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On the equivariant main conjecture of Iwasawa theory
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Introduction. The main conjecture of Iwasawa theory for an abelian
number field in its classical formulation describes the Galois module struc-
ture of the class groups in the limit over the intermediate fields of its cyclo-
tomic Zp-extension. The eigenspace of this limit with respect to a Dirichlet
character χ associated to the ground field is related to the corresponding
p-adic L-function or to the eigenspace of the group of global units modulo
cyclotomic units, depending on the parity of χ. The conjecture was proved
in 1984 by B. Mazur and A. Wiles [MW84].

Recently, D. Burns and C. Greither [BG03] deduced an equivariant ver-
sion of the main conjecture as the key to their proof of the equivariant
Tamagawa number conjecture. Here, “equivariant” refers to the fact that
one retains the full Galois module structure instead of decomposing the
modules by characters.

A. Huber and G. Kings [HK03] also use a variant of the Iwasawa main
conjecture in their proof of the Tamagawa number conjecture for Dirichlet
motives. It consists, like the classical formulation, of a separate statement
for each Dirichlet character. In particular, it is weaker than the formulation
in [BG03].

In the present article, we use this statement and the theorem of Ferrero–
Washington to reprove the equivariant conjecture of [BG03] in a slightly
more general form.

Fix an odd prime p and let (K∞, ̺, U) be a triple consisting of the cyclo-
tomic extension K∞ of an abelian number field, a one-dimensional represen-
tation ̺ of G(Q/Q) on a finite extension Op of Zp, and an open subscheme
U of Spec Z, subject to the condition that the ramification index in K∞/Q
of every point in U is prime to p.

Like [BG03] and [HK03] we use continuous étale cohomology to assign to
each of such triples a complex R• = RΓIw(UK∞

,Op(̺)) of modules over the
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profinite group ring Ω = Op[[G(K∞/Q)]]. Further, we define a cyclotomic
element c(UK∞

, ̺) in the first cohomology module of R• and a p-adic L-
element L(UK∞

, ̺−1εcycl) in the quotient ring of Ω. Here, εcycl denotes the
cyclotomic character. The quotient R•/Ωc(UK∞

, ̺) turns out to be a perfect
complex that is torsion, i.e. acyclic after base change to the quotient ring.
Note that this is no longer true if we drop the condition on the type of
ramification in U .

Using the determinant functor of F. Knudsen and D. Mumford we can
attach to each perfect torsion complex P • an invertible fractional ideal of Ω
called the characteristic ideal of P •. Our main result then reads as follows.

Theorem 0.1 (see Theorem 7.4).

(i) (Vanishing of the µ-invariant) Let p be a prime ideal of codimension 1
of Ω, with p ∈ p. Then (R•/Ωc(UK∞

, ̺))p is acyclic.

(ii) (Iwasawa main conjecture) L(UK∞
, ̺−1εcycl) generates the charac-

teristic ideal of R•/Ωc(UK∞
, ̺).

The formulation of the main conjecture in [BG03] corresponds to Theo-
rem 0.1(ii) for all triples (Q(ζnp∞), εr

cycl, Spec Z[1/np]), the version in [HK03]
to triples (Q∞, χε

r
cycl, Spec Z[1/p]). Here, r and n are integers, Q∞ is the

Zp-extension of Q and χ is any Dirichlet character.
The relation to the classical Iwasawa main conjecture is established

by the fact that the first and second cohomology modules of the com-
plex R•/Ωc(UK∞

, ̺) for ̺ = εcycl are essentially given by the limit of the
p-primary parts of the global units modulo cyclotomic units, respectively
of the class groups, taken over the intermediate fields of K∞/Q. Using

R̃•/c(UK∞
, ̺) in lieu of these classical objects leads to a smoother formula-

tion of the conjecture that circumvents the problems usually connected to
p dividing the order of G(K/Q) (see the discussion in [HK03]).

The main idea of the proof of Theorem 0.1 is essentially the same as
in [BG03]. However, we can clarify the argument considerably by using the
result of [HK03]. Originally, D. Burns and C. Greither derived their theorem
from the result of B. Mazur and A. Wiles. This approach necessitates some
rather involved deduction steps to deal with the first cohomology group of
R•/Ωc(UK∞

, ̺), in particular for Theorem 0.1(i). (Note that this step of
the argument in [BG03] contains an inaccuracy that was later corrected in
the appendix of [Fla04].) The additional strength of the main conjecture
in [HK03] allows us to present a comparatively quick proof of this part of
the theorem. Recall that A. Huber and G. Kings do not use the result of
[MW84]. Instead, they give an independent proof of their statement, using
the Euler system approach of V. A. Kolyvagin and K. Rubin [Rub00].

As [BG03] and [HK03], we do not treat the case p = 2, but this gap has
meanwhile been filled by M. Flach in [Fla04].
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The article is organised as follows. In Section 1 we introduce the charac-
teristic ideal of a perfect torsion complex. Section 2 consists of a collection
of algebraic properties of Ω that turn out to be useful in the later sections.

The definition of the complex RΓIw(UK∞
,Op(̺)) is given in Section 3. In

the subsequent section we calculate its cohomology modules in the special
case ̺ = εcycl, which is closely related to classical Iwasawa theory.

To deal with the ramification of ̺ we need an explicit description of the
relative cohomology modules associated to closed subschemes of U . This is
achieved in Section 5.

In Section 6 we extend the classical construction of cyclotomic elements
and L-elements to our setting. The final section is devoted to the proof of
the main theorem.

Acknowledgements. The paper was partially written up during a visit
at the Max Planck Institute for Mathematics in Bonn. The author would like
to thank this institution for its hospitality and support. Before all others,
he wishes to express his gratitude to A. Huber for introducing him to this
subject and for numerous valuable discussions.

1. Characteristic ideals. The notion of the characteristic ideal of a
perfect torsion complex is a variant of the usual determinant functor of
F. Knudsen and D. Mumford [KM76]. It is less flexible than the latter, but
easier to handle.

Let R be any commutative ring (with unit) and denote by Q(R) the
total ring of fractions of R. Further, we write I(R) for the abelian group of
invertible fractional ideals, i.e. R-submodules I of Q(R) which are locally
free of rank 1 and which satisfy Q(R)⊗R I = Q(R).

We can view I as a functor from the category of commutative rings to
abelian groups if we restrict the morphisms of the former to the following
class.

