µ2)µ
+

coth(νt/2)

(λ2 − ν2)(µ2 − ν2)ν
,

T (λ, µ, ν; t) :=
tanh(λt/2)

(µ2 − λ2)(ν2 − λ2)λ
(15)

+
tanh(µt/2)

(ν2 − µ2)(λ2 − µ2)µ
+

tanh(νt/2)

(λ2 − ν2)(µ2 − ν2)ν
.

Notice that in each of the sums (14) and (15), there is one negative term,
in the middle. As t ∈ R

+ increases, C(λ, µ, ν; t) decreases from ∞, and
T (λ, µ, ν; t) increases from 0, toward the common limit

(16)
λ+ µ+ ν

λµν(λ+ µ)(µ+ ν)(ν + λ)
.

To see the monotonicity property of T , observe that the function sech2 √x
is a convex function of x, which implies that

(17) sech2 µt

2
≤ ν2 − µ2

ν2 − λ2
sech2 λt

2
+
µ2 − λ2

ν2 − λ2
sech2 νt

2

and the result follows on differentiating T . A similar argument shows that
C is decreasing, actually convex on R

+. For this we prove first that the
function

(18) y(x) :=
√
x cosech2 √x coth

√
x

is a convex function of x. We have, noticing that
√
x coth

√
x ≥ 1 on the

second line,

(19) y′′(x) sinh4 √x

=

{

1

2
√
x
− 1

8x
√
x

}

sinh 2
√
x− 1

4x
cosh 2

√
x− 1

2x
+

3√
x

coth
√
x

≥
{

1

2
√
x
− 1

8x
√
x

}

sinh 2
√
x− 1

4x
cosh 2

√
x+

5

2x

=
2

x
+ d0 + d1x+ d2x

2 + · · · (say),
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and it emerges that all the coefficients dj are positive. An inequality similar
to (17) then establishes that C ′′(λ, µ, ν; t) > 0.

Since T (λ, µ, ν; t) is increasing and bounded it cannot be convex: it is
intuitive, but we shall not prove, that T ′′ has one sign change from positive
to negative. We have the expansions

(20)
C(λ, µ, ν; t) =

2

λ2µ2ν2t
+

t5

15120
+ · · · ,

T (λ, µ, ν; t) =
t5

240
− 17(λ2 + µ2 + ν2)t7

40320
+ · · ·

for small t, together with the relation

(21) C(λ, µ, ν; t) + T (λ, µ, ν; t) = 2C(λ, µ, ν; 2t).

We define

f(λ, µ, ν; t) :=

{

1

C(λ, µ, ν; t)
+

1

T (λ, µ, ν; t)

}

(22)

=
240

t5
+

170(λ2 + µ2 + ν2)

7t3
+ · · · ,

F (λ, µ, ν;L) :=
1

f(λ, µ, ν;L/2)
=

L5

7680
− 17(λ2 + µ2 + ν2)L7

5160960
+ · · · ,(23)

noticing that for δ ∈ R
+ we have the scaling formulae

(24)
C(λ, µ, ν; t) = δ5C(δλ, δµ, δν; t/δ), T (λ, µ, ν; t) = δ5T (δλ, δµ, δν; t/δ),

f(λ, µ, ν; t) = δ−5f(δλ, δµ, δν; t/δ), F (λ, µ, ν; t) = δ5F (δλ, δµ, δν;t/δ).

Finally we state, for each fixed triple λ, µ, ν:

Hypothesis A(λ, µ, ν). The function f(λ, µ, ν; t) is convex for t ∈ R
+.

This seems particularly awkward to prove and it is the sticking point in
our method. A consequence of the hypothesis is that f(λ, µ, ν; t) is decreas-
ing, as it converges to a finite limit as t → ∞. Thus F (λ, µ, ν; t) increases
with t.

Remark 1. The scaling formulae (24) show that A(λ, µ, ν) and
A(δλ, δµ, δν) are equivalent for every δ > 0. So we can normalize, for exam-
ple by assuming that λ = 1.

