Some congruences for binomial coefficients

by
Tsuneo Ishikawa (Osaka)

1. Introduction. Throughout this paper e denotes an integer ≥ 3 and p a prime $\equiv 1(\bmod e)$. The integer f is defined by $p=e f+1$. For integers r and s satisfying $1 \leq s<r<e$, we consider binomial coefficients of the form $\binom{r f}{s f}$. In the cases where p is represented by well known binary quadratic forms, the congruences modulo p or p^{2} have been studied by many authors (for example, see [3]). In particular, the congruence modulo p^{2} for $e=3,4,6$ was explicitly obtained by Yeung in [7].

In the case of $e=5$, Rajwade proved in [6] that

$$
\begin{equation*}
\binom{2 f}{f}+\binom{3 f}{f}+x \equiv 0(\bmod p) \tag{1}
\end{equation*}
$$

where x is given uniquely by Dickson's equations

$$
\left\{\begin{array}{l}
p=x^{2}+50 u^{2}+50 v^{2}+125 w^{2} \tag{2}\\
x w=v^{2}-4 u v-u^{2}, \quad x \equiv 1(\bmod 5)
\end{array}\right.
$$

The explicit formula for $\binom{r f}{s f}(\bmod p)$ for $e=5$ was given by Hudson and Williams in [3].

In this paper, we study the generalization of (1) for any e and the congruences modulo p^{2}, using Jacobi sums. The main theorem is Theorem 1 in $\S 3$. In $\S 4, ~ \S 5$, and $\S 6$, we obtain explicit formulas by applying our theorem in the cases where $e=5,7$, and 8 .
2. Jacobi sums. For a positive integer n we set $\zeta_{n}=\exp (2 \pi \sqrt{-1} / n)$. For $(a, e)=1$, we define the automorphism σ_{a} by $\sigma_{a}\left(\zeta_{e}\right)=\zeta_{e}^{a}$, and let \mathcal{P} denote any of the $\phi(e)$ prime ideals dividing p in the cyclotomic field $\mathbb{Q}\left(\zeta_{e}\right)$. We define a multiplicative character $\chi_{e}(\bmod p)$ of order e by

$$
\chi_{e}(n)= \begin{cases}\zeta_{e}^{a} & \text { if } n \not \equiv 0(\bmod p), n^{f} \zeta_{e}^{a} \equiv 1(\bmod \mathcal{P}) \\ 0 & \text { if } n \equiv 0(\bmod p)\end{cases}
$$

For any positive integers r and s, the Jacobi sum $J_{e}(r, s)$ of order e is defined by

$$
J_{e}(r, s)=-\sum_{n=0}^{p-1} \chi_{e}(n)^{r} \chi_{e}(1-n)^{s}
$$

Basic properties of Jacobi sums are as follows.
Proposition 1 (see [3]). We have
(a) $J_{e}(r, s)=J_{e}(s, r)$,
(b) $J_{e}(r, s)=(-1)^{s f} J_{e}(e-r-s, s)$ for $r+s<e$,
(c) $J_{e}(r, s) J_{e}(e-r, e-s)=p$,
(d) $J_{e}(r, r)=\sigma_{r}\left(J_{e}(1,1)\right)$ for $1 \leq r \leq e-1$,
(e) $J_{e}(e-r, e-s) \equiv 0(\bmod \mathcal{P})$ for $r+s<e$,
(f) $\binom{r f+s f}{s f} \equiv J_{e}(r, s)(\bmod \mathcal{P})$ for $r+s<e$.

The following proposition is important to determine the congruence modulo p^{2}. It was proved by Yeung (see Proposition 4.1 of [7]).

Proposition 2. Let $r+s<e$ and $r \geq s$. Then

$$
\binom{(r+s) f}{s f} \equiv J_{e}(r, s)\left\{1+\left((r+s) B_{r+s}-r B_{r}-s B_{s}\right) \frac{p}{e}\right\}\left(\bmod \mathcal{P}^{2}\right)
$$

where $B_{t}=\sum_{i=1}^{t f}(1 / i), 1 \leq t \leq e$.