Definition 1.1. We call a ring homomorphism φ : R→ S extendable if
it extends to a homomorphism Q(R)→ Q(S), also denoted by φ.

Examples of extendable homomorphisms include all flat homomorphisms
and all integral extensions.

If φ : R→ S is extendable, then I(φ) is given by

I(φ)(I) = φ(I)S

for all I ∈ I(R).
Assume that R is noetherian. Then an element of I(R) is uniquely de-

termined by the following local conditions.

Proposition 1.2. Let R be noetherian and I, J ∈ I(R). Then I = J if

and only if IRp = JRp for all non-zero divisors r and all primes p associated
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to R/rR. These are exactly the primes of codimension 1 if R is Cohen–

Macaulay.

Proof. This follows by the same argument as [Eis99, Prop. 11.3].

Definition 1.3. We call a complex P • of R-modules a torsion complex

if Q(R) ⊗R P • is acyclic. P • is called perfect if it is quasi-isomorphic to a
bounded complex of finitely generated projective R-modules.

Let detR P
• denote the determinant of P • according to F. Knudsen and

D. Mumford [KM76]. If P • is a perfect torsion complex, then the natural
isomorphism

Q(R)⊗R detR P
• = Q(R)

allows us to view detR P
• as an invertible fractional ideal of R.

Definition 1.4. We call charP • = (detR P
•)−1 ∈ I(R) the character-

istic ideal of P •.

The characteristic ideal enjoys the following properties.

Proposition 1.5. Let P • be a perfect torsion complex of R-modules.

(i) charP • depends only on the quasi-isomorphism class of P •.

(ii) charP •[1] = (charP •)−1.

(iii) If P •
1 → P •

2 → P •
3 is a distinguished triangle of perfect torsion

complexes in the derived category , then

charP •
2 = charP •

1 charP •
3 .

(iv) If φ : R → S is an extendable homomorphism, then Lφ∗(P
•) =

S ⊗L
R P

• is a perfect torsion complex of S-modules and

charLφ∗(P
•) = I(φ)(charP •).

(v) If the cohomology modules of P • are themselves perfect , i.e. of finite

Tor-dimension, then

charP • =
∏

n∈Z

(charHn P •)(−1)n

.

(vi) If R is a noetherian and normal domain and M any torsion module

of finite projective dimension (considered as complex concentrated

in degree 0), then charM coincides with the content of M , as defined

in [Bou89, VII, §4.5]. In particular , if R = Zp[[T ]], then charM is

the characteristic ideal of Iwasawa theory.

Proof. Everything follows easily from the corresponding properties of
the determinant functor, as given in [KM76].

Remark 1.6. If R is not reduced, then the usual determinant functor is
additive only for the class of “true” triangles. In the following, we will only
consider reduced rings. However, note that in our setting, (iii) is indeed true
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for arbitrary distinguished triangles. The reason is that one can always re-
place the distinguished triangle by a true triangle of strictly perfect torsion
complexes, the particular choice of which, according to (i), does not mat-
ter. For the determinant functor, it is this non-canonical choice that causes
trouble.

Remark 1.7. One can also deduce Proposition 1.5 from the results of
[BB05] on the more sophisticated notion of the refined Euler characteristic.
To this end, note that for a perfect torsion complex P •, the only trivialisation
is the zero map and charP • is the image of −χ(P •, 0) under the natural
homomorphism K0(R,Q(R))→ I(R).

2. The profinite group ring of a Zp-extension. In this section we
will assemble some useful facts about cyclotomic Zp-extensions and profinite
group rings. A large part of the material can also be found in [BG03, §6.1].

Throughout this article, p will denote a fixed odd prime. Let Q∞ be the
unique Zp-extension of Q. The cyclotomic Zp-extension of a number field
is given by K∞ = KQ∞. We shall always make the additional assumption
that K is an abelian extension of Q. The theorem of Kronecker–Weber then
shows that there exists the following distinguished choice of subfields of K∞.

Definition 2.1. Let K0 ⊂ K∞ be the subfield that is uniquely deter-
mined by the following two properties:

(i) G(K∞/Q) = G(K0/Q)×G(Q∞/Q),
(ii) p2 does not divide the conductor of K0.

We write Kn for the subfield of K∞ of degree pn over K0.

Let Op be the valuation ring of an arbitrary finite extension of Qp and
write

Ω = Op[[G(K∞/Q)]] = lim←−n
Op[G(Kn/Q)]

for the profinite group ring with coefficients inOp. Assume for simplicity that
Op contains all values of the characters of G(K0/Q). If P∞ is the maximal
p-extension of Q inside K∞, then

Ω ∼=
∏

θ

Op[[G(P∞/Q)]],

where the product runs through the characters θ of G(K∞/P∞). Observe
that Op[[G(P∞/Q)]] is a local Cohen–Macaulay ring of Krull dimension 2,
but it is not regular unless P∞ = Q∞.

The normalisation of Ω in its total quotient ring Q(Ω) is given by

Ω̃ ∼=
∏

χ

Op[[G(Q∞/Q)]].
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Here, χ runs through the characters of G(K0/Q). Note that

Ω[1/p] = Ω̃[1/p].

The prime ideals p of codimension 1 of Ω with p ∈ p play a special
role in our considerations. Recall that a torsion module M over Zp[[T ]] has
vanishing Iwasawa µ-invariant if M is finitely generated as Zp-module. We
generalise this as follows.

Lemma 2.2. Let M be an Ω-module which is finitely generated as Op-

module. Then Mp = 0 for all prime ideals p of codimension 1 containing p.

Proof. We can view M as a module over

Zp[[T ]] ∼= Zp[[G(K∞/K0)]]

via the natural inclusion

i : Zp[[G(K∞/K0)]] →֒ Op[[G(K∞/Q)]].

The structure theorem for Zp[[T ]]-modules ([Was97, Prop. 13.19]) shows that
M(p) = 0, since Zp[[T ]]/(pn) is not finitely generated over Zp for integers

n ≥ 0. The statement for Op[[G(K∞/Q)]] follows because i−1(p) = (p).

We will now determine the group of invertible ideals of Ω. Since Ω is
semilocal, it is given by

I(Ω) = Q(Ω)×/Ω×.

In our main statement we compare two elements of I(Ω). If O′
p is a faithfully

flat extension of Op, e.g. the valuation ring of a finite extension of Q(Op),
then the induced map

I(Ω)→ I(O′
p ⊗Op Ω)

is injective. Therefore, the above assumption that Op contains the values of
the characters of G(K∞/Q) is no restriction for our purposes. (Alternatively,
it can be circumvented by using components instead of characters, as in
[MW84].)