The key result required for our application is

Theorem 2. Suppose that ν > µ > λ > 0 are such that Hypothe-

sis A(λ, µ, ν) is valid. Then the conjectural inequality (13) holds for every

function y satisfying the conditions stated above together with (12).
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3. An easier extremal problem. In this section we tackle a supple-
mentary problem, which we can solve completely, essentially by moving the
maximum to one end of the interval.

Theorem 3. Suppose that y(x) is real-valued and three times differen-

tiable on [0, t], that y′′′ ∈ L2[0, t], and that y(0) = M and y′(0) = y(t) =
y′(t) = 0. Then if λ, µ, ν are distinct positive numbers we have

(25)

t\
0

{y′′′(x)2 + (λ2 + µ2 + ν2)y′′(x)2

+ (λ2µ2 + µ2ν2 + ν2λ2)y′(x)2 + λ2µ2ν2y(x)2} dx ≥ 1

2
f(λ, µ, ν; t)M2.

Notice that we do not require M to be the maximum value of |y| here,
but it is intuitive that it actually is so in the extremal case, moreover that y
is then positive and decreasing, with y′′ changing from negative to positive
at some point of the interval. We do not assume any of these propositions.

Proof of Theorem 3. Denote the integral on the left of (25) by J(y). We
expand y′′′(x) as a Fourier sine series on [0, t] (with no claims about con-
vergence). We may integrate this series term-by-term to obtain the Fourier
cosine series of y′′(x), and we notice that there is no constant term, because
y′(0) = y′(t). Integrating term-by-term again we obtain the Fourier sine
series of y′(x), and, after a final integration we have (say)

(26) y(x) =
1

2
a0 + a1 cos

πx

t
+ a2 cos

2πx

t
+ a3 cos

3πx

t
+ · · ·

with equality in (26) because y has bounded variation and is continuous. In
particular, we have

(27) M =
1

2
a0 + a1 + a2 + a3 + · · · , 0 =

1

2
a0 − a1 + a2 − a3 + · · · ,

whence

(28)
1

2
M =

1

2
a0 + a2 + a4 + · · · = a1 + a3 + a5 + · · · .

Put

b(n) :=
π6n6

t6
+ (λ2 + µ2 + ν2)

π4n4

t4
(29)

+ (λ2µ2 + µ2ν2 + ν2λ2)
π2n2

t2
+ λ2µ2ν2

=

(

π2n2

t2
+ λ2

)(

π2n2

t2
+ µ2

)(

π2n2

t2
+ ν2

)

,
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and observe that

(30) J(y) =
t

2

{

1

2
b(0)a2

0 +
∞

∑

n=1

b(n)a2
n

}

.

We apply Cauchy’s inequality to each part of (28), to obtain

(31)
1

4
M2≤

{

1

2
b(0)a2

0 + b(2)a2
2 + b(4)a2

4 + · · ·
}{

1

2b(0)
+

1

b(2)
+

1

b(4)
+ · · ·

}

and

(32)
1

4
M2 ≤{b(1)a2

1 + b(3)a2
3 + b(5)a2

5 + · · · }
{

1

b(1)
+

1

b(3)
+

1

b(5)
+ · · ·

}

.

We deduce from (30)–(32) that

J(y) ≥ t

8

{(

1

2b(0)
+

1

b(2)
+

1

b(4)
+ · · ·

)−1

(33)

+

(

1

b(1)
+

1

b(3)
+

1

b(5)
+ · · ·

)−1}

M2.

Recall that (except at the poles)

(34) π cothπx =
1

x
+ 2x

∞
∑

n=1

1

n2 + x2
.

