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1. Introduction. Let L/K be an extension of absolutely abelian num-
ber fields of equal conductor, n. If TL/K : L → K denotes the trace map,
then TL/K(OL) is an ideal in OK . Let I(L/K) denote the norm of TL/K(OL)
over Q, i.e. [OK : TL/K(OL)]. Sharpening the main result of Girstmair in [6],
we determine I(L/K) exactly for any such L/K: if e = v2(n) and m = n/2e,
then

I(L/K) =

{
2[K∩Q(m):Q] = 2[K:Q]/2e−2

if L/K is wildly ramified,

1 otherwise.
After first determining criteria for wild ramification of L/K (which can only
happen at primes above 2), the above result is obtained for n = 2e (e ≥ 3) by
computing TL/K(OL) explicitly, and is then extended to the general case.
This approach does not rely on Leopoldt’s Theorem, in contrast to the
techniques used in [6].

The explicit nature of the calculations used to compute I(L/K) leads to

the definition of an “adjusted trace map” T̂Q(n)/K with the property that

T̂Q(n)/K(O(n)) = OK (here Q(n) denotes the nth cyclotomic field and O(n)

its ring of integers). Using this map, we restate Leopoldt’s Theorem and
show that its proof can be reduced to the (easier) cyclotomic case.

2. Dirichlet characters. We first recall some basic facts about Dirich-
let characters. For more details, see Chapter 3 of [12] and Section 2 of [10].

Definition 2.1. For n ∈ N, let ζn be a primitive nth root of unity and
Q(n) = Q(ζn) the nth cyclotomic field. Let O(n) = OQ(n) = Z[ζn] denote the

ring of integers of Q(n), and X(n) denote the group of Dirichlet characters
of conductor dividing n.
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Let P denote the set of rational primes. Define p∗ = 4 if p = 2, and
p∗ = p if p ∈ P, p 6= 2.

Proposition 2.2. Let p ∈ P and e ∈ N, with e ≥ 2 if p = 2. Then there

exists a natural decomposition

(Z/peZ)× = (Z/p∗Z)× × (1 + p∗Z)/(1 + peZ)

where both factors are considered as subgroups of (Z/peZ)×. Note that we

take (Z/4Z)× = {±1}.
Proof. Straightforward.

Definition 2.3. Let p ∈ P and e ∈ N with e ≥ 2 if p = 2. Then dualizing
the decomposition of Proposition 2.2 yields the decomposition

X(pe) = 〈ωp〉 × 〈ψpe〉
with 〈ωp〉 = X(p∗) and 〈ψpe〉 the group of Dirichlet characters whose con-
ductors divide pe and which are trivial on the factor (Z/p∗Z)×.

Theorem 2.4. Let n ∈ N. There is an order preserving one-to-one cor-

respondence between subgroups of X(n) and subfields of Q(n). Let Xi be the

subgroup corresponding to the subfield Ki. Then |Xi| = [Ki : Q] and the

compositum K1K2 corresponds to 〈X1, X2〉.
Proof. See Chapter 3 of [12].

Definition 2.5. Let p ∈ P, X ⊆ X(n) and e = vp(n). Then Xp denotes
the image of X under the natural projection πp : X(n) → X(pe).

Theorem 2.6. Let X be a group of Dirichlet characters and let K be

the associated abelian number field. Then p ∈ P has ramification index |Xp|
in K.

Proof. This is Theorem 3.5 of [12].

Remark 2.7. When p is odd, 〈ωp〉 and 〈ψpe〉 have orders p− 1 and pe−1

respectively. So by considering the decomposition X(pe) = 〈ωp〉 × 〈ψpe〉, the
field corresponding to 〈ωp〉 can be thought of as the “tame part” of Q(pe),
and that corresponding to 〈ψpe〉 as the “wild part”.

When p = 2, 〈ω2〉 and 〈ψ2e〉 have orders 2 and 2e−2 respectively, and
therefore both correspond to wildly ramified extensions of Q (namely Q(i)
and the maximal totally real subfield Q(ζ2e + ζ−1

2e ), respectively). In other
words, Q(2e) has no “tame part”.

