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1. Introduction. The binomial knapsack problem is easily stated: de-

termine all (m + 2)-tuples of positive integers n > r > 11 > 1r9 > -+ > 1y
for which
m
0)-%()
" im1 \i
We call any (m+2)-tuple (n,r, 71, ..., ry