If Q∞ ⊂ L∞ ⊂ K∞ is any intermediate extension, we write

ψK∞/L∞
: Op[[G(K∞/Q)]]→ Op[[G(L∞/Q)]]

for the natural projection. Note that the ring homomorphism ψK∞/L∞
is

extendable. Indeed, the induced map ψ̃ between the normalisations of both
rings is extendable for almost trivial reasons. Since the inclusion Ω → Ω̃
is extendable and maps zero divisors to zero divisors, it follows that ψ is
extendable as well.

3. Iwasawa cohomology. Consider an open subscheme U of Spec Z

and let S denote its closed complement. If F/Q is a finite field extension,
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we set

UF = U × SpecOF , SF = S × SpecOF ,

where OF denotes the ring of integers of F . Write

jF : SpecF → UF

for the inclusion of the generic point. As before, K∞ will denote the cyclo-
tomic Zp-extension of an abelian number field.

Let M(̺) be a finitely generated Op-module M together with a contin-
uous representation

̺ : G(Q/Q)→ AutOp M

(where we give AutOp M its profinite topology). Let further

ι : G(Q/Q)→ Ω×, ι(g) = g−1 ∈ G(K∞/Q)

denote the contragredient of the natural representation. The Ω[G(Q/Q)]-
module

IndK∞/QM(̺) = Ω(ι)⊗Op M(̺)

gives rise to a projective system of étale sheaves

jQ∗ IndK∞/QM(̺) = (jQ∗(Op/p
nOp[G(Kn/Q)](ι)⊗Op M(̺)))∞n=1

on U . (We reemphasise that the action of G(Q/Q) on the module
Op/p

nOp[G(Kn/Q)](ι) is given by ι, i.e. Op/p
nOp[G(Kn/Q)] is considered

as trivial G(Q/Q)-module.)

Definition 3.1. We define the Iwasawa complex of M(̺) over U to be
the cochain complex of continuous étale cohomology

RΓIw(UK∞
,M(̺)) = R(lim←−n

Γét)(U, jQ∗ IndK∞/QM(̺)),

as constructed by U. Jannsen in [Jan88]. If Z is a closed subscheme of U ,
we define

RΓIw(UK∞
, Z,M(̺)) = R(lim←−n

Γét)(U,Z, jQ∗ IndK∞/QM(̺))

to be the complex of continuous étale cohomology with support in Z. These
complexes are to be understood as objects of the derived category of Ω-
modules. Their ith cohomology modules are denoted by Hi

Iw(UK∞
,M(̺)),

respectively Hi
Iw(UK∞

, Z,M(̺)).

Remark 3.2. Alternatively, it should also be possible to use the formal-
ism of T. Ekedahl [Eke90].

Here are some basic properties of RΓIw(UK∞
,M(̺)).
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Proposition 3.3. Assume p /∈ U .

(i) For all i ∈ Z,

Hi
Iw(UK∞

,M(̺)) = lim←−n
Hi

ét(UKn , jKn∗M(̺)),

where the limit is taken with respect to the corestriction maps.

(ii) In particular ,

H0
Iw(UK∞

,M(̺)) = 0.

Proof. By [Mil86, Theorem II.2.13] the modules Hi
ét(UKn , jKn∗M(̺)) are

finite. The asserted equality in (i) follows by [Jan88, Proposition 1.6 and
Lemma 1.15].

It remains to verify that H0
Iw(UK∞

,M(̺)) = 0. As M is noetherian, there
is an n0 such that the inflation map

H0
ét(UKn0

, jKn0
∗M(̺)) = M(̺)G(Q/Kn0

)

→֒M(̺)G(Q/Kn) = H0
ét(UKn , jKn∗M(̺))

is the identity for n ≥ n0, and therefore, the corestriction map is multipli-
cation by pn−n0 . Hence, the limit over the corestriction maps vanishes.

If both UK∞
and ̺ are unramified over U , then all sheaves in the pro-

jective system jQ∗ IndK∞/QM(̺) are locally constant. Under these circum-
stances one can identify RΓIw(UK∞

,M(̺)) with the complex of continuous
cochains of the topological πét

1 (U)-module IndK∞/QM(̺), where πét
1 (U) de-

notes the étale fundamental group of U (see Proposition II.2.9 of [Mil86]).
This setting has been extensively explored by J. Nekovář in [Nek03]. We
recall some of the consequences.

Proposition 3.4. Assume that UK∞
and ̺ are unramified over U . Then

RΓIw(UK∞
,M(̺)) is acyclic outside degrees 1 and 2.

Proof. The cohomological p-dimension of πét
1 (U) is 2 (see [NSW00, The-

orem 8.3.19]).

Proposition 3.5. Let M(̺) be free as an Op-module and let W be

a finitely generated Ω-module. Assume that UK∞
and ̺ are unramified

over U . Then there exists a natural quasi-isomorphism

W ⊗L
Ω RΓIw(UK∞

,M(̺)) = R(lim←−n
Γét)(U, jQ∗(W ⊗Ω IndK∞/QM(̺))).

Proof. See [Nek03, Proposition 3.4.4].

Observe that for any ̺ : G(Q/Q) → O×
p we can find an abelian cyclo-

tomic Zp-extension K∞ such that ̺ factors through G(K∞/Q). We will then
denote by

Tw̺ : Op[[G(K∞/Q)]]→ Op[[G(K∞/Q)]]
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the ring automorphism that maps g ∈ G(K∞/Q) to ̺(g)g. For any ring
homomorphism f : R→ S and any R-module M we write

f∗M = S ⊗R M

for the base extension to S.

Proposition 3.6. Let M(̺) be free as an Op-module. Assume that ̺ is

unramified outside a finite set of primes. Choose U such that for any l ∈ U
the ramification index of l in K∞/Q is prime to p. Then:

(i) RΓIw(UK∞
,M(̺)) is perfect.

(ii) For any intermediate field Q∞ ⊂ L∞ ⊂ K∞ there exists a natural

quasi-isomorphism

LψK∞/L∞∗RΓIw(UK∞
,M(̺)) = RΓIw(UL∞

,M(̺)).

(iii) For any χ : G(K∞/Q)→ O×
p there exist a natural quasi-isomorph-

ism

Twχ∗RΓIw(UK∞
,M(̺)) = RΓIw(UK∞

,M(χ−1̺)).