Proposition 2.8. Let K/Q be an abelian extension of conductor n =
pe11 · · · pet

t where p1 = 2, and let X ⊆ X(n) be its associated group of Dirichlet

characters.
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(a) The natural projection πψ : X → ∏t
i=1〈ψpei

i
〉 is surjective.

(b) Let e = e1 = v2(n). Then X2 is either X(2e) = 〈ω2〉 × 〈ψ2e〉, 〈ψ2e〉,
or 〈ω2ψ2e〉. Note that ψ2e is trivial if e ≤ 2.

(c) 〈X,
∏t
i=2〈ωpi

〉〉 = X2 ×
∏t
i=2〈ωpi

〉 ×
∏t
j=2〈ψpej

j

〉 = X2 ×X(m) where

m = n/2e.

Proof. Part (a) is essentially Lemma 1(a) in [10]. Part (b) follows from
the fact that the natural projection X → 〈ψ2e〉 and thus X2 → 〈ψ2e〉
must be surjective. By part (a), 〈X,∏t

i=2〈ωpi
〉〉 contains all the Sylow-p

subgroups of X(n) =
∏t
i=1〈ωpi

〉 × ∏t
j=1〈ψpej

j

〉 for p odd; in particular,

it contains
∏t
j=2〈ψpej

j

〉. Thus
∏t
i=2〈ωpi

〉 × ∏t
j=2〈ψpej

j

〉 ⊆ 〈X,∏t
i=2〈ωpi

〉〉.
Part (c) now follows by noting that the image of the natural projection
〈X,

∏t
i=2〈ωpi

〉〉 → X(2e) is X2.

3. Ramification

Definition 3.1. Throughout this paper, we take “tamely ramified” to
mean “at most tamely ramified”, i.e. “not wildly ramified”.

Theorem 3.2. LetL/K be an extension of number fields. Then TL/K(OL)
is an ideal ofOK . Suppose further thatL/K is Galois, and let p be a (non-zero)
prime of OK . Then p |TL/K(OL) if and only if p is wildly ramified in L/K.

Proof. See [7]. Alternatively, this follows Lemma 2 in Section 5 of [4]
and the fact that the extension of residue fields in question is separable.

Corollary 3.3. If L/K is a Galois extension of number fields, then

L/K is tamely ramified if and only if TL/K(OL) = OK .

Proposition 3.4. Let K be an abelian number field of conductor n.
Then Q(n)/K is tamely ramified at each prime lying above an odd rational

prime.

Proof. Let X be the group of Dirichlet characters associated to K and
write n =

∏t
i=1 p

ei

i where p1 = 2. Let M be the field corresponding to∏t
i=2〈ωpi

〉. The extension MK/K is tamely ramified since the same is true

of M/Q. By Proposition 2.8(b) and (c) we have [Q(n) : MK ] = 1 or 2, and
so the result follows.

Corollary 3.5. Let K be an abelian number field of conductor n. Then

wild ramification in Q(n)/K can only occur in a degree 2 sub-extension (at
primes above 2).

Remark 3.6. The result of Proposition 3.4 appears to be well known
(it is noted in [3], for example), but its proof and corollary are not easily
found in the literature.
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Proposition 3.7. Let K be an abelian number field of conductor n =∏t
i=1 p

ei

i with associated character group X. Let e = e1 = v2(n). Then the

following are equivalent :

(a) X2 = X(2e).

(b) X(n) = 〈X,∏t
i=2〈ωpi

〉〉.
(c) Q(n)/K is tamely ramified.

(d) TQ(n)/K(O(n)) = OK , i.e. I(Q(n)/K) = 1.

Proof. (a)⇔(b) follows from Proposition 2.8(c).

(c)⇔(d) follows from Corollary 3.3.

(a)⇔(c) follows from Proposition 3.4 and Theorem 2.6.