In order to employ (34) it is convenient to write λ1 := tλ/π etc., so that we
have

(35)
1

2b(0)
+

1

b(2)
+ · · ·

=
t6

π6

{

1

2λ2
1µ

2
1ν

2
1

+
∑

even n∈N

1

(n2 + λ2
1)(n

2 + µ2
1)(n

2 + ν2
1)

}

=
t6

π6

{

1

(µ2
1 − λ2

1)(ν
2
1 − λ2

1)

{

1

2λ2
1

+
1

22 + λ2
1

+
1

42 + λ2
1

+ · · ·
}

+
1

(ν2
1 − µ2

1)(λ
2
1 − µ2

1)

{

1

2µ2
1

+
1

22 + µ2
1

+
1

42 + µ2
1

+ · · ·
}

+
1

(λ2
1 − ν2

1)(µ2
1 − ν2

1)

{

1

2ν2
1

+
1

22 + ν2
1

+
1

42 + ν2
1

+ · · ·
}}

by partial fractions. We write
∑(3) followed by the first of three terms to

indicate a sum like (35) where the second and third terms are obtained by
permuting the variables λ1, µ1, ν1 cyclically. We apply (34), and recall (14),
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to find that the sum in (35) equals

(36)
t6

4π5

∑(3) 1

(µ2
1 − λ2

1)(ν
2
1 − λ2

1)λ1
coth

λ1π

2

=
t

4

∑(3) 1

(µ2 − λ2)(ν2 − λ2)λ
coth

λt

2

=
t

4
C(λ, µ, ν; t).

A similar argument involving (15) establishes that

(37)
1

b(1)
+

1

b(3)
+

1

b(5)
+ · · ·

=
t

4

∑(3) 1

(µ2 − λ2)(ν2 − λ2)λ
tanh

λt

2
=
t

4
T (λ, µ, ν; t),

and we insert (36) and (37) into (33) to obtain (25).
The inequality in (25) is sharp, moreover we may identify the extremal

function as

y(x) =
M

2

∑(3) 1

(µ2 − λ2)(ν2 − λ2)λ
(38)

×
{

coshλ(t/2 − x)

C(λ, µ, ν; t) sinh(λt/2)
+

sinhλ(t/2 − x)

T (λ, µ, ν; t) cosh(λt/2)

}

.

To track this function down we observe that in the extreme case, each appli-
cation of Cauchy’s inequality in (31) and (32) must be sharp; that is to say,
an must be proportional to 1/b(n) when n is even or odd (or zero), but the
constants of proportionality may be (and are) different in the various cases,
and are determined by the boundary conditions y(0) = M , y(t) = 0. It is
easy to see in (38) that y′(0) = y′(t) = 0, as the hyperbolic functions cancel
at the end-points when this expression is differentiated. This completes the
proof.

Remark 2. We expect the extremal function to be a linear combination
of the six functions e±λx etc. because these are the independent solutions of
the Euler–Lagrange equation associated with (25).

4. Proof of Theorem 2. We may assume that a = 0, b = L. The
boundary conditions are y(0) = y(L) = y′(0) = y′(L) = 0 and we put

I(y) :=

L\
0

{y′′′(x)2 + (λ2 + µ2 + ν2)y′′(x)2(39)

+ (λ2µ2 + µ2ν2 + ν2λ2)y′(x)2 + λ2µ2ν2y(x)2} dx.
Moreover we suppose that |y(x)| attains its maximum value M at the point
x = t, indeed that y(t) = M , replacing y by −y if necessary. Then y′(t) = 0
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and we see that we can split the integral in (39) into two ranges, [0, t] and
[t, L], writing

(40) I(y) =: I1(y) + I2(y).

On each range we have a problem of the type considered in Section 3. In
the first range we apply Theorem 3 to the function y(t− x) (0 ≤ x ≤ t) to
deduce from (22) that

(41) I1(y) ≥ 1
2f(λ, µ, ν; t)M2,

similarly we apply Theorem 3 to the function y(x− t) (t ≤ x ≤ L) to obtain

(42) I2(y) ≥ 1
2f(λ, µ, ν;L− t)M2,

whence

(43) I(y) ≥ 1
2{f(λ, µ, ν; t) + f(λ, µ, ν;L− t)}M2.