Proof. Let V be an open subscheme of U such that both ̺ and VK∞
are

unramified over U . The localisation triangle

RΓIw(UK∞
, U − V,M(̺))→ RΓIw(UK∞

,M(̺))→ RΓIw(VK∞
,M(̺))

([Jan88, 3.6]) implies that to prove (i), it is sufficient to show that the two
outer complexes are perfect. The right complex is immediately seen to be
perfect by Proposition 3.5. We will prove in Proposition 5.1 that the left
complex is perfect as well.

By Remark 5.3 and the localisation triangle it also suffices to prove (ii)
and (iii) for the scheme V . Claim (ii) then follows directly from the above
proposition. For (iii) it remains to notice that

Twχ∗ IndK∞/QM(̺)→ IndK∞/QM(χ−1̺),

1⊗ w ⊗m 7→ Twχ(w)⊗m (w ∈ Ω(ι),m ∈M(̺))

is a G(Q/Q)-equivariant isomorphism of Ω-modules.

4. Cohomology of Op(εcycl). In this section we calculate the cohomol-
ogy of the one-dimensional representation Op(εcycl) given by the cyclotomic
character

εcycl : G(Q/Q)→ Z×
p .

The following proposition establishes the link to the objects of classical
Iwasawa theory.

Proposition 4.1. Let U be an open subscheme of X = Spec Z such that

p lies in the complement S of U .
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(i) There exists a canonical isomorphism of Ω-modules

H1
Iw(UK∞

,Op(εcycl)) = lim←−n
Op ⊗Z Gm(UKn),

where Gm denotes the multiplicative group.

(ii) The following sequence of Ω-modules is exact :

0→ lim←−n
Op ⊗Z Gm(XKn)→ H1

Iw(UK∞
,Op(εcycl))

→ lim←−n
H0

ét(SKn ,Op)→ lim←−n
Op ⊗Z Pic(XKn)

→ H2
Iw(UK∞

,Op(εcycl))→ lim←−n
H1

ét(SKn ,Op)→ Op → 0.

Proof. This is proved in the same way as [BG03, Proposition 5.1]. The
idea is to combine the calculation of the cohomology groups of Gm in [Mil86,
Proposition II.2.1] with the Kummer exact sequence on UKn and then to
pass to the limit. The last term can then be identified as the tensor product
of

Zp = lim←−n
Ker(H3

ét(XKn ,Gm)
pn

−→ H3
ét(XKn ,Gm))

with Op.

This result is complemented by the following

Proposition 4.2. There exist (non-canonical) isomorphisms of Ω-mo-

dules

lim←−n
H0

ét(SKn ,Op) ∼= Op[G(K∞/Q)/Dp],

lim←−n
H1

ét(SKn ,Op) ∼=
⊕

l∈S

Op[G(K∞/Q)/Dl],

where Dl is the decomposition subgroup of the prime l in G(K∞/Q).

Proof. One of the fundamental properties of Zp-extensions is the fact
that K∞/K0 is unramified outside the primes over p (see [Was97, Prop.
13.2]). For cyclotomic Zp-extensions one also knows that there exists a num-
ber n0 such that all primes over p are totally ramified in K∞/Kn0

and such
that none of the primes in SKn0

splits in K∞/Kn0
(see [Was97, Ex. 13.2]).

In particular, SK∞
→ SKn is a homeomorphism for n ≥ n0.

On the other hand,

H0
ét(SKn ,Op) ∼=

⊕

v∈SKn

Op
∼= H1

ét(SKn ,Op).

An elementary calculation shows that the corestriction map

Hi
ét(SKn+1

,Op)→ Hi
ét(SKn ,Op)

for n ≥ n0 is the identity for i = 1, and is the multiplication by the residue
degree of v on the v-component of H0

ét(SKn+1
,Op) for i = 0. But the residue



Main conjecture of Iwasawa theory 285

degree is 1 or p depending on whether v lies over p or not. Now pass to
the limit. The choice of an element of SK∞

for each prime in S induces the
desired isomorphisms.

Corollary 4.3. Let T be a closed subscheme of U . Then the complex

RΓIw(UK∞
, T,Op(εcycl)) is acyclic outside degree 3 and

H3
Iw(UK∞

, T,Op(εcycl)) ∼=
⊕

l∈T

Op[G(K∞/Q)/Dl].

Proof. Easy application of the snake lemma.

5. Local factors. In this section we examine the relative cohomology
complexes RΓIw(UK∞

, S,M(̺)) for arbitrary continuous G(Q/Q)-represen-
tations M(̺), where M is any finitely generated Op-module. This will also
complete the proof of Proposition 3.6. Our aim is to extend Corollary 4.3
as follows.

Proposition 5.1. Let U be an open subscheme of Spec Z[1/p], S a

closed subscheme of U . Then:

(i) RΓIw(UK∞
, S,M(̺)) is acyclic outside degree 3.

(ii) H3
Iw(UK∞

, S,M(̺)) is a finitely generated Op-module.

(iii) If for all l ∈ S the prime p does not divide the ramification index of

l in K∞/Q, then RΓIw(UK∞
, S,M(̺)) is a perfect torsion complex

of Op[[G(K∞/Q)]]-modules.

Supplement. If K∞/Q is a p-extension, M = Op, and ̺ is ramified

over a prime l that is unramified in K∞/Q, then

charRΓIw(UK∞
, l,Op(̺)) = (1).

Proof. As in the proof of Proposition 4.2, we fix a number m such that
none of the primes in SKm splits or ramifies in K∞/Km.

Write vm ∈ SKm for the image of a point v ∈ SK∞
. From [Jan88, Prop.

3.8], we obtain an isomorphism of Op[[G(K∞/Km)]]-modules

Hi
Iw(UK∞

, S,M(̺))

=
⊕

v∈SK∞

Ri(lim←−Γét)(SpecOh
vm
, vm, jKm∗ IndK∞/Km

M(̺)),

where Oh
vm

is the henselisation of the local ring at vm and the limit is taken
over the projective system jKm∗ IndK∞/Km

M(̺).