Remark 3.8. In particular, the equivalent conditions of Proposition 3.7
hold when e ≤ 2. Furthermore, it can be shown that they also hold if there
exists d ∈ Z with d ≡ 3 (mod4) and d square-free such that Q[

√
d] ⊆ K.

Proposition 3.9. Let K be an abelian number field of conductor n =∏t
i=1 p

ei

i with associated character group X and let K2 be the field corre-

sponding to X2. Let e = e1 = v2(n) and m = n/2e. Define L to be the com-

positum K2Q
(m), i.e. the field corresponding to X2 × X(m) ⊆ X(n). When

the equivalent conditions of Proposition 3.7 do not hold , the following state-

ments are true:

(a) X2 is either 〈ψ2e〉 or 〈ω2ψ2e〉.
(b) L/K is tamely ramified.

(c) Q(n) = L[i], i.e. Q(n) is the field generated by adjoining a root of

x2 + 1 to L.

(d) [Q(n) : L] = [L[i] : L] = 2.
(e) Q(n)/L is wildly ramified at the primes above 2.
(f) TL/K(OL) = OK .

(g) OL = OK2 ⊗Z O(m).

(h) I(Q(n)/L) = 2r for some r ≥ 1.

The situation is partially illustrated by the field diagram on p. 67.

Proof. (a) This follows from Proposition 2.8(b) and the hypothesis that
Proposition 3.7(a) does not hold.

(b) Since X2 × X(m) = 〈X,
∏t
i=2〈ωpi

〉〉 (Proposition 2.8(c)), the result
follows by noting that L = KM in the proof of Proposition 3.4.

(c) Since 〈ω2〉 corresponds to Q[i], this follows from part (a).

(d) [Q(n) : L] = [X(n) : X2 ×X(m)] = [X(2e) : X2] = 2.

(e) This follows from part (b) and the hypothesis that Proposition 3.7(c)
does not hold (i.e. Q(n)/K is wildly ramified).

(f) By Corollary 3.3, this is equivalent to part (b).
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Q(n) = Q(2e)Q(m) = L[i]

wild 2

Q(2e)

φ(m)
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

wild 2
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(m)

tame

K2

φ(m)

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

2e−2

K

Q

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

(g) Since the discriminants of OK2 and O(m) are coprime, this follows
from III.2.13 in [5].

(h) This follows from part (e) and Theorem 3.2.

Proposition 3.10. Let L/K be an extension of absolutely abelian num-

ber fields of equal conductor , n. Then each prime above an odd rational

prime is tamely ramified in L/K. Furthermore, L/K is wildly ramified at

primes above 2 if and only if

(a) the equivalent conditions of Proposition 3.7 applied to L hold ;
(b) the equivalent conditions of Proposition 3.7 applied to K do not hold.

Proof. Since L/K is a sub-extension of Q(n)/K, the first statement fol-
lows from Proposition 3.4. The second statement holds because wild ram-
ification in Q(n)/K can only occur in a degree 2 sub-extension (Corollary
3.5), so L/K is wildly ramified (at primes above 2) if and only if Q(n)/L is
tamely ramified and Q(n)/K is wildly ramified.

4. Abelian number fields of conductor 2e, e ≥ 3. In this section,
let e ≥ 3, let ζ denote a primitive 2eth root of unity and let i = ζ2e−2

.

Proposition 4.1. The cyclotomic field Q(2e) has precisely two proper

fields of conductor 2e:

(a) Q(ζ + ζ−1), with ring of integers Z[ζ + ζ−1];
(b) Q(i(ζ + ζ−1)), with ring of integers Z[i(ζ + ζ−1)].

Proof. Proposition 2.8(b) implies that any proper subfield of Q(2e)

of conductor 2e has associated character group either 〈ψ2e〉 or 〈ω2ψ2e〉.
It is straightforward to check that these correspond to Q(ζ + ζ−1) and
Q(i(ζ + ζ−1)).

