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Some congruences for binomial coefficients

by

Tsuneo Ishikawa (Osaka)

1. Introduction. Throughout this paper e denotes an integer ≥ 3 and
p a prime ≡ 1 (mod e). The integer f is defined by p = ef + 1. For integers
r and s satisfying 1 ≤ s < r < e, we consider binomial coefficients of the
form

(rf
sf

)

. In the cases where p is represented by well known binary quadratic

forms, the congruences modulo p or p2 have been studied by many authors
(for example, see [3]). In particular, the congruence modulo p2 for e = 3, 4, 6
was explicitly obtained by Yeung in [7].

In the case of e = 5, Rajwade proved in [6] that

(1)

(

2f

f

)

+

(

3f

f

)

+ x ≡ 0 (mod p)

where x is given uniquely by Dickson’s equations

(2)

{

p = x2 + 50u2 + 50v2 + 125w2,

xw = v2 − 4uv − u2, x ≡ 1 (mod5).

The explicit formula for
(rf
sf

)

(mod p) for e = 5 was given by Hudson and

Williams in [3].

In this paper, we study the generalization of (1) for any e and the con-
gruences modulo p2, using Jacobi sums. The main theorem is Theorem 1 in
§3. In §4, §5, and §6, we obtain explicit formulas by applying our theorem
in the cases where e = 5, 7, and 8.

2. Jacobi sums. For a positive integer n we set ζn = exp(2π
√
−1/n).

For (a, e) = 1, we define the automorphism σa by σa(ζe) = ζa
e , and let P

denote any of the φ(e) prime ideals dividing p in the cyclotomic field Q(ζe).
We define a multiplicative character χe (mod p) of order e by

χe(n) =

{

ζa
e if n 6≡ 0 (modp), nfζa

e ≡ 1 (modP),

0 if n ≡ 0 (modp).
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For any positive integers r and s, the Jacobi sum Je(r, s) of order e is defined
by

Je(r, s) = −
p−1
∑

n=0

χe(n)rχe(1 − n)s.

Basic properties of Jacobi sums are as follows.

Proposition 1 (see [3]). We have

(a) Je(r, s) = Je(s, r),

(b) Je(r, s) = (−1)sfJe(e − r − s, s) for r + s < e,

(c) Je(r, s)Je(e − r, e − s) = p,

(d) Je(r, r) = σr(Je(1, 1)) for 1 ≤ r ≤ e − 1,

(e) Je(e − r, e − s) ≡ 0 (modP) for r + s < e,

(f)
(rf+sf

sf

)

≡ Je(r, s) (modP) for r + s < e.

The following proposition is important to determine the congruence mod-
ulo p2. It was proved by Yeung (see Proposition 4.1 of [7]).

Proposition 2. Let r + s < e and r ≥ s. Then
(

(r + s)f

sf

)

≡ Je(r, s)

{

1 + ((r + s)Br+s − rBr − sBs)
p

e

}

(modP2)

where Bt =
∑tf

i=1(1/i), 1 ≤ t ≤ e.

3. Main theorem

Theorem 1. Let e ≥ 3 be an integer and p = ef + 1 a prime. Then for

1 ≤ r ≤ e − 1 with (r, e) = 1,

∑

1≤i≤[e/2]
(i,e)=1

{

(e − 2i)

(

2if

if

)

+ 2i(−1)if

(

(e − i)f

if

)}

≡ e · trK/Q

(

2ℜJe(r, r) −
p

2ℜJe(r, r)

)

(mod p2),

where trK/Q(x) is the trace of x in the maximal real subfield K = Q(ζe+ζ−1
e )

of Q(ζe) over Q and ℜz = trQ(ζe)/K(z)/2 is the real part of z.

Proof. By Proposition 2, we have
(

2if

if

)

≡ Je(i, i)

{

1 + (2iB2i − 2iBi)
p

e

}

≡ Je(i, i)

{

1 + 2i(B2i − Bi)
p

e

}

(modP2).