3. Main theorem

Theorem 1. Let $e \geq 3$ be an integer and $p=e f+1$ a prime. Then for $1 \leq r \leq e-1$ with $(r, e)=1$,

$$
\begin{aligned}
& \sum_{\substack{1 \leq i \leq[e / 2] \\
(i, e)=1}}\left\{(e-2 i)\binom{2 i f}{i f}+2 i(-1)^{i f}\binom{(e-i) f}{i f}\right\} \\
& \equiv e \cdot \operatorname{tr}_{K / \mathbb{Q}}\left(2 \Re J_{e}(r, r)-\frac{p}{2 \Re J_{e}(r, r)}\right)\left(\bmod p^{2}\right)
\end{aligned}
$$

where $\operatorname{tr}_{K / \mathbb{Q}}(x)$ is the trace of x in the maximal real subfield $K=\mathbb{Q}\left(\zeta_{e}+\zeta_{e}^{-1}\right)$ of $\mathbb{Q}\left(\zeta_{e}\right)$ over \mathbb{Q} and $\Re z=\operatorname{tr}_{\mathbb{Q}\left(\zeta_{e}\right) / K}(z) / 2$ is the real part of z.

Proof. By Proposition 2, we have

$$
\begin{aligned}
\binom{2 i f}{i f} & \equiv J_{e}(i, i)\left\{1+\left(2 i B_{2 i}-2 i B_{i}\right) \frac{p}{e}\right\} \\
& \equiv J_{e}(i, i)\left\{1+2 i\left(B_{2 i}-B_{i}\right) \frac{p}{e}\right\}\left(\bmod \mathcal{P}^{2}\right)
\end{aligned}
$$

Since $B_{e}=\sum_{i=1}^{p-1}(1 / i) \equiv 0(\bmod p)$, we obtain $B_{e-i} \equiv B_{i}(\bmod p)$ and
$B_{e-2 i} \equiv B_{2 i}(\bmod p)$. Then, by Proposition 2, we have

$$
\begin{aligned}
\binom{(e-i) f}{i f} & \equiv J_{e}(e-2 i, i)\left\{1+\left((e-i) B_{e-i}-(e-2 i) B_{e-2 i}-i B_{i}\right) \frac{p}{e}\right\} \\
& \equiv J_{e}(e-2 i, i)\left\{1-(e-2 i)\left(B_{2 i}-B_{i}\right) \frac{p}{e}\right\}\left(\bmod \mathcal{P}^{2}\right)
\end{aligned}
$$

Hence, by Proposition 1(b) we obtain

$$
\begin{equation*}
(e-2 i)\binom{2 i f}{i f}+2 i(-1)^{i f}\binom{(e-i) f}{i f} \equiv e J_{e}(i, i)\left(\bmod \mathcal{P}^{2}\right) \tag{3}
\end{equation*}
$$

Put $J_{e}(i, i)=R_{i}+S_{i} \sqrt{-1} \in \mathbb{Q}\left(\zeta_{e}\right)$, where R_{i} and S_{i} are real numbers. By Proposition 1(e), for any $1 \leq i \leq[e / 2]$, we have

$$
\sigma_{e-1}\left(J_{e}(i, i)\right)=J_{e}(e-i, e-i)=R_{i}-S_{i} \sqrt{-1} \equiv 0(\bmod \mathcal{P})
$$

so $R_{i} \equiv S_{i} \sqrt{-1}(\bmod \mathcal{P})$. Then, by Proposition 1(c), we have

$$
R_{i}-S_{i} \sqrt{-1}=\frac{p}{R_{i}+S_{i} \sqrt{-1}} \equiv \frac{p}{2 R_{i}}\left(\bmod \mathcal{P}^{2}\right)
$$

hence,

$$
J_{e}(i, i) \equiv 2 R_{i}-\frac{p}{2 R_{i}}\left(\bmod \mathcal{P}^{2}\right)
$$

Since

$$
\sum_{\substack{1 \leq i \leq[e / 2] \\(i, e)=1}} \sigma_{i}(x)=\operatorname{tr}_{K / \mathbb{Q}}(x) \in \mathbb{Q}, \quad x \in K=\mathbb{Q}\left(\zeta_{e}+\zeta_{e}^{-1}\right),
$$

we have

$$
\begin{aligned}
\sum_{\substack{1 \leq i \leq[e / 2] \\
(i, e)=1}} J_{e}(i, i) & =\sum_{i} \sigma_{i}\left(J_{e}(r, r)\right) \equiv \sum_{i} \sigma_{i}\left(2 R_{r}-\frac{p}{2 R_{r}}\right)\left(\bmod p^{2}\right) \\
& \equiv \operatorname{tr}_{K / \mathbb{Q}}\left(2 \Re J_{e}(r, r)-\frac{p}{2 \Re J_{e}(r, r)}\right)\left(\bmod p^{2}\right)
\end{aligned}
$$

where r is an integer satisfying $1 \leq r \leq e-1$ and $(r, e)=1$.
By the reduction modulo p, we obtain the following corollary which is a generalization of (1).