The ring of integers of Q(ζ + ζ−1) is Z[ζ + ζ−1] by Proposition 2.16 of
[12]. A slightly modified version of this argument, keeping track of real and
imaginary parts, shows that Q(i(ζ+ζ−1)) has ring of integers Z[i(ζ+ζ−1)].
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Proposition 4.2. Let K2 be a proper subfield of Q(2e) of conductor 2e.
Let T = TQ(2e)/K2

. In the cases of Proposition 4.1,

(a) T (Z[ζ]) = 2Z ⊕ (ζ + ζ−1) · OK2 = 2Z ⊕ (ζ + ζ−1) · Z[ζ + ζ−1];
(b) T (Z[ζ]) = 2Z ⊕ i(ζ + ζ−1) · OK2 = 2Z ⊕ i(ζ + ζ−1) · Z[i(ζ + ζ−1)].

In both cases, I(Q(2e)/K2) = 2.

Proof. (a) In this case, K2 = Q(ζ+ ζ−1), OK2 = Z[ζ+ ζ−1] and {1, ζ} is
a basis for Q(2e) over K2. The only non-trivial automorphism of Q(2e) over
K2 is induced by complex conjugation, and so for a, b ∈ K2,

T (a+ ζb) = (a+ ζb) + (a+ ζ−1b) = 2a+ (ζ + ζ−1)b .

Since Z+ζ ·Z[ζ+ζ−1] ⊆ Z[ζ], we therefore have 2Z⊕(ζ+ζ−1) ·Z[ζ+ζ−1] ⊆
T (Z[ζ]). However, Z[ζ + ζ−1] = Z ⊕ (ζ + ζ−1) · Z[ζ + ζ−1], so

[Z[ζ + ζ−1] : 2Z ⊕ (ζ + ζ−1) · Z[ζ + ζ−1]] = 2

and by Proposition 3.9(h),

[Z[ζ + ζ−1] : T (Z[ζ])] = 2r

for some r ≥ 1. Hence 2Z ⊕ (ζ + ζ−1) · Z[ζ + ζ−1] = T (Z[ζ]) (and in fact
r = 1).

(b) In this case, K2 = Q(i(ζ + ζ−1)) and OK2 = Z[i(ζ + ζ−1)]. The

proof is essentially the same as in part (a), noting that {1, iζ−1 = ζ2e−2−1}
is a basis for Q(2e) over K2 and that the non-trivial Galois conjugate of
iζ−1 = ζ2e−2−1 over K2 is iζ = ζ2e−2+1.

Proposition 4.3. Consider the cases of Proposition 4.1.

(a) Let A = {ζ+ζ−1, ζ2 +ζ−2, . . . , ζ2e−2−1 +ζ−2e−2+1}. Then T (Z[ζ]) =
SpanZ(A ∪ {2}), OK2 = SpanZ(A ∪ {1}) and Gal(K2/Q)(A) ⊆ ±A.

(b) Let B = {i(ζ + ζ−1), ζ2 + ζ−2, . . . , i(ζ2e−2−1 + ζ−2e−2+1)}. Then

T (Z[ζ]) = SpanZ(B∪{2}), OK2 = SpanZ(B∪{1}) and Gal(K2/Q)(B)
⊆ ±B.

Proof. (a) T (Z[ζ]) = SpanZ(A ∪ {2}) by Proposition 4.2 and a straight-
forward induction argument; that OK2 = SpanZ(A∪{1}) follows easily. For
any σ ∈ Gal(K2/Q) and any j ∈ {1, . . . , 2e−2 − 1}, σ(ζj + ζ−j) = ζjk + ζ−jk

for some k ∈ (Z/2eZ)×. However, any such ζjk + ζ−jk can be rewritten as

±(ζr + ζ−r) for some r ∈ {1, . . . , 2e−2 − 1} (note ζ2e−1
= −1). Part (b) is

similar, noting that σ(i) = ±i.