We do not know the value of t and so we require the minimum of the right-
hand side as a function of t. On the assumption of Hypothesis A(λ, µ, ν) we
see that this occurs in the middle of the range, that is, I(y) ≥ f(λ, µ, ν;L/2).
We multiply this inequality by F (λ, µ, ν;L) as defined in (23) to deduce (13)
as required. This completes the proof.

5. A special case. If the ratios λ : µ : ν are rational then we can find κ
(and suppose it to be as large as possible) so that λ, µ and ν are integer
multiples of κ, whence tanh(λt/2), tanh(µt/2), tanh(νt/2) are rational func-
tions of tanh(κt/2). So therefore are C(λ, µ, ν; t) and T (λ, µ, ν; t); moreover
if we put tanh(κt/2) = τ then clearly dt/dτ is also a rational function of τ .
This means that in this case, Hypothesis A(λ, µ, ν) reduces to an elementary,
if perhaps lengthy, calculus problem.

Consider the case µ = 2λ, ν = 3λ, in which κ = λ and so

(44)

C(λ, 2λ, 3λ; t) =
1

λ5

{

1

24τ
− 1

30
· 1 + τ2

2τ
+

1

120
· 1 + 3τ2

3τ + τ3

}

=
5 − τ2

60λ5(3τ + τ3)
,

T (λ, 2λ, 3λ; t) =
1

λ5

{

τ

24
− 1

30
· 2τ

1 + τ2
+

1

120
· 3τ + τ3

1 + 3τ2

}

=
2τ5

15λ5(1 + τ2)(1 + 3τ2)
.

We have

(45) C(λ, 2λ, 3λ; t)−1 + T (λ, 2λ, 3λ; t)−1

=
15λ5{5 + 20τ2 + 14τ4 + 20τ6 + 5τ8}

2τ5(5 − τ4)
,
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and we denote the right-hand side of (45) by (15λ5/2)g(τ). For this to be
a convex function of t it is necessary and sufficient that for 0 < τ < 1 we
should have

(46) (1 − τ2)g′′(τ) − 2τg′(τ) > 0.

A calculation shows that

(47) −g′(τ) =
5(1 + τ2)(1 − τ2)(25 + 60τ2 + 30τ4 + 12τ6 + τ8)

τ6(5 − τ4)2
> 0.

Now we differentiate (47) logarithmically to obtain

(48)
g′′(τ)

g′(τ)
=

−4τ3

1 − τ4
− 6

τ
+

8τ3

5 − τ4
+

120τ + 120τ3 + 72τ5 + 8τ7

25 + 60τ2 + 30τ4 + 12τ6 + τ8
.

The third and fourth terms increase on [0, 1] and so contribute at most 4.5
to the sum, whereas the first and second terms contribute less than −6.
Hence the right-hand side of (48) is negative and since g′(τ) is also negative,
we find that g′′(τ) is positive, that is, both terms in (46) are positive. This
is all we need.

6. Proof of Theorem 1. We suppose that λ, µ, ν are such that Hy-
pothesis A(λ, µ, ν) is valid and apply Theorem 2 with y = Z2, a = tn,
b = tn+1 =: a+ ln. Since F−1 = f by (23), we see that (13) yields

M4
nf(λ, µ, ν; ln) ≤

tn+1\
tn

{

λ2µ2ν2Z(t)4+(λ2µ2 +µ2ν2 +ν2λ2)

{

d

dt
Z(t)2

}2

(49)

+ (λ2 + µ2 + ν2)

{

d2

dt2
Z(t)2

}2

+

{

d3

dt3
Z(t)2

}2}

dt.

We add all these inequalities, to obtain

(50)
N

∑

n=1

M4
nf(λ, µ, ν; ln) ≤

U\
0

{

λ2µ2ν2Z(t)4 + · · · +
{

d3

dt3
Z(t)2

}2}

dt,

in which U := tN+1. Hardy and Littlewood [6] proved that tN+1 − tN ≪ε

t
1/4+ε
N and so we have T < U ≤ T + T 1/3 for large T . (In fact all we require

in what follows is that U ≤ T +O(T/log T ).)