Corollary 1. For $1 \leq r \leq e-1$ with $(r, e)=1$,

$$
\sum_{\substack{1 \leq i \leq[e / 2] \\(i, e)=1}}\binom{2 i f}{i f} \equiv \operatorname{tr}_{\mathbb{Q}\left(\zeta_{e}\right) / \mathbb{Q}}\left(J_{e}(r, r)\right)(\bmod p)
$$

4. The case of $e=5$. Let p be a prime $\equiv 1(\bmod 5)$. The properties of Jacobi sums of order 5 were shown by Dickson (see [2] and [3]). We know that

$$
\begin{aligned}
J_{5}(1,1)= & -\frac{1}{4}\left\{x+u\left(2 \zeta_{5}+4 \zeta_{5}^{2}-4 \zeta_{5}^{3}-2 \zeta_{5}^{4}\right)\right. \\
& \left.+v\left(4 \zeta_{5}-2 \zeta_{5}^{2}+2 \zeta_{5}^{3}-4 \zeta_{5}^{4}\right)+5 w \sqrt{5}\right\} \\
= & -\frac{1}{4}\{x+5 w \sqrt{5}+\sqrt{-1}(u \sqrt{50+10 \sqrt{5}}+v \sqrt{50-10 \sqrt{5}})\}
\end{aligned}
$$

where (x, u, v, w) is one of four solutions of (2). Therefore,

$$
\begin{aligned}
\operatorname{tr}_{K / \mathbb{Q}}\left(2 \Re J_{e}(1,1)-\frac{p}{2 \Re J_{e}(1,1)}\right) & =\operatorname{tr}_{K / \mathbb{Q}}\left(-\frac{x+5 w \sqrt{5}}{2}+\frac{2 p}{x+5 w \sqrt{5}}\right) \\
& \equiv-x\left(1-\frac{4 p}{x^{2}-125 w^{2}}\right)\left(\bmod p^{2}\right)
\end{aligned}
$$

Note that x and w^{2} are invariants under the change of the solution of (2). By Theorem 1, we obtain the following theorem. Moreover, by Corollary 1, we obtain the congruence (1). For $p<1000$, the values of x, u, v, w are given in [4].

THEOREM 2. If $p=5 f+1$ is prime and (x, w) is any solution of (2), then

$$
\binom{4 f}{2 f}+2\binom{4 f}{f}+3\binom{2 f}{f}+4\binom{3 f}{f}+5 x\left(1-\frac{4 p}{x^{2}-125 w^{2}}\right) \equiv 0\left(\bmod p^{2}\right)
$$

5. The case of $e=7$. Let p be a prime $\equiv 1(\bmod 7)$. We consider the triple of diophantine equations

$$
\left\{\begin{array}{l}
72 p=2 a_{1}^{2}+42\left(a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right)+343\left(a_{5}^{2}+3 a_{6}^{2}\right) \tag{4}\\
12\left(a_{2}^{2}-a_{4}^{2}+2 a_{2} a_{3}-2 a_{2} a_{4}+4 a_{3} a_{4}\right) \\
\quad+49\left(3 a_{5}^{2}+2 a_{5} a_{6}-9 a_{6}^{2}\right)+56 a_{1} a_{6}=0 \\
12\left(a_{2}^{2}-a_{4}^{2}+4 a_{2} a_{3}+2 a_{2} a_{4}+2 a_{3} a_{4}\right) \\
\quad+49\left(a_{5}^{2}+10 a_{5} a_{6}-3 a_{6}^{2}\right)+28 a_{1}\left(a_{5}+a_{6}\right)=0 \\
a_{1} \equiv 1(\bmod 7)
\end{array}\right.
$$

This simultaneous system has six nontrivial solutions in addition to the two trivial solutions $\left(-6 b_{1}, \pm 2 b_{2}, \pm 2 b_{2}, \mp 2 b_{2}, 0,0\right)$, where b_{1} and b_{2} are given by $p=b_{1}^{2}+7 b_{2}^{2}$ and $b_{1} \equiv 1(\bmod 7)$. If $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ is one of the six nontrivial solutions of (4), we know that for some r,

$$
J_{7}(r, r)=c_{1} \zeta_{7}+c_{2} \zeta_{7}^{2}+c_{3} \zeta_{7}^{3}+c_{4} \zeta_{7}^{4}+c_{5} \zeta_{7}^{5}+c_{6} \zeta_{6}
$$

where

$$
\begin{array}{ll}
12 c_{1}=-2 a_{1}+6 a_{2}+7 a_{5}+21 a_{6}, & 12 c_{2}=-2 a_{1}+6 a_{3}+7 a_{5}-21 a_{6} \\
12 c_{3}=-2 a_{1}+6 a_{4}-14 a_{5}, & 12 c_{4}=-2 a_{1}-6 a_{4}-14 a_{5} \\
12 c_{5}=-2 a_{1}-6 a_{3}+7 a_{5}-21 a_{6}, & 12 c_{6}=-2 a_{1}-6 a_{2}+7 a_{5}+21 a_{6}
\end{array}
$$