5. Computing I(L/K)

Proposition 5.1. Let L ⊆ M ⊆ N be a tower of Galois number fields

such that N/M is tamely ramified. Then I(N/L) = I(M/L).
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Proof. Since TN/L(ON ) = TM/L(TN/M (ON )) and TN/M (ON) = OM (by
Corollary 3.3), we have that TN/L(ON ) = TM/L(OM ) and so the result
follows from the definition of I.

Corollary 5.2. Let L/K be a wildly ramified extension of absolutely

abelian number fields of equal conductor , n. Then I(L/K) = I(Q(n)/K).

Proof. Q(n)/L is tamely ramified since wild ramification in Q(n)/K only
occurs in a degree 2 sub-extension (Corollary 3.5) and L/K is wildly rami-
fied.

Lemma 5.3. Let K and M be abelian number fields of conductors k and

m respectively. Suppose that k and m are relatively prime. Then

TQ(k)M/KM (OQ(k)M ) = TQ(k)/K(O(k)) ⊗Z OM .

Proof. The proof is straightforward once one observes that by III.2.13
in [5], we have OKM = OK ⊗Z OM and OQ(k)M = O(k) ⊗Z OM .

Proposition 5.4. Let K be an abelian number field of conductor n such

that Q(n)/K is wildly ramified. Let m = n/2e where e = v2(n) and let

L = K2 ⊗Q Q(m) = K2Q
(m) (as in Proposition 3.9). Let C = A or B from

Proposition 4.3, as appropriate. Define

D = TL/K(O(m)) and E = TL/K(SpanZ(C) ⊗Z O(m)).

Then

OK = D ⊕ E and TQ(n)/K(O(n)) = 2D ⊕ E.

Proof. Note that D ⊆ O(m) = Z ⊗Z O(m) and E ⊆ SpanZ(C) ⊗Z O(m),
with the last containment following from Proposition 4.3 (note Gal(L/K)(C)
⊆ Gal(K2/Q)(C) ⊆ ±C). Since Z∩ SpanZ(C) = {0}, we have D ∩E = {0},
which gives the last equality of

OK = TL/K(OL) (Proposition 3.9(f))

= TL/K(OK2 ⊗Z O(m)) (Proposition 3.9(g))

= TL/K((Z ⊕ SpanZ(C)) ⊗Z O(m)) (Proposition 4.3)

= TL/K((Z ⊗Z O(m)) ⊕ (SpanZ(C) ⊗Z O(m)))

= D + E = D ⊕ E.

Furthermore,

TQ(n)/K(O(n)) = TL/K(TQ(n)/L(O(n))) = TL/K(TQ(n)/L(O(2e) ⊗Z O(m)))

= TL/K(TQ(2e)/K2
(O(2e)) ⊗Z O(m)) (Lemma 5.3)

= TL/K((2Z ⊕ SpanZ(C)) ⊗Z O(m)) (Proposition 4.3)

= 2D ⊕ E (as above).
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Remark 5.5. The key point in this proof is the use of Proposition 4.3
to show that D ∩E = {0}, and hence that the sums D+E and 2D+E are
direct.

Theorem 5.6. Under the hypotheses of Proposition 5.4,

(a) OK = OK∩Q(m) ⊕ TL/K(SpanZ(C) ⊗Z O(m));

(b) TQ(n)/K(O(n)) = 2OK∩Q(m) ⊕ TL/K(SpanZ(C) ⊗Z O(m));

(c) I(Q(n)/K) = 2[K∩Q(m):Q].

Proof. Note that OK∩Q(m) ⊆ O(m) = Z⊗ZO(m) and, as shown in Propo-

sition 5.4, E ⊆ SpanZ(C) ⊗Z O(m). Since Z ∩ SpanZ(C) = {0}, we have
OK∩Q(m) ∩ E = {0} (this is essentially the same argument as that used

to show D ∩ E = {0}). Furthermore, D = TL/K(O(m)) ⊆ OK∩Q(m) and
OK∩Q(m) ⊆ OK = D ⊕ E, so D = OK∩Q(m) . By Proposition 5.4, this gives
parts (a) and (b). Now we have

I(Q(n)/K) = [OK : TQ(n)/K(O(n))] = [OK∩Q(m) ⊕ E : 2OK∩Q(m) ⊕ E]

= [OK∩Q(m) : 2OK∩Q(m) ] = 2
rankZ(O

K∩Q(m) ) = 2[K∩Q(m):Q],

giving part (c).