Since Be =
∑p−1

i=1 (1/i) ≡ 0 (mod p), we obtain Be−i ≡ Bi (modp) and



Congruences for binomial coefficients 337

Be−2i ≡ B2i (modp). Then, by Proposition 2, we have
(

(e − i)f

if

)

≡ Je(e − 2i, i)

{

1 + ((e − i)Be−i − (e − 2i)Be−2i − iBi)
p

e

}

≡ Je(e − 2i, i)

{

1 − (e − 2i)(B2i − Bi)
p

e

}

(modP2).

Hence, by Proposition 1(b) we obtain

(3) (e − 2i)

(

2if

if

)

+ 2i(−1)if

(

(e − i)f

if

)

≡ eJe(i, i) (modP2).

Put Je(i, i) = Ri + Si

√
−1 ∈ Q(ζe), where Ri and Si are real numbers.

By Proposition 1(e), for any 1 ≤ i ≤ [e/2], we have

σe−1(Je(i, i)) = Je(e − i, e − i) = Ri − Si

√
−1 ≡ 0 (modP),

so Ri ≡ Si

√
−1 (modP). Then, by Proposition 1(c), we have

Ri − Si

√
−1 =

p

Ri + Si

√
−1

≡ p

2Ri
(modP2),

hence,

Je(i, i) ≡ 2Ri −
p

2Ri
(modP2).

Since
∑

1≤i≤[e/2]
(i,e)=1

σi(x) = trK/Q(x) ∈ Q, x ∈ K = Q(ζe + ζ−1
e ),

we have
∑

1≤i≤[e/2]
(i,e)=1

Je(i, i) =
∑

i

σi(Je(r, r)) ≡
∑

i

σi

(

2Rr −
p

2Rr

)

(mod p2)

≡ trK/Q

(

2ℜJe(r, r) −
p

2ℜJe(r, r)

)

(modp2),

where r is an integer satisfying 1 ≤ r ≤ e − 1 and (r, e) = 1.

By the reduction modulo p, we obtain the following corollary which is a
generalization of (1).

Corollary 1. For 1 ≤ r ≤ e − 1 with (r, e) = 1,

∑

1≤i≤[e/2]
(i,e)=1

(

2if

if

)

≡ trQ(ζe)/Q(Je(r, r)) (mod p).
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4. The case of e = 5. Let p be a prime ≡ 1 (mod5). The properties
of Jacobi sums of order 5 were shown by Dickson (see [2] and [3]). We know
that

J5(1, 1) = − 1

4
{x + u(2ζ5 + 4ζ2

5 − 4ζ3
5 − 2ζ4

5 )

+ v(4ζ5 − 2ζ2
5 + 2ζ3

5 − 4ζ4
5) + 5w

√
5}

= − 1

4
{x + 5w

√
5 +

√
−1(u

√

50 + 10
√

5 + v
√

50 − 10
√

5)},

where (x, u, v, w) is one of four solutions of (2). Therefore,

trK/Q

(

2ℜJe(1, 1) − p

2ℜJe(1, 1)

)

= trK/Q

(

−x + 5w
√

5

2
+

2p

x + 5w
√

5

)

≡ −x

(

1 − 4p

x2 − 125w2

)

(modp2).

Note that x and w2 are invariants under the change of the solution of (2).
By Theorem 1, we obtain the following theorem. Moreover, by Corollary 1,
we obtain the congruence (1). For p < 1000, the values of x, u, v, w are given
in [4].

Theorem 2. If p = 5f + 1 is prime and (x, w) is any solution of (2),
then
(

4f

2f

)

+ 2

(

4f

f

)

+ 3

(

2f

f

)

+ 4

(

3f

f

)

+ 5x

(

1 − 4p

x2 − 125w2

)

≡ 0 (mod p2).

