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Limit theorems for the Mellin transform

of the square of the Riemann zeta-function. I

by

Antanas Laurinčikas (Vilnius)

1. Introduction. Let N, Z, R and C be the sets of all positive inte-
gers, integers, real and complex numbers, respectively, and let s = σ + it
be a complex variable. The Mellin transform F (s) of the function f(x) is
defined by

F (s) = M(f(x)) =

∞\
0

f(x)xs−1 dx.

It is well known that Mellin transforms play an important role in analytic
number theory. The study of F (s) is usually easier than that of f(x), and
then the inverse formula offers a possibility for the investigation of f(x).
Suppose that f(x) is of bounded variation on every finite interval and
f(x)xσ−1 ∈ L1(0,∞). Then the inverse formula for F (s) is of the form

f(x + 0) + f(x − 0)

2
=

1

2πi

σ+i∞\
σ−i∞

F (s)x−s ds =
1

2πi
lim

T→∞

σ+iT\
σ−iT

F (s)x−s ds.

Mellin transforms are especially useful for the study of power moments of
zeta-functions. Moreover, for this usually some modification of Mellin trans-
forms is applied. The modified Mellin transform F̃ (s) of the function f(x)
is defined by

F̃ (s) = M̃(f(x)) =

∞\
1

f(x)x−s dx.

This transform is more convenient, since the convergence problem at the
point x = 0 does not arise.

Define

f̂(x) =

{
f(1/x) if 0 < x ≤ 1,

0 otherwise.
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Then in [6] it was observed that

M̃(f(x)) = M

(
1

x
f̂(x)

)
,

and therefore, the properties of the modified Mellin transforms follow from
those of the ordinary Mellin transforms.

As noted above, the use of modified Mellin transforms in analytic number
theory is primarily related to the study of power moments

Ik(T ) =

T\
0

|ζ(1/2 + it)|2k dt, k ∈ N,

of the Riemann zeta-function. Define, for some σ > σ0(k),

Zk(s) =

∞\
1

|ζ(1/2 + ix)|2kx−s dx.

Y. Motohashi was the first who observed the usefulness of Zk(s) in the
theory of the Riemann zeta-function. In [13], [14] he introduced and stud-
ied the function Z2(s). The relation between Ik(T ) and Zk(s) follows from
the Mellin inverse formula: if f(x) is a sufficiently good function, then the
equality

∞\
1

f(x/T )|ζ(1/2 + ix)|2k dx =
1

2πi

c+i∞\
c−i∞

F (s)T sZk(s) ds

with suitable c > 1 can be used to obtain some information on Ik(T ).

The investigations of the function Z2(s) and its applications were contin-
ued in [5], [8], [7] and in [10]. In [11] we proved limit theorems in the sense of
weak convergence of probability measures for Z2(s). The aim of this paper
is to prove a limit theorem on the complex plane C for the function Z1(s).

Note that analytical properties of the functions Z2(s) and Z1(s) are
quite different. The first results for the function Z1(s) were obtained in [8].
The definition of Z1(s) and the asymptotic formula for I1(T ) show that the
integral defining Z1(s) converges absolutely for σ > 1, thus the function
Z1(s) is analytic in the half-plane {s ∈ C : σ > 1}. In [8] the function Z1(s)
has been meromorphically continued to the region {s ∈ C : σ > −3/4}.
The point s = 1 is its pole of order two with residue 2γ0 − log 2π, where
γ0 is the Euler constant. M. Jutila proved in [9] that the function Z1(s)
is meromorphically continuable to the whole complex plane with possible
poles of order at most two at the points s = −m, m ∈ N, in the region
{s ∈ C : σ < 0}. Finally, M. Lukkarinen showed in [12] that Z1(s) in the
region {s ∈ C : σ < 0} has simple poles only at s = −(2m− 1), m ∈ N, and
she found the formulas for the residues at these points.
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The paper [8] also contains an estimate as well as a mean-square estimate
for Z1(s), namely, for 0 ≤ σ ≤ 1, t ≥ t0 > 0 and T ≥ 1,

(1) Z1(σ + it) ≪ε t1−σ+ε,

and

(2)

T\
1

|Z1(σ + it)|2 dt ≪ε

{
T 3−4σ+ε if 0 ≤ σ ≤ 1/2,

T 2−2σ+ε if 1/2 ≤ σ ≤ 1.

