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Some congruences for binomial coefficients
by

TSUNEO ISHIKAWA (Osaka)

1. Introduction. Throughout this paper e denotes an integer > 3 and
p a prime = 1 (mode). The integer f is defined by p = ef + 1. For integers
r and s satisfying 1 < s < r < e, we consider binomial coefficients of the
form (Z}c) In the cases where p is represented by well known binary quadratic
forms, the congruences modulo p or p? have been studied by many authors
(for example, see [3]). In particular, the congruence modulo p? for e = 3,4, 6
was explicitly obtained by Yeung in [7].

In the case of e = 5, Rajwade proved in [6] that

(1) <2f> + <3f> + 2 =0 (modp)

where x is given uniquely by Dickson’s equations

©) {p = 22 + 50u? + 5002 + 125w?,
rw=1v?—4uw —u?, x =1 (mod5).

The explicit formula for (’;;) (modp) for e = 5 was given by Hudson and

Williams in [3].

In this paper, we study the generalization of (1) for any e and the con-
gruences modulo p?, using Jacobi sums. The main theorem is Theorem 1 in
§3. In §4, §5, and §6, we obtain explicit formulas by applying our theorem
in the cases where e =5, 7, and 8.

2. Jacobi sums. For a positive integer n we set (, = exp(2mv/—1/n).
For (a,e) = 1, we define the automorphism o, by 0,({.) = (%, and let P

e’

denote any of the ¢(e) prime ideals dividing p in the cyclotomic field Q(().
We define a multiplicative character x. (modp) of order e by

(n) _ {Cg ifn#0 (mOdp)7 nng =1 (mOdP),
Xe o ifn=0 (mod p).
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For any positive integers r and s, the Jacobi sum J(r, s) of order e is defined

by
ZXe Xe 1—’I’L)

Basic properties of Jacobi sums are as follows.
PROPOSITION 1 (see [3]). We have
(a) Je(r,s) = Je(s, 1),

(b) Je(r,s) = (=1)%F J(e —r — s,8) forr + s < e,

(¢) Je(r,s)Je(e —r,e—s)=np,

(d) Je(r,r) = 0p(Je(1,1)) for 1 <r <e—1,

(e) Je(e—r,e—35) =0 (modP) forr+s<e,

(f) (rf+5f) Je(r,s) (modP) forr+s<e.

The following proposition is important to determine the congruence mod-
ulo p?. It was proved by Yeung (see Proposition 4.1 of [7]).

PROPOSITION 2. Let r+s < e and r > s. Then

<(” ;Lfs)f> = J.(r, 3){1 +((r+ 8)Brys — By — sBy)

where By = Zfil(l/z), 1<t<e.

[Nl ]

} (mod P?)

3. Main theorem

THEOREM 1. Let e > 3 be an integer and p =ef + 1 a prime. Then for
1<r<e—1 with (r,e) =1,

> {(e 2 (Z‘f) +2i(~1)¥ <(e ;fi)f> }

1<i<[e/2]
(i,e)=1
=e€- tTK/Q (2%:]@(7", 'l“) — ﬁm) (modp2),

where tr g(x) is the trace of x in the maximal real subfield K = Q((e+¢; )
of Q(Ce) over Q and Rz = trgc,) K (2)/2 is the real part of z.

Proof. By Proposition 2, we have

(213{) = J.(i, i){l + (2iBy; — 2iB;) g}

= Je(i,i){l +2i(By; — B;) S} (mod P2).

Since B, = >0~ (1/1) = 0 (modp), we obtain B._; = B; (modp) and
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|

B._9; = Bg; (modp). Then, by Proposition 2, we have

(<€ Zifi)f> = J.(e — 2i, z’){l + ((e =) Be—i — (e — 2i) Be—g; — i)

o 13

Jo(e — 22’,2’){1 — (e — 2i)(By; — B;) g} (mod P2).

Hence, by Proposition 1(b) we obtain
9 4 .
(3)  (e- 21’)( _’f> +2i(_1)zf<(e , ’)f) = eJ.(i,i) (mod P?).
iof if
Put J.(i,i) = R; + Siv/—1 € Q((¢), where R; and S; are real numbers.
By Proposition 1(e), for any 1 < i < [e/2], we have

Oe—1(Je(i,7)) = Je(e —i,e — i) = R — S;vV/—1 =0 (mod P),
so R; = S;v/—1 (mod P). Then, by Proposition 1(c), we have

— p _ b 2
R; + S;v/—1 2R; (HlO )
hence,
N _op. P 2
Je(1,1) = 2R; SR (mod P?).
Since
Y oila) =trg@) €Q TeK=Q(+¢ ),
1<i<[e/2]
(i,)=1
we have
Yo Jeliyi) =) oilJe(r,r) =Y o <2RT — 22 ) (mod p?)
1<i<[e/2] i ; T
(i,e)=1
_ b 2
= 2RI (r,7) = s :
tri/Q < R (r,7) QSCEJG(T,T)) (mod p?)

where r is an integer satisfying 1 <r <e—1 and (r,e) =1. =

By the reduction modulo p, we obtain the following corollary which is a
generalization of (1).