Lemma 2. We have

(51)

T\
0

{

dk

dtk
Z(t)2

}2

dt

=
12

(2k + 1)(2k + 2)(2k + 3)(2k + 4)π2

{

1 +O

(

1

log T

)}

T log2k+4 T

for each k = 0, 1, . . . as T → ∞.
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We shall not prove this result here, but remark that we have derived the
form of the main term from Conrey’s formula [1], which is purely asymptotic,
and relied on the method set out in [3] to provide an error term.

Put λ = u log T, µ = v log T, ν = w log T , and recall that A(λ, µ, ν) and
A(u, v, w) are equivalent. Then (50) and (51) give

(52)
N

∑

n=1

M4
nf(λ, µ, ν; ln) ≤ 12

π2

{

u2v2w2

24
+
u2v2 + v2w2 + w2u2

360

+
u2 + v2 + w2

1680
+

1

5040

}{

1 +O

(

1

log T

)}

T log10 T.

By the scaling formulae (24), we havef(λ, µ, ν; ln)=f(u, v, w;ln log T ) log5 T.
Since f decreases, we have f(u, v, w; 2πθ) ≤ f(u, v, w; ln log T ) whenever
ln ≤ 2πθ/logT and so we may deduce from (52) that

(53)
∑

n≤N

{

M4
n : ln ≤ 2πθ

log T

}

≤ 1

2π2
F (u, v, w; 2πθ)

{

u2v2w2 +
u2v2 +v2w2 +w2u2

15
+
u2 +v2 +w2

70
+

1

210

}

×
{

1 +O

(

1

log T

)}

T log5 T.

We also have
∑

n≤N

M4
n ≤ 1

2π2
F (u, v, w;∞)

{

u2v2w2 +
u2v2 + v2w2 + w2u2

15
(54)

+
u2 + v2 + w2

70
+

1

210

}{

1 +O

(

1

log T

)}

T log5 T,

where, from (16), (22) and (23),

(55) F (u, v, w;∞) :=
u+ v + w

2uvw(u+ v)(v + w)(w + u)
.

At this point our method is restricted by the fact that we have verified
Hypothesis A(λ, µ, ν) in the case 1 : 2 : 3 only. We put v = 2u, w = 3u and
obtain

(56)
∑

n≤N

{

M4
n : ln ≤ 2πθ

log T

}

≤ h(θ, u)

{

1 +O

(

1

log T

)}

T log5 T,

where

(57) h(θ, u) =
1

2π2
F (u, 2u, 3u; 2πθ)

{

36u6 +
49

15
u4 +

1

5
u2 +

1

210

}

.
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In the unrestricted case (55) implies

(58) h(∞, u) =
1

240π2

{

36u+
49

15u
+

1

5u3
+

1

210u5

}

.

The next step is to choose u = u(θ) to minimize h(θ, u) for each fixed θ ∈ R
+

and for θ = ∞: we find that u(∞) = .44061115 . . ., which yields H2(θ) =
.010934581 . . ., just marginally better than the .011113587 . . . obtained in [5].

Let us turn to (56). From the definitions (14) and (15), we have

(59) C(u, 2u, 3u;πθ)

=

{

1

24
coth

πuθ

2
− 1

30
cothπuθ +

1

120
coth

3πuθ

2

}

u−5 ∼ 1

18u6πθ
,

(60) T (u, 2u, 3u;πθ)

=

{

1

24
tanh

πuθ

2
− 1

30
tanhπuθ +

1

120
tanh

3πuθ

2

}

u−5 ∼ π5θ5

240
,

for fixed θ ∈ R
+ and u→ 0. From (22) and (23),

(61) F (u, 2u, 3u; 2πθ) ∼ π5θ5

240

{

1 − 17

24
π2θ2u2 + · · ·

}

(θ ∈ R
+, u→ 0),

whence from (57),

(62) h(θ, 0) =
π3θ5

100800
(θ ∈ R

+).

We insert this into (56) to obtain the first part of Theorem 1.