5. The case of e = 7. Let p be a prime ≡ 1 (mod7). We consider the
triple of diophantine equations

(4)







































72p = 2a2
1 + 42(a2

2 + a2
3 + a2

4) + 343(a2
5 + 3a2

6),

12(a2
2 − a2

4 + 2a2a3 − 2a2a4 + 4a3a4)

+ 49(3a2
5 + 2a5a6 − 9a2

6) + 56a1a6 = 0,

12(a2
2 − a2

4 + 4a2a3 + 2a2a4 + 2a3a4)

+ 49(a2
5 + 10a5a6 − 3a2

6) + 28a1(a5 + a6) = 0,

a1 ≡ 1 (mod7).

This simultaneous system has six nontrivial solutions in addition to the two
trivial solutions (−6b1,±2b2,±2b2,∓2b2, 0, 0), where b1 and b2 are given by
p = b2

1 + 7b2
2 and b1 ≡ 1 (mod7). If (a1, a2, a3, a4, a5, a6) is one of the six

nontrivial solutions of (4), we know that for some r,

J7(r, r) = c1ζ7 + c2ζ
2
7 + c3ζ

3
7 + c4ζ

4
7 + c5ζ

5
7 + c6ζ6
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where

12c1 = −2a1 + 6a2 + 7a5 + 21a6,

12c3 = −2a1 + 6a4 − 14a5,

12c5 = −2a1 − 6a3 + 7a5 − 21a6,

12c2 = −2a1 + 6a3 + 7a5 − 21a6,

12c4 = −2a1 − 6a4 − 14a5,

12c6 = −2a1 − 6a2 + 7a5 + 21a6.

The other five nontrivial solutions correspond to Jacobi sums σi(J7(r, r)) for
2 ≤ i ≤ 6. These results were proved by Leonard and Williams in [5]. For
p < 1000, the values of a1, a2, a3, a4, a5, a6 are given in [4]. The right-hand
side of the congruence in Theorem 1 is

(σ1 + σ2 + σ3)(2Rr) + p
(σ1σ2 + σ2σ3 + σ3σ1)(2Rr)

(σ1σ2σ3)(2Rr)

where 2Rr = 2ℜJ7(r, r) = (σ1 + σ6)(J7(r, r)). By Theorem 1 and direct
calculation, we obtain the following theorem.

Theorem 3. If p = 7f + 1 is prime and (a1, a2, a3, a4, a5, a6) is any

nontrivial solution of (4), then
(

6f

3f

)

+ 2

(

6f

2f

)

+ 3

(

4f

2f

)

+ 4

(

5f

2f

)

+ 5

(

2f

f

)

+ 6

(

4f

f

)

+ 7

(

a1 −
18p(4a2

1 − 343(a2
5 + 3a2

6))

8a3
1 − 2058a1(a2

5 + 3a2
6) − 2041V

)

≡ 0 (mod p2)

where V = a3
5 − 27a2

5a6 − 9a5a
2
6 + 27a3

6.

The next corollary follows immediately from Corollary 1. It was shown
by Hudson and Williams in [3].

Corollary 2. If a1 is given by (4), then
(

2f

f

)

+

(

4f

f

)

+

(

4f

2f

)

+ a1 ≡ 0 (modp).

6. The case of e = 8. Let p be a prime ≡ 1 (mod8). We can find the
properties of Jacobi sums of order 8 in [1]. We know that

(5) J8(1, 1) = C + D
√
−2, C ≡ η (mod4)

where

η =

{

1 if 2 is a quartic residue (mod p),

−1 otherwise.

But, since σ3(
√
−2) =

√
−2 in Q(ζ8), we have J8(1, 1) = J8(3, 3). From (3),

we obtain

Theorem 4. If p = 8f + 1 is prime and C is given uniquely by (5),
then

3

(

2f

f

)

+ (−1)f

(

7f

f

)

≡
(

5f

2f

)

+ 3(−1)f

(

5f

3f

)

≡ 4

(

2C − p

2C

)

(mod p2).
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