COROLLARY 1. Forl <r <e—1 with (r,e) =1,

2i
> (Zf) = trg.)/q(Je(r; 7)) (modp).

1<i<[e/2]
(i,e)=1
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4. The case of e = 5. Let p be a prime = 1 (mod5). The properties
of Jacobi sums of order 5 were shown by Dickson (see [2] and [3]). We know
that

Js(1,1) = — %{x (205 + 4C2 — 4¢8 — 2¢h
+0(4Cs — 22 + 2¢8 — ACH) + 5wV/B}
= - %{x +5wV5 + vV=L(uV50 + 10v/5 + vV50 — 10V/5)},

where (x,u,v,w) is one of four solutions of (2). Therefore,

P - z + 5wvb 2p
tI’K/Q<2§RJe(1,1)— 2%J8(1’1)> —tTK/Q< 9 + {L‘—i—5w\/5>
_ 4p 2
= x(l o 125w2> (mod p?).

Note that z and w? are invariants under the change of the solution of (2).
By Theorem 1, we obtain the following theorem. Moreover, by Corollary 1,
we obtain the congruence (1). For p < 1000, the values of z, u, v, w are given
in [4].

THEOREM 2. If p=>5f+1 is prime and (xz,w) is any solution of (2),
then

Af Af 2f 3f 4p _

5. The case of e = 7. Let p be a prime = 1 (mod 7). We consider the
triple of diophantine equations
(72p = 203 + 42(a3 + a% + a3) + 343(a2 + 3ad),
12(a3 — a3 + 2aza3 — 2aza4 + 4azay)
+49(3a2 + 2asag — 9a2) + 56a1a6 = 0,
12(a3 — a3 + 4asas + 2a2a4 + 2azay)
+ 49(@% + 1Oa5a6 - 3(1%) + 28a1(a5 + CL6) = 0,
a; =1 (mod7).

This simultaneous system has six nontrivial solutions in addition to the two
trivial solutions (—6by, +2ba, +2bo, F2b9, 0,0), where b; and by are given by
p = b2+ 7b3 and by = 1 (mod7). If (a1, as, as,as,as,ag) is one of the six
nontrivial solutions of (4), we know that for some r,

J7(r,r) = c16r + caCE + ¢33 + caly + 588 + oo
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where
12¢1 = —2a71 + 6as + Tas + 21lag, 12co = —2a7 + 6az + 7as — 21ag,
12¢3 = —2a71 + 6a4 — 14as, 12¢4 = —2a1 — 6a4 — 14as,

12¢5 = —2a1 — 6as + 7as — 21ag, 12¢c6 = —2a1 — 6as + Tas + 21ag.

The other five nontrivial solutions correspond to Jacobi sums o;(J7(r,r)) for

2 < i < 6. These results were proved by Leonard and Williams in [5]. For

p < 1000, the values of a1, as, as, as, as,ag are given in [4]. The right-hand

side of the congruence in Theorem 1 is

0109 + 0203 + 0301)(2R,)
(o10203)(2R;)

where 2R, = 2RJ7(r,r) = (01 + 06)(J7(r,7)). By Theorem 1 and direct

calculation, we obtain the following theorem.

(o1 4+ 02+ 03)2R,) +p (

THEOREM 3. If p = 7f + 1 is prime and (a1,as2,as,aq,as,ag) is any
nontrivial solution of (4), then

6f 6f 4f 5f 2f 4f
(3r) +27) +3G7) +1CF) + () +o(7)
18p(4a? — 343(a? + 3a2)) B
+ 7(‘” T 8ad - 20581a1(a§ n 35ag) - 3041v> =0 (modp?)

where V = ag — 27a%a6 — 9a5a% + 27ag.

The next corollary follows immediately from Corollary 1. It was shown
by Hudson and Williams in [3].

COROLLARY 2. If ay is given by (4), then
()« () (o) #on =0 oan,

6. The case of e = 8. Let p be a prime = 1 (mod8). We can find the
properties of Jacobi sums of order 8 in [1]. We know that

(5) Jg(1,1) = C + Dv—-2, C=n (mod4)

where

—1 otherwise.
But, since 03(v/—2) = v/—2 in Q((g), we have Jg(1,1) = Js(3,3). From (3),

we obtain

y— { 1 if 2 is a quartic residue (mod p),

THEOREM 4. If p = 8f + 1 is prime and C is given uniquely by (5),
then

) ()= (e () oo )
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