Now we consider the minimization problem in (56). Put

(63) τ := tanh
πuθ

2
,

so that from (45), we have

(64) F (u, 2u, 3u; 2πθ) =
2τ5(5 − τ4)

15u5(5+20τ2 +14τ4 +20τ6 +5τ8)
(0≤ τ ≤ 1)

and

(65) h(θ, u)

=
τ5(5 − τ4)

15π2(5 + 20τ2 + 14τ4 + 20τ6 + 5τ8)

{

36u+
49

15u
+

1

5u3
+

1

210u5

}

.

As u increases, τ increases and so does the rational function of τ in (65) (see
the proof of A(1, 2, 3) above). So we must choose u in the range where the
second factor in (65) decreases, say 0 ≤ u ≤ u2. Notice that u2 = u(∞) =
.44061115 . . ..
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We differentiate h(θ, u) logarithmically with respect to u and find that

(66) u
h′(θ, u)

h(θ, u)

=

{

5 +
4τ4

5 − τ4
− 40τ2 + 56τ4 + 120τ6 + 40τ8

5 + 20τ2 + 14τ4 + 20τ6 + 5τ8

}

(1 − τ2)
arctanh τ

τ

− 5 + 126u2 + 686u4 − 7560u6

1 + 42u2 + 686u4 + 7560u6

=: ψ(τ) − φ(u) (say),

and h(θ, u) is decreasing if φ(u) > ψ(τ). It is easy to see by differentiation
that φ(u) decreases from 5 to 0 on the range [0, u2], also we have ψ(0) = 5,
ψ(1 − 0) = 0; we claim that ψ(τ) decreases on [0, 1], but this is a little
awkward. First we observe that the right-hand factor (1− τ2)τ−1 arctanh τ
decreases: if τ = tanh ξ it equals 2ξ/sinh 2ξ, which clearly decreases. We
write the left-hand factor in the form 5 − 4m(x) where x = τ2 and

(67) m(x) =
50x+ 65x2 + 120x3 + 22x4 − 50x5 − 15x6

(5 − x2)(5 + 20x+ 14x2 + 20x3 + 5x4)
,

so that m(0) = 0, m(1) = 3/4. After a calculation we find that

∆x
m′(x)

m(x)
= 10(1 − x)(125 + 450x+ 1675x2 + 3495x3(68)

+ 3625x4 + 1943x5 + 777x6 + 197x7 + 6x8 − 5x9)

where ∆ denotes the denominator of m′(x)/m(x), that is, the product of
the three factors in (67). We see from (68) that m(x) increases on [0, 1] and
so 5 − 4m(x) decreases. Thus ψ(τ) decreases as required. We deduce that
u = φ−1{ψ(τ)} is a one-to-one function mapping [0, 1] onto [0, u2].

We now simplify our calculations: rather than solve the equation g′(θ, u)
= 0 for fixed θ we compute ψ(τ) for a range of values of τ , as in Table 1,
and then solve the equation φ(u) = ψ(τ) for u. (This is a cubic equation for
u2, suitable for a calculator: it is an easy matter to enhance its output by
two or three significant figures.) Then we have, for this τ and u,

(69) θ =
1

πu
log

(

1 + τ

1 − τ

)

,

which yields the results listed in Table 1. Notice that τ and u tend to 0
together and θ converges to a limit θ2 which is computed by comparing the
Maclaurin expansions of ψ(τ) and φ(u). We find that θ2 = 6

√
14/π

√
17; for

θ ≤ θ2 we cannot improve on (62). The graph of H2(θ) must change from
convex to concave beyond (if not at) θ2 and indeed flatten off pretty quickly:
this is demonstrated by the table.
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A point of caution is that we have not demonstrated that for the values
of θ obtained in this calculation we have actually found the optimal u:
certainly we have ψ(τ)−φ(u) = 0 by construction, but it is conceivable that
this is not the only local minimum of h(u, θ). However the method leads to
an upper bound H2(θ) as required and I preferred it to a computer search
for a minimum.
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