Theorem 5.7. Let L/K be an extension of absolutely abelian number

fields of equal conductor , n. Let e = v2(n) and m = n/2e. Then

I(L/K) =

{
2[K∩Q(m):Q] = 2[K:Q]/2e−2

if L/K is wildly ramified ,

1 otherwise.

Remark 5.8. Recall that criteria for wild ramification of L/K (which
can only happen at primes above 2) are given in Proposition 3.10.

Proof. Suppose L/K is wildly ramified. Then I(L/K) = I(Q(n)/K) by

Corollary 5.2 and I(Q(n)/K) = 2[K∩Q(m):Q] by Theorem 5.6. Noting that
[K2 : Q] = 2e−2 (see Proposition 3.9(a)) and that Q(m)K = Q(m)K2, we
have

[K ∩ Q(m) : Q] =
[Q(m) : Q]

[Q(m) : K ∩ Q(m)]
=

[Q(m) : Q]

[Q(m)K : K]
=

[Q(m) : Q]

[Q(m)K2 : K]

=
[Q(m) : Q][K : Q]

[Q(m)K2 : Q]
=

[Q(m) : Q][K : Q]

[Q(m) : Q][K2 : Q]
=

[K : Q]

[K2 : Q]

=
[K : Q]

2e−2
.

In the case where L/K is tamely ramified, the result follows from Corol-
lary 3.3.

Remark 5.9. It is clear that Theorem 5.7 agrees with the expressions for
I(L/K) in [6] (where K∩Q(m) is denoted Kn/2e), and is in fact a sharpening
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of these results since an exact value for I(L/K) is given for any extension
of abelian number fields L/K of equal conductor. Furthermore, the above
result does not rely on Leopoldt’s Theorem.

6. The adjusted trace map

Definition 6.1. Let K be an abelian number field of conductor n. We
define the adjusted trace map, T̂Q(n)/K . If Q(n)/K is tamely ramified, let

T̂Q(n)/K = TQ(n)/K . Otherwise, let m = n/2e where e = v2(n) (recall that

e ≥ 3 in this case). Note that O(n) = O(2e) ⊗Z O(m) has Z-basis {ζi2e ⊗ ζjm |
0 ≤ i ≤ 2e−1 − 1, 0 ≤ j ≤ φ(m) − 1}. Define

T̂Q(n)/K(ζi2e ⊗ ζjm) =

{
1
2TQ(n)/K(ζjm) for i = 0,

TQ(n)/K(ζi2e ⊗ ζjm) for 1 ≤ i ≤ 2e−1 − 1,

and extend to a Q-linear map Q(n) → K.

Proposition 6.2. T̂Q(n)/K(O(n)) = OK .

Proof. If Q(n)/K is tamely ramified, this is just Corollary 3.3. Otherwise,
using the notation of Proposition 5.4, we see that

T̂Q(n)/K(α) =

{
1
2TQ(n)/K(α) if TQ(n)/K(α) ∈ D,

TQ(n)/K(α) if TQ(n)/K(α) ∈ E.

The result now follows immediately from Proposition 5.4.

Remark 6.3. It must be noted that the adjusted trace map of Definition
6.1 is in fact equivalent to the map defined in Lemma 3.4 of [11, p. 51], though
it is expressed more explicitly here. Furthermore, it is shown to be surjective
in [2]. However, the proof given here (Proposition 6.2) is very different.

Lemma 6.4. Let T̂Q(n)/K(ζkn) = εTQ(n)/K(ζkn) where ε = 1/2 or 1. Then

T̂Q(n)/K(σ(ζkn)) = εTQ(n)/K(σ(ζkn)) ∀σ ∈ Gal(Q(n)/Q).