M. Jutila in [9] showed that, for |s − 1| ≫ 1,

(3) Z1(σ + it) ≪

{
(|t| + 1)1−4σ/3+ε if 0 ≤ σ ≤ 1/2,

(|t| + 1)5/6−σ+ε if 1/2 ≤ σ ≤ 1.

Moreover, M. Lukkarinen proved in [12], for 0 ≤ σ ≤ 1 and |t| ≥ 2, that

Z1(σ + it) ≪ |t|1−σ log2 |t|,

which improves (1) and (3) for small values of σ.

Denote by meas{A} the Lebesgue measure of a measurable set A ⊂ R,
and let, for T > 0,

νT (. . . ) =
1

T
meas{t ∈ [0, T ] : . . . },

where in place of the dots a condition satisfied by t is to be written. Denote
by B(S) the class of Borel sets of the space S.

The probabilistic approach in the investigation of value distribution of
the Riemann zeta-function has been proposed by H. Bohr and realized in his
joint works with B. Jessen [2], [3]. Later A. Wintner, A. Selberg, A. Ghosh,
D. Joyner, B. Bagchi, K. Matsumoto, J. Steuding, E. Stankus, P. D. T. A. El-
liott, the present author and others continued and generalized Bohr–Jessen’s
investigations. However, all these works are related to Dirichlet series, while
[11] and this paper deal with integrals. We will prove the following limit
theorem of Bohr–Jessen’s type.

Theorem 1. Let σ > 1/2. Then on (C,B(C)) there exists a probability

measure Pσ such that the probability measure

PT,σ(A) := νT (Z1(σ + it) ∈ A), A ∈ B(C),

converges weakly to Pσ as T → ∞.

The function Z1(s) has a double pole at s = 1, however in Theorem 1
without loss of generality we can suppose that Z1(s) is regular for σ > 1/2.
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Indeed, let T0 > 0 be fixed. Then

νT (Z1(σ + it) ∈ A) =
1

T
meas{t ∈ [0, T0] : Z1(σ + it) ∈ A}

+
1

T
meas{t ∈ [T0, T ] : Z1(σ + it) ∈ A}

=
T − T0

(T − T0)T
meas{t ∈ [T0, T ] : Z1(σ + it) ∈ A} + o(1)

=
1

T − T0
meas{t ∈ [T0, T ] : Z1(σ + it) ∈ A} + o(1)

uniformly in A ∈ B(C). Therefore, instead of the weak convergence of the
probability measure PT,σ we can investigate that of the probability measure

1

T − T0
meas{t ∈ [T0, T ] : Z1(σ + it) ∈ A}, A ∈ B(C).

2. A limit theorem for integrals over a finite interval. Let a > 1,
g(x) be an integrable function on [1, a], and

Zg,a(s) =

a\
1

g(x)x−s dx.

In this section we will prove limit theorems for the function Zg,a(s).

Theorem 2. There exists a probability measure Pσ,a on (C,B(C)) such

that the probability measure

PT,σ,a,g(A) := νT (Zg,a(σ + it) ∈ A), A ∈ B(C),

converges weakly to Pσ,a as T → ∞.

The proof of Theorem 2 is based on the following lemma. Denote by
γ = {s ∈ C : |s| = 1} the unit circle on the complex plane, and define

Ωa =
∏

u∈[1,a]

γu,

where γu = γ for each u ∈ [1, a]. With the product topology and pointwise
multiplication Ωa is a compact topological Abelian group.

Lemma 3. On (Ωa,B(Ωa)) there exists a probability measure Qa such

that the probability measure

QT,a(A) = νT ({uit : u ∈ [1, a]} ∈ A), A ∈ B(Ωa),

converges weakly to Qa as T → ∞.