The other five nontrivial solutions correspond to Jacobi sums $\sigma_{i}\left(J_{7}(r, r)\right)$ for $2 \leq i \leq 6$. These results were proved by Leonard and Williams in [5]. For $p<1000$, the values of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ are given in [4]. The right-hand side of the congruence in Theorem 1 is

$$
\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)\left(2 R_{r}\right)+p \frac{\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{1}\right)\left(2 R_{r}\right)}{\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)\left(2 R_{r}\right)}
$$

where $2 R_{r}=2 \Re J_{7}(r, r)=\left(\sigma_{1}+\sigma_{6}\right)\left(J_{7}(r, r)\right)$. By Theorem 1 and direct calculation, we obtain the following theorem.

THEOREM 3. If $p=7 f+1$ is prime and $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ is any nontrivial solution of (4), then

$$
\begin{aligned}
\binom{6 f}{3 f} & +2\binom{6 f}{2 f}+3\binom{4 f}{2 f}+4\binom{5 f}{2 f}+5\binom{2 f}{f}+6\binom{4 f}{f} \\
& +7\left(a_{1}-\frac{18 p\left(4 a_{1}^{2}-343\left(a_{5}^{2}+3 a_{6}^{2}\right)\right)}{8 a_{1}^{3}-2058 a_{1}\left(a_{5}^{2}+3 a_{6}^{2}\right)-2041 V}\right) \equiv 0\left(\bmod p^{2}\right)
\end{aligned}
$$

where $V=a_{5}^{3}-27 a_{5}^{2} a_{6}-9 a_{5} a_{6}^{2}+27 a_{6}^{3}$.
The next corollary follows immediately from Corollary 1. It was shown by Hudson and Williams in [3].

Corollary 2. If a_{1} is given by (4), then

$$
\binom{2 f}{f}+\binom{4 f}{f}+\binom{4 f}{2 f}+a_{1} \equiv 0(\bmod p)
$$

6. The case of $e=8$. Let p be a prime $\equiv 1(\bmod 8)$. We can find the properties of Jacobi sums of order 8 in [1]. We know that

$$
\begin{equation*}
J_{8}(1,1)=C+D \sqrt{-2}, \quad C \equiv \eta(\bmod 4) \tag{5}
\end{equation*}
$$

where

$$
\eta= \begin{cases}1 & \text { if } 2 \text { is a quartic residue }(\bmod p) \\ -1 & \text { otherwise }\end{cases}
$$

But, since $\sigma_{3}(\sqrt{-2})=\sqrt{-2}$ in $\mathbb{Q}\left(\zeta_{8}\right)$, we have $J_{8}(1,1)=J_{8}(3,3)$. From (3), we obtain

Theorem 4. If $p=8 f+1$ is prime and C is given uniquely by (5), then

$$
3\binom{2 f}{f}+(-1)^{f}\binom{7 f}{f} \equiv\binom{5 f}{2 f}+3(-1)^{f}\binom{5 f}{3 f} \equiv 4\left(2 C-\frac{p}{2 C}\right)\left(\bmod p^{2}\right)
$$

References

[1] B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi and Jacobsthal, J. Number Theory 11 (1979), 349-398.
[2] L. E. Dickson, Cyclotomy higher congruences, and Waring's problem I, II, Amer. J. Math. 57 (1935), 463-474.
[3] R. Hudson and K. S. Williams, Binomial coefficients and Jacobi sums, Trans. Amer. Math. Soc. 281 (1984), 431-505.
[4] T. Ishikawa, On the number of zeros of diagonal forms, Math. Comp. 64 (1995), 841-854.
[5] P. A. Leonard and K. S. Williams, The cyclotomy numbers of order seven, Proc. Amer. Math. Soc. 51 (1975), 295-300.
[6] A. R. Rajwade, Some congruences in algebraic integers and rational integers, Indian J. Pure Appl. Math. 7 (1976), 431-435.
[7] K. M. Yeung, On congruences for binomial coefficients, J. Number Theory 33 (1989), 1-17.

Department of Mathematics
Osaka Institute of Technology
Omiya, Asahi-ku, Osaka 535-8585, Japan
E-mail: ishikawa@ge.oit.ac.jp