Proof. Write ζkn = ζi2e ⊗ ζjm and use Definition 6.1.

Definition 6.5. Let L/K be a finite Galois extension with Gal(L/K)
= G. Then

AL/K := {γ ∈ K[G] | γ(OL) ⊆ OL}
is the associated order of L/K.

The following is a modified version of Lemma 6 in [3]. Note that we use
both juxtaposition and the symbol · to denote the action of a group algebra
on a field.
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Theorem 6.6. Let K be an abelian number field of conductor n, and

put G = Gal(Q(n)/Q), H = Gal(Q(n)/K). Let π : Q[G] → Q[G/H] denote

the Q-linear map induced by the natural projection G → G/H. Suppose

O(n) = AQ(n)/Q · α for some α ∈ O(n). Then AK/Q = π(AQ(n)/Q) and

OK = AK/Q · β where β = T̂Q(n)/K(α).

Proof. Write G = {g1, . . . , gr} and H = {h1, . . . , hs}. Let x ∈ AQ(n)/Q

and write

x = x1g1 + · · · + xrgr where xi ∈ Q and gi ∈ G,

α = y1 + y2ζ + · · · + yrζ
r−1 where yi ∈ Q and ζ = ζn.

Then using Lemma 6.4, the Q-linearity of T̂Q(n)/K and the fact that G is
abelian, we have

T̂Q(n)/K(xα) =
r∑

i=1

xiT̂Q(n)/K(giα) =
r∑

i=1

xi

r∑

j=1

yjT̂Q(n)/K(giζ
j−1)

=
r∑

i=1

xi

r∑

j=1

yjεjTQ(n)/K(giζ
j−1) =

r∑

i=1

xi

r∑

j=1

yjεj

s∑

k=1

hkgiζ
j−1

=
r∑

i=1

xigi

r∑

j=1

yjεj

s∑

k=1

hkζ
j−1 =

r∑

i=1

xigi

r∑

j=1

yjεjTQ(n)/K(ζj−1)

=

r∑

i=1

xigi

r∑

j=1

yj T̂Q(n)/K(ζj−1) =

r∑

i=1

xigiT̂Q(n)/K(α)

= xT̂Q(n)/K(α)

where εj = 1/2 or 1, as appropriate. Thus

OK = T̂Q(n)/K(O(n)) (Proposition 6.2)

= T̂Q(n)/K(AQ(n)/Q · α) = AQ(n)/Q · T̂Q(n)/K(α)

= π(AQ(n)/Q) · β (since β ∈ K).

Remark 6.7. Unfortunately, this result cannot be easily extended to
the case of relative extensions because T̂Q(n)/K is not K-linear for K 6= Q.

Corollary 6.8. The proof of Leopoldt’s Theorem can be reduced to the

cyclotomic case.

We can now restate Leopoldt’s Theorem (see [8], [10]) with the generator
expressed as the image of an element under the adjusted trace map.

Definition 6.9. For n ∈ N, define the radical of n to be r(n) =
∏
p|n p.

Definition 6.10. For n ∈ N, define D(n) = {d ∈ N : r(n) | d and d |n}.
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Theorem 6.11 (Leopoldt). Let K be an abelian number field of conduc-

tor n, let ζn be a fixed primitive nth root of unity , and let

α = T̂Q(n)/K

( ∑

d∈D(n)

ζ(n/d)
n

)
.

Then we have OK = AK/Q · α, and so OK is a free AK-module of rank 1.

Proof. By Corollary 6.8, the proof is reduced to the cyclotomic case,
which is relatively straightforward.

Remark 6.12. In particular, the cyclotomic case follows from the ver-
sion of Leopoldt’s Theorem given in [10].

Remark 6.13. The definition of D(n) in [10] is different from that given
above. However, as noted in [9], Leopoldt’s Theorem holds in either case.
A routine computation shows that when D(n) is taken to be as in [10],
α as defined above is equal to T defined in [10].
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