Proof. The dual group of Ωa is
⊕

u∈[1,a]

Zu,
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where Zu = Z for each u ∈ [1, a]. The element k = {ku : u ∈ [1, a]} ∈⊕
u∈[1,a] Zu, where only a finite number of integers ku are distinct from

zero, acts on Ωa by

x → xk =
∏

u∈[1,a]

xku

u ,

where x = {xu : xu ∈ γ, u ∈ [1, a]}. Therefore, the Fourier transform gT,a(k)
of the measure QT,a is

gT,a(k) =
\

Ωa

( ∏

u∈[1,a]

xku

u

)
dQT,a =

1

T

T\
0

( ∏

u∈[1,a]

uitku

)
dt

=
1

T

T\
0

exp
{

it
∑

u∈[1,a]

ku log u
}

dt

=





1 if
∑

u∈[1,a] ku log u = 0,

exp{iT
∑

u∈[1,a] ku log u} − 1

iT
∑

u∈[1,a] ku log u
if

∑
u∈[1,a] ku log u 6= 0.

Hence we obtain

lim
T→∞

gT,a(k) =

{
1 if

∑
u∈[1,a] ku log u = 0,

0 if
∑

u∈[1,a] ku log u 6= 0.

Now the theory of probability measures on locally compact groups (see, for
example, [4]) shows that QT,a converges weakly to the probability measure
Qa on (Ωa,B(Ωa)) defined by the Fourier transform

ga(k) =

{
1 if

∑
u∈[1,a] ku log u = 0,

0 if
∑

u∈[1,a] ku log u 6= 0

as T → ∞. The lemma is proved.

Proof of Theorem 2. Define a function h : Ωa → C by the formula

h({yx}) =

a\
1

g(x)x−σy−1
x dx, {yx} ∈ Ωa.

Then h is continuous, and

h({xit}) =

a\
1

g(x)x−σ−it dx = Zg,a(σ + it).

Hence from Theorem 5.1 of [1] and Lemma 3 we find that the probability
measure PT,σ,a,g = QT,ah

−1 converges weakly to the measure Qah
−1 as

T → ∞.
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3. Approximation of the function Z1(s). Let σ1 > 1/2 be fixed, and
let, for y ≥ 1,

ly(s) =
s

σ1
Γ

(
s

σ1

)
ys.

For σ > 1/2, define

Z1,y(s) =
1

2πi

σ1+i∞\
σ1−i∞

Z1(s + z)ly(z)
dz

z
.

We have σ + σ1 > 1, therefore, for Re z = σ1, the function Z1(s + z) is
represented by the absolutely convergent integral

Z1(s + z) =

∞\
1

|ζ(1/2 + ix)|2x−(s+z) dx.

Now define

by(x) =
1

2πi

σ1+i∞\
σ1−i∞

|ζ(1/2 + ix)|2
ly(z) dz

zxz
.

By the well known estimates for the gamma-function we find that

by(x) ≪ x−σ1|ζ(1/2 + ix)|2
∞\
−∞

|ly(σ1 + it)| |σ1 + it|−1 dt

≪y x−σ1 |ζ(1/2 + ix)|2.

This together with the estimate

T\
1

|ζ(1/2 + it)|2 dt ≪ T log T

shows that the integral
T∞
1 by(x)x−s dx converges absolutely for σ > 1/2.

Therefore, an interchange of order of integration yields

(4)

∞\
1

by(x)x−s dx =
1

2πi

σ1+i∞\
σ1−i∞

(
ly(z)

z

∞\
1

|ζ(1/2 + ix)|2
dx

xs+z

)
dz = Z1,y(s).

Let

v(x, y) = exp{−(x/y)σ1}.

Then Mellin’s formula

1

2πi

b+i∞\
b−i∞

Γ (s)c−s ds = e−c

with positive constants b and c shows that

by(x) = |ζ(1/2 + ix)|2v(x, y).
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This and (4) give the formula

Z1,y(s) =

∞\
1

|ζ(1/2 + ix)|2v(x, y)x−s dx,

the integral being absolutely convergent for σ > 1/2.

Theorem 4. Let σ > 1/2 be fixed. Then

lim
y→∞

lim sup
T→∞

1

T

T\
0

|Z1(σ + it) −Z1,y(σ + it)| dt = 0.

Proof. Clearly, it suffices to consider the case 1/2 < σ < 5/4 only,
because the integral defining Z1(s) converges absolutely for σ > 1 and in
this region

lim
y→∞

Z1,y(s) = Z1(s)

uniformly in t.