We will now use the connection between étale and Galois cohomology.
Fix a v ∈ SK∞

and let Gvm denote the absolute Galois group of Q(Oh
vm

),
Ivm its inertia subgroup and gvm = Gvm/Ivm the Galois group of the residue
field of vm. For any profinite group G, let cdpG denote the cohomological
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p-dimension, i.e. the largest number i such that the ith group cohomology
functor is non-trivial on finite p-torsion G-modules. We have

cdpGvm = 2, cdp Ivm = cdp gvm = 1

(see [NSW00, Prop. 3.3.4, Prop. 7.1.8]). Further, it is well known that for
these groups, the cohomology groups of finite p-torsion modules will again
be finite. In particular, we may interchange projective limits and continuous
cohomology functors during the subsequent considerations.

By [Mil86, Proposition II.1.1(b)] and [Mil80, Ex. II.3.15] it follows that

Ri(lim←−Γét)(SpecOh
vm
, jKm∗ IndK∞/Km

M(̺))

= Hi(gvm , H
0(Ivm , IndK∞/Km

M(̺))).

Comparing the localisation sequence for

SpecQ(Oh
vm

) →֒ SpecOh
vm
←֓ vm

with the Hochschild–Serre spectral sequence for Ivm ⊂ Gvm we obtain from
the above

Ri(lim←−Γét)(SpecOh
vm
, vm, jKm∗ IndK∞/Km

M(̺))

= Hi−2(gvm ,H
1(Ivm , IndK∞/Km

M(̺))).

As vm is unramified in K∞/Km, the action of Ivm on Op[[G(K∞/Km)]](ι) is
trivial, and hence,

H1(Ivm , IndK∞/Km
M(̺)) = IndK∞/Km

H1(Ivm ,M(̺)).

Observe that H1(Ivm ,M(̺)) is a finitely generated Op-module.
To finish the proof of parts (i) and (ii) of Proposition 5.1 it remains to

verify the following

Lemma 5.2. Let N(τ) be a finitely generated Op-module N together with

a continuous representation τ : gvm → AutOp N . Then

(i) H0(gvm, IndK∞/Km
N(τ)) = 0,

(ii) H1(gvm, IndK∞/Km
N(τ)) is a finitely generated Op-module.

Proof. By our assumption on m we have Ivn = Ivm and Gvn/Gvm =
G(Kn/Km) for n ≥ m. Thus,

Hi(gvm , IndK∞/Km
N(τ)) = lim←−n

Hi(gvn , N(τ)).

The same argument as in Proposition 3.3(ii) implies that this term vanishes
for i = 0. This proves (i). Claim (ii) follows because H1(gvm , N(τ)) is a
quotient of N for all n.

We now prove Proposition 5.1(iii). After decomposing by characters we
may assume that K∞ is a p-extension. In particular, l ∈ S is unramified. By



Main conjecture of Iwasawa theory 287

the same argument as above, replacing Km by Q, we obtain

H3
Iw(UK∞

, l,M(̺)) = H1(gl,H
1(Il, IndK∞/QM(̺))).

Write Ω = Op[[G(K∞/Q)]] and note that Il acts trivially on Ω(ι). Conse-
quently,

H1(Il, IndK∞/QM(̺)) = IndK∞/QN(τ),

where N = H1(Il,M(̺)) is a finitely generated Op-module and τ : gl →
AutOp N is the induced representation. Recall that gl is topologically gen-
erated by the geometric Frobenius element Fl. By (i) the sequence

0→ Ω ⊗Op N
id−ι(Fl)⊗τ(Fl)
−−−−−−−−−−→ Ω ⊗Op N → H3

Iw(UK∞
, l,M(̺))→ 0

is exact. As Op is regular, Ω ⊗Op N is perfect as Ω-complex; hence, so is

H3
Iw(UK∞

, l,M(̺)). The latter module is Ω-torsion, because it is a finitely
generated Op-module. This proves (iii).

To prove the Supplement it suffices to recall that

N = (M(̺)Rl)Tl
,

where Rl is the ramification subgroup and Tl = Il/Rl. If M = Op and the
restriction of ̺ to Il is non-trivial, then this module is clearly Op-torsion. By
parts (iii) and (v) of Proposition 1.5 applied to the above exact sequence,
we obtain

charRΓIw(UK∞
, l,M(̺)) = char(Ω ⊗Op N) char−1(Ω ⊗Op N) = (1).

This finishes the proof of Proposition 5.1.

Remark 5.3. Let W be a finitely generated Ω-module. If either W or
H1(Il,M(̺)) is flat as an Op-module, then

W ⊗L
Ω RΓIw(UK∞

, l, IndK∞/QM(̺))

∼= H1(gl,W ⊗Ω IndK∞/Q H1(Il,M(̺)))

∼= RΓIw(UK∞
, l,W ⊗Ω IndK∞/QM(̺)).

This is not true without the additional flatness assumption.

6. Cyclotomic elements and L-elements. The aim of this section is
to assign to each admissible triple (K∞, ̺, U) given by

• a cyclotomic Zp-extension K∞ of an abelian number field,
• a representation ̺ : G(Q/Q)→ O×

p ,
• an open subscheme U of Spec Z that does not contain any prime whose

ramification index in K∞/Q is divisible by p

an L-element L(UK∞
, ̺−1εcycl) ∈ Q(Op[[G(K∞/Q)]])× and a cyclotomic el-

ement c(UK∞
, ̺) ∈ H1

Iw(UK∞
,Op(̺)).
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If ̺ and UK∞
are unramified over U , then our definition follows along

the lines of the classical construction (see [Was97, §7.2], respectively [Rub00,
§3.2]). By the theorem of Kronecker and Weber there exists a number f such
that

• the set of prime divisors of f is equal to the complement of U in
Spec Z[1/p],
• K∞ ⊂ Q(ζfp∞),
• ̺ factors through G(Q(ζfp∞)/Q).

Let Fl denote the geometric Frobenius element and set

Fa =
∏

l prime

F
vl(a)
l

for each positive integer a. The Stickelberger elements

ξfpk =
∑

0<a<fpk

(a,fp)=1

(
a

fpk
−

1

2

)
Fa ∈ Qp[G(Q(ζfpk)/Q)]

are compatible under the projection maps induced by

G(Q(ζfpk+1)/Q)→ G(Q(ζfpk)/Q)

and define an element

ξfp∞ ∈ Q(Op[[G(Q(ζfp∞)/Q)]]).

Further, we fix for each number k a primitive kth root of unity ζk such that
ζs
ks = ζk. By Proposition 4.1 we may regard the system cfp∞ = (1−ζfpk)∞k=0

as an element of H1
Iw(UQ(ζfp∞ ),Op(εcycl)).

Definition 6.1. Let ̺ and UK∞
be unramified over U . Denote by p+ and

p− the projectors onto the (+1)-eigenspace, respectively the (−1)-eigenspace
of the complex conjugation and chose f as above. We set

L(UK∞
, ̺−1εcycl) = ψQ(ζfp∞ )/K∞

Tw̺−1εcycl
(p+ − p−ξfp∞).

The cyclotomic element c(UK∞
, ̺) is defined to be the image of 1⊗ p+cfp∞

under the homomorphism

(ψQ(ζfp∞ )/K∞
Tw̺−1εcycl

)∗ H1
Iw(UQ(ζfp∞ ),Op(εcycl))→ H1

Iw(UK∞
,Op(̺)).

For any l ∈ U we denote by

El(K∞, ̺
−1εcycl) = 1− ψQ(ζfp∞ )/K∞

Tw̺−1εcycl
(Fl)

the Euler factor at l.

We now extend this definition to arbitrary admissible triples (K∞, ̺, U).
Let P∞ be the maximal p-extension inside K∞. We may decompose the
group ring Op[[G(K∞/Q)]] by the characters of G(K∞/P∞). The L-elements
and cyclotomic elements for K∞ are then completely determined by their
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projections onto the components of the corresponding decomposition of
Q(Op[[G(K∞/Q)]])×, respectively H1

Iw(UK∞
,Op(̺)). Consequently, it suffices

to consider triples (P∞, ̺, U) with P∞ a p-extension. Note that every ram-
ification index is now a power of p. By assumption, UP∞

is therefore an
unramified cover of U . In other words, we only need to deal with the rami-
fication of ̺.

Let V ⊂ U be the maximal open subscheme such that ̺ is unramified
over V (note that the complement is a finite set because ̺ is one-dimensional)
and set

L(UP∞
, ̺−1εcycl) = L(VP∞

, ̺−1εcycl), c(UP∞
, ̺) = c(VP∞

, ̺),

and for any l ∈ U − V ,

El(P∞, ̺
−1εcycl) = 1.

It is easy to check that this definition is consistent with the previous
construction. Moreover, we have

Proposition 6.2. Let (K∞, U, ̺) be any admissible triple.

(i) The elements L(UK∞
, ̺−1εcycl), c(UK∞

, ̺), and El(K∞, ̺
−1εcycl) are

compatible under the projection maps ψK∞/L∞
and under twists by

continuous characters G(K∞/Q)→ O×
p .

(ii) Let V ⊂ U be an open subscheme with closed complement T = U−V .

Then

L(VK∞
, ̺) = Tw̺(p+) + Tw̺(p−)L(UK∞

, ̺)
∏

l∈T

El(K∞, ̺),

c(VK∞
, ̺) = c(UK∞

, ̺)
∏

l∈T

El(K∞, ̺
−1εcycl).

Proof. This is partly implied by the corresponding compatibility prop-
erties of ξfp∞ and cfp∞ , respectively, and partly a direct consequence of the
definition.

We want to sketch briefly the connection between our L-elements and the
Kubota–Leopoldt L-function Lp(s, χ). Let K∞ = Q∞ and U = Spec Z[1/p].
According to the decomposition O×

p = µ×F into the torsion group of roots
of unity µ and the torsion-free Zp-module F we can write

̺ = ̺f̺∞,

where ̺f takes values in µ and

̺∞ : G(Q∞/Q)→ F

is a continuous group homomorphism.
Let N be the conductor of ̺f and

rec : G(Q(ζN )/Q)→ (Z/NZ)×
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the isomorphism which maps the geometric Frobenius Fl to l, when l is
prime to N . Further, note that the number

s =
logp ̺∞(γ)

logp((εcycl)∞(γ))
∈ logp F ⊂ Cp

does not depend on the choice of a non-trivial γ ∈ G(Q∞/Q). Hence, we
may write ̺∞ = (εcycl)

s
∞.

Proposition 6.3. Let ̺ = (εcycl)
s
∞̺f be an even one-dimensional rep-

resentation. Then

ψQ∞/Q(L(UQ∞
, εcycl̺)) = Lp(1 + s, ̺f ◦ rec−1).

Proof. See [Was97, Theorem 7.10], but observe that the identification

G(Q(ζN )/Q)→ (Z/NZ)×

used in loc. cit. is given by 1/rec. In particular, w ◦ rec = (εcycl)
−1
f , where w

denotes the Teichmüller character.

Remark 6.4. Let N be prime to p and let χ : (Z/NpZ)× → O×
p be an

odd Dirichlet character of conductor N or Np (i.e. χ is of the first kind).
Set U = Spec Z[1/p] and let

β : Op[[G(Q∞/Q)]]→ Op[[T ]]

be the isomorphism that maps F−1
1+Np to T + 1. By construction we then

have
f(T, χω) = β(L(UQ∞

, χ ◦ rec)),

where f(T, χω) is the element introduced in [Was97, §7.2].

Remark 6.5. Let χ be a finite character and k an integer. Proposi-
tion 6.3 implies that our element L(UQ∞

, ε1−k
cyclχ), with U = Spec Z[1/p],

coincides with the p-adic L-function Lp(χ, 1− k) used in [HK03]. However,
note that there is a sign error in the definition of this function. The correct
definition should read as follows (in the notation of loc. cit.). For all Õp and

all characters τ : Γ → Õ∗
p of finite order,

τ(Lp(χ, 1− k)) = (1− χτ(p)pk−1)L(χτ, 1− k).

Remark 6.6. The elements c(UK∞
, ̺) depend on the choice of the sys-

tem of roots of unity (ζk), but the submodule of H1
Iw(UK∞

,Op(̺)) generated
by c(UK∞

, ̺) does not. This is the actual object we are interested in.

The theorem of Ferrero–Washington can be rephrased to the statement
that the µ-invariants of the p-adic L-functions vanish. The following propo-
sition translates this formulation to our setting.

Proposition 6.7. Let (K∞, U, ̺) be an admissible triple and l ∈ Spec Z

of prime-to-p ramification in K∞/Q. Then L(UK∞
, ̺) and El(K∞, ̺) map
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to units in Op[[G(K∞/Q)]]p for each prime ideal p of codimension 1 with

p ∈ p.

Proof. By Proposition 6.2(ii) we may assume that UK∞
and ̺ are un-

ramified over U . Choose f as above and observe that

(1− (1 + fp)F1+fp)ξfp∞ ∈ Op[[G(Q(ζfp∞)/Q)]].

Define

h(UK∞
, ̺) = 1− (1 + fp)ψQ(ζfp∞ )/K∞

Tw̺(F1+fp).

We need to show that none of h(UK∞
, ̺), hL(UK∞

, ̺), or El(K∞, ̺) is con-
tained in p. For this, we can replace Op[[G(K∞/Q)]] by its normalisation and
then decompose by the characters of G(K0/Q). Hence, we may assume that
K∞ = Q∞. In particular, p is the radical of (p). After twisting by an appro-
priate character of G(Q∞/Q) we may further require that ̺ = χ ◦ rec−1 for
a Dirichlet character χ of the first kind.

Obviously, El(Q∞, χ) and h(UQ∞
, χ) are prime to p (note that the images

of Fl and F1+fp are non-trivial in G(Q∞/Q)). If χ is even, then L(UK∞
, χ)

= 1. If χ is odd, the claim for hL(UK∞
, θ) is by Remark 6.4 equivalent

to the vanishing of the µ-invariant of f(T, χω), hence to the theorem of
Ferrero–Washington ([Was97, §7.5, respectively §16.2]).

7. The main theorem. Let (K∞, ̺, U) be an admissible triple in the
sense of Section 6 and set

Ω = Op[[G(K∞/Q)]],

where Op is the valuation ring of a finite extension of Qp. As explained in
Section 2, we may assume without loss of generality that Op contains the
values of all characters of G(K0/Q).

Before we state our main theorem we will explain how to modify the
Iwasawa complex RΓIw(UK∞

,Op(̺)) (see Definition 3.1) by the cyclotomic
element

c(UK∞
, ̺) ∈ H1

Iw(UK∞
,Op(̺))

introduced in the preceding section.

Recall that the complex RΓIw(UK∞
,Op(̺)) is acyclic in degree 0 (see

Proposition 3.3(ii)). In particular, there exists a unique morphism

Ωc(UK∞
, ̺)[−1]→ RΓIw(UK∞

,Op(̺))

in the derived category that induces the natural inclusion on cohomology.

Definition 7.1. Denote by RΓIw/c(UK∞
,Op(̺)) the complex (unique

up to quasi-isomorphism) fitting into the following distinguished triangle:

Ωc(UK∞
, ̺)[−1]→ RΓIw(UK∞

,Op(̺))→ RΓIw/c(UK∞
,Op(̺)).
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Lemma 7.2.

(i) RΓIw/c(UK∞
,Op(̺)) is a perfect torsion complex of Ω-modules.

(ii) If K∞ is totally real and ̺ is odd , then Ωc(UK∞
, ̺) is a free Ω-

module of rank 1.

Proof. In Proposition 3.6(i) we have already confirmed that the complex
RΓIw(UK∞

,Op(̺)) is perfect. Hence, it suffices to prove (ii) and that the
complex in (i) is torsion.

Let Ω̃ denote the normalisation of Ω in its total quotient ring Q(Ω). On
the one hand we have

Q(Ω)⊗Ω Hi
Iw(UK∞

,Op(̺)) = Q(Ω)⊗
Ω̃

( ⊕

χ

Hi
Iw(UQ∞

,Op(χ
−1̺))

)
,

where the sum runs over all characters χ of G(K0/Q); on the other hand
Ωc(UK∞

, ̺) ⊂ H1
Iw(UK∞

,Op(̺)) is a free Ω-module of rank 1 if and only if
Q(Ω)c(UK∞

, ̺) is a free Q(Ω)-module of rank 1. This module decomposes
as

Q(Ω)c(UK∞
, ̺) =

⊕

χ

Q(Op[[G(Q∞/Q)]])c(UQ∞
, χ−1̺).

Observe hereby that ̺ and χ−1̺ have the same parity if K∞ is totally real.
Hence, it is enough to consider the case K∞ = Q∞. By Propositions 5.1
and 6.2 we may replace U by Spec Z[1/p], noting that the Euler factors
El(Q∞, ̺) are non-zero divisors. We are now reduced to the statement of
[HK03, Proposition 4.2.1]. Observe that the proof of (ii) in this situation
uses K. Kato’s explicit reciprocity law as an essential ingredient.

Corollary 7.3. The compatibility properties of Proposition 3.6 hold for

Op(̺), with RΓIw replaced by RΓIw/c.

Proof. Easy consequence of Proposition 6.2 and the above lemma.

We are now ready to formulate and prove our main result.

Theorem 7.4. Let p be an odd prime, K∞ the cyclotomic Zp-extension

of an abelian number field , and U an open subscheme of Spec Z such that

the ramification index in K∞/Q of every place in U is prime to p. Then:

(i) RΓIw/c(UK∞
,Op(̺))p is acyclic for all primes p of codimension 1

of Op[[G(K∞/Q)]] that contain p.
(ii) The characteristic ideal of RΓIw/c(UK∞

,Op(̺)) is generated by the

L-element L(UK∞
, ̺−1εcycl).

Proof. By the subsequent lemma we are allowed to enlarge or shrink the
scheme U at our discretion.

Lemma 7.5. Let V ⊂ U be an open subscheme of U . Then both state-

ments of Theorem 7.4 hold for U if and only if they hold for V .
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Proof. Set T = U − V and define C• by the following distinguished
triangle:

Ωc(VK∞
, ̺)[−1]→ RΓIw(UK∞

,Op(̺))→ C•,

where the first map is induced by the inclusion

Ωc(VK∞
, ̺) →֒ H1

Iw(VK∞
,Op(̺)) = H1

Iw(UK∞
,Op(̺)).

We obtain the following two triangles of perfect torsion complexes:

RΓIw(UK∞
, T,Op(̺))→ C• → RΓIw/c(VK∞

,Op(̺)),

C• → RΓIw/c(UK∞
,Op(̺))→ Ωc(UK∞

, ̺)/Ωc(VK∞
, ̺).

Proposition 6.2 implies

Ωc(UK∞
, ̺)/Ωc(VK∞

, ̺) = Tw̺−1εcycl
(p+)

(
Ω

/ ∏

l∈T

El(K∞, ̺
−1εcycl)Ω

)

and since El(K∞, ̺
−1εcycl) is a unit of Ωp for any prime ideal p of codimen-

sion 1 with p ∈ p (see Proposition 6.7) it follows that

(Ωc(UK∞
, ̺)/Ωc(VK∞

, ̺))p = 0.

On the other hand, we know that RΓIw(UK∞
, T,Op(̺)) is acyclic outside

degree 3 and that H3
Iw(UK∞

, T,Op(̺)) is finitely generated as Op-module
(see Proposition 5.1). Therefore,

RΓIw(UK∞
, T,Op(̺))p

∼= 0

by Lemma 2.2. This implies the equivalence for part (i) of Theorem 7.4.

By using the multiplicativity of the characteristic ideal, the equivalence
for part (ii) is reduced to proving that

charH3
Iw(UK∞

, l,Op(̺)) = El(K∞, ̺
−1εcycl)Ω

for l ∈ T . After decomposing by characters we may assume that K∞ is a
p-extension. For those primes over which ̺ is ramified the equality is implied
by the Supplement in Proposition 5.1. For the remaining primes choose f
as in Section 6. From Corollary 4.3 we obtain

char H3
Iw(UK∞

, l,Op(̺))

= char(ψQ(ζfp∞ )/K∞
Tw̺−1εcycl

)∗Op[G(Q(ζfp∞)/Q)/Dl]

= El(K∞, ̺
−1εcycl)Ω.

From the formulation of the main conjecture in [HK03] we can deduce
the following weaker instance of Theorem 7.4(ii).

Lemma 7.6. Let φ : Ω → Ω̃ be the normalisation of Ω. Then

charLφ∗RΓIw/c(UK∞
,Op(̺)) = L(UK∞

, ̺−1εcycl)Ω̃.
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Proof. We may decompose by the characters of G(K0/Q). Thus, we may
assume that K∞ = Q∞. By Lemma 7.5 we can further reduce to U =
Spec Z[1/p].

If ̺ is odd, then L(UQ∞
, ̺−1εcycl) = 1 by definition. On the other hand,

charRΓIw/c(UQ∞
,Op(̺)) = (1)

by [HK03, Theorem 4.2.2]. If ̺ is even, then c(UQ∞
, ̺) = 0 and, by [HK03,

Theorem 4.2.4],

charRΓIw(UQ∞
,Op(̺)) = L(UQ∞

, ̺−1εcycl)Op[[G(Q∞/Q)]].

Originally, both theorems only deal with the case that ̺ is a finite charac-
ter times an integral power of εcycl, but the general case follows easily by
twisting.

We now turn to the proof of Theorem 7.4(i). A large portion of it can
be dealt with by the following lemma. Here, we use the theorem of Ferrero–
Washington for the second time (see Proposition 6.7).

Lemma 7.7. Tw̺−1εcycl
(p−) H1

Iw(UK∞
,Op(̺)) and H2

Iw(UK∞
,Op(̺)) are

finitely generated as Op-modules.

Proof. By Corollary 7.3 we may enlarge K∞ so that ̺ factors through
G(K∞/Q). Further, nothing changes if we then twist by ̺−1εcycl. Hence, we
may assume ̺ = εcycl.

Set X = Spec Z, S = X − U . By the theorem of Ferrero–Washington
([Was97, Theorem 7.15]) the module

lim←−n
Op ⊗Z Pic(XKn)

is finitely generated over Op. By Proposition 4.2 this is also true for the
modules

lim←−n
Hi

ét(SKn ,Op).

Further, it is an elementary fact of the theory of cyclotomic fields that

♯(Gm(XKn)/µ(XKn)p+Gm(XKn)) ≤ 2,

where µ denotes the sheaf of unit roots (see [Was97, Theorem 4.12]). In
particular, as p was assumed to be an odd prime,

lim←−n
Op ⊗Z p−Gm(XKn) = lim←−n

Op ⊗Z µ(XKn).

This module is obviously finitely generated over Op as well. Now use the
exact sequence of Proposition 4.1(ii).

After decomposition by characters we may assume that K∞ is a p-
extension; in particular, totally real. Additionally, we may shrink U by
Lemma 7.5 so that UK∞

and ̺ are unramified over U . The case that ̺ is
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even has already been settled by the above lemma. The key to the remaining
case is the following

Lemma 7.8. Let K∞ be a p-extension, ̺ be odd , and let both be unram-

ified over U . Write p for the prime ideal of Ω with p ∈ p and codim p = 1.
Then there exists a non-zero divisor x of Ωp and a quasi-isomorphism

RΓIw/c(UK∞
,Op(̺))p

∼= Ωp/xΩp[−1].

Proof. We will first show that RΓIw(UK∞
,Op(̺)) is quasi-isomorphic to

a complex P • of finitely generated projective Ω-modules with P i = 0 for
i /∈ {1, 2}. By Proposition 3.4 we can achieve that P i = 0 for i > 2.

Recall that in the present situation, Ω is a local ring. Let k be the residue
field of Ω. Proposition 3.5 implies that

k ⊗L
Ω RΓIw(UK∞

,Op(̺)) = RΓét(U, k ⊗Ω IndK∞/QOp(̺)).

Since K∞ is totally real and ̺ is odd, every lift of the complex conjugation
will act by multiplication by −1 on IndK∞/QOp(̺)⊗Ω k; consequently,

H0
ét(U, k ⊗Ω IndK∞/QOp(̺)) = 0.

Thus, we can choose P i = 0 for i < 1 as well.
Lemma 7.7 then implies that the complex RΓIw(UK∞

,Op(̺))p is quasi-
isomorphic to a free Ωp-module sitting in degree 1. The claim follows since
Ωc(UK∞

, ̺) is free of rank 1 and RΓIw/c(UK∞
,Op(̺)) is torsion by Lemma

7.2.

Putting this and Lemma 7.6 together we see that in the situation of
Lemma 7.8, the invertible ideals of the normalisation of Ωp generated by
x−1, respectively L(UK∞

, ̺−1εcycl), agree. But

L(UK∞
, ̺−1εcycl) = 1;

hence, x is unit in the normalisation of Ωp and therefore a unit in Ωp itself.
This finishes the proof of Theorem 7.4(i).

Finally, we complete the proof of Theorem 7.4(ii). Let (K∞, ̺, U) be any
admissible triple. By Proposition 1.2 it suffices to show that

charRΓIw/c(UK∞
,Op(̺))p = L(UK∞

, ̺−1εcycl)Ωp

for all prime ideals p of codimension 1. In Lemma 7.6 we have already proved
this for those p that do not contain p. By Theorem 7.4(i) and Proposition 6.7
the equality also holds for the remaining primes.
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