Let ε = σ − 1/2 and σ2 = 1/2 + ε/2. We move the line of integration in
the definition of Z1,y(s) to Re z = σ2 − σ. Between the lines Re z = σ1 and
Re z = σ2 − σ the integrand has a simple pole at z = 0 and a double pole
at z = 1− s. Therefore, the properties of the gamma-function, the estimate
(1) and the residue theorem yield

Z1,y(s) =
1

2πi

σ2−σ+i∞\
σ2−σ−i∞

Z1(s + z)ly(z)
dz

z
(5)

+ Z1(s) + Re sz=1−sZ1(s + z)ly(z)z−1.

By the Cauchy integral formula,

Z1(σ + it) −Z1,y(σ + it) ≪
\̺
|Z1(z + it) −Z1,y(z + it)| |dz|,

where ̺ is the circle |z − σ| = ε/4. Hence, for sufficiently large T ,

(6)
1

T

T\
0

|Z1(σ + it) −Z1,y(σ + it)| dt

≪
1

T

\̺
|dz|

2T\
0

|Z1(Re z + it) −Z1,y(Re z + it)| dt

≪
1

T
sup

σ
s∈̺

2T\
0

|Z1(σ + it) −Z1,y(σ + it)| dt.
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Since Γ (s) ≪ e−c|t|, c > 0, using (1) we obtain

(7)
1

T

T\
0

|R(σ + it)| dt = o(1)

as T → ∞, where

R(s) = Re sz=1−sZ1(s + z)ly(z)z−1.

Moreover, by (5),

Z1(σ + it) −Z1,y(σ + it)

≪

∞\
−∞

|Z1(σ2 + it + iu)| |ly(σ2 − σ + iu)| du + |R(σ + it)|.

From this and (7) we deduce that

(8)
1

T

2T\
0

|Z1(σ + it) −Z1,y(σ + it)| dt

≪

∞\
−∞

|ly(σ2 − σ + iu)|

(
1

T

|u|+2T\
−|u|

|Z1(σ2 + it)| dt

)
du + o(1)

as T → ∞. The Cauchy–Schwarz inequality and (2) imply the estimate

T\
0

|Z1(σ2 + it)| dt ≪ T.

Therefore, by (8),

1

T
sup

σ
s∈̺

2T\
0

|Z1(σ + it) −Z1,y(σ + it)| dt

≪ sup
σ

s∈ρ

∞\
−∞

|ly(σ2 − σ + iu)|(1 + |u|) du

≪ sup
σ≤−ε/4

∞\
−∞

|ly(σ + iu)|(1 + |u|) du = o(1)

as y → ∞. This, (8) and (6) prove the theorem.

4. A limit theorem for the function Z1,y(s). In this section we
consider the weak convergence of the probability measure

PT,σ,y(A) := νT (Z1,y(σ + it) ∈ A), A ∈ B(C).
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Theorem 5. Let σ > 1/2. Then on (C,B(C)) there exists a probabil-

ity measure Pσ,y such that the measure PT,σ,y converges weakly to Pσ,y as

T → ∞.

Proof. In the definition of the function Zg,a(s) in Section 2 we put

gy(x) = |ζ(1/2 + ix)|2v(x, y),

and denote the resulting function by Z1,a,y(s). Let PT,σ,a,y be the corre-
sponding Z1,a,y(s) measure in Theorem 2. Then by Theorem 2 the measure
PT,σ,a,y converges weakly to some measure Pσ,a,y on (C,B(C)) as T → ∞.
We will prove that the family of probability measures {Pσ,a,y} is tight for
fixed y.

Suppose that the random variable θT is defined on a certain probability
space (Ω,B(Ω), P) and uniformly distributed on the interval [0, T ]. Define

XT,a,y(σ) = Z1,a,y(σ + iθT )

and denote by
D
−→ the convergence in distribution. Then by the above re-

mark

(9) XT,a,y(σ)
D

−−−→
T→∞

Xa,y(σ),

where Xa,y(σ) is a complex-valued random variable with the distribution
Pσ,a,y. For any M > 0, the Chebyshev inequality yields

(10) P(|XT,a,y(σ)| > M) ≤
1

TM

T\
0

|Z1,a,y(σ + it)| dt.

As we have seen in Section 3, the integral defining Z1,y(s) converges abso-
lutely for σ > 1/2. Therefore,

(11) sup
a≥1

lim sup
T→∞

1

T

T\
0

|Z1,a,y(σ + it)| dt ≤ R < ∞.

Now we take M = Rε−1, where ε is an arbitrary positive number. Then
from (10) and (11) we obtain

(12) lim sup
T→∞

P(|XT,a,y(σ)| > M) ≤ ε.

The function h : C → R given by h(s) = |s| is continuous, therefore (9) and
Theorem 5.1 of [1] show that

|XT,a,y(σ)|
D

−−−→
T→∞

|Xa,y(σ)|.

Therefore, by (12),
P(|Xa,y(σ)| > M) ≤ ε.

The set Kε = {s ∈ C : |s| ≤ M} is compact, and by the latter inequality,
P(|Xa,y(σ)| ∈ Kε) ≥ 1 − ε for all a > 1. This and the definition of the
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random variable Xa,y(σ) show that Pσ,a,y(Kε) ≥ 1 − ε for all a > 1, i.e.
the family of probability measures {Pσ,a,y} is tight. Hence by the Prokhorov
theorem (see, for example, [1]), it is relatively compact.

Since, for σ > 1/2,

lim
a→∞

Z1,a,y(s) = Z1,y(s),

we deduce that, for every ε > 0,

lim
a→∞

lim sup
T→∞

νT (|Z1,a,y(σ + it) −Z1,y(σ + it)| ≥ ε)

≤ lim
a→∞

lim sup
T→∞

1

εT

T\
0

|Z1,a,y(σ + it) −Z1,y(σ + it)| dt = 0.

Setting XT,y(σ) = Z1,y(σ + iθT ), we hence find that

(13) lim
a→∞

lim sup
T→∞

P(|XT,a,y(σ) − XT,y(σ)| ≥ ε) = 0.

The relative compactness of {Pσ,a,y} shows that there exists a subse-
quence Pσ,a1,y ⊂ {Pσ,a,y} such that Pσ,a1,y converges weakly to some proba-
bility measure Pσ,y on (C,B(C)) as a1 → ∞. Thus

Xa1,y(σ)
D

−−−→
a1→∞

Pσ,y.

This, (9) and (13) show that all hypotheses of Theorem 4.2 of [1] are satisfied,
therefore

XT,y(σ)
D

−−−→
T→∞

Pσ,y,

and the theorem is proved.

5. Proof of Theorem 1. Theorem 1 follows from Theorem 5 in the
same way as Theorem 5 from Theorem 2. We preserve the notation of the
previous section.

First we show that the family {Pσ,y} of probability measures, where Pσ,y

is the limit measure in Theorem 5, is tight. By Theorem 5,

(14) XT,y(σ)
D

−−−→
T→∞

Xy(σ),

where Xy(σ) is a complex-valued random variable having the distribution
Pσ,y. Define R by

sup
y≥1

lim sup
T→∞

1

T

T\
0

|Z1,y(σ + it)| dt ≤ R.
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Since

lim sup
T→∞

1

T

T\
0

|Z1,y(σ + it)| dt ≪ lim sup
T→∞

(
1

T

T\
0

|Z1,y(σ + it)|2 dt

)1/2

≪
(∞\

1

|ζ(1/2 + ix)|4x−2σv2(x, y) dx
)1/2

< ∞,

we have R < ∞, and taking M = Rε−1, we deduce from (14), similarly to
the proof of Theorem 5, that Pσ,y(Kε) ≥ 1− ε for all y ≥ 1. This proves the
tightness of {Pσ,y}. Hence {Pσ,y} is relatively compact.

Theorem 4 and the Chebyshev inequality show that, for every ε > 0,

(15) lim
y→∞

lim sup
T→∞

νT (|Z1(σ + it) −Z1,y(σ + it)| ≥ ε) = 0.

Now let XT (σ) = Z1(σ + iθT ). Then (15) implies

(16) lim
y→∞

lim sup
T→∞

P(|XT,y(σ) − XT (σ)| ≥ ε) = 0.

We choose {Pσ,y1
} ⊂ {Pσ,y} such that Pσ,y1

converges weakly to some prob-
ability measure Pσ on (C,B(C)) as y1 → ∞. Then

Xy1
(σ)

D
−−−→
y1→∞

Pσ.

This, (14), (16) and Theorem 4.2 of [1] prove the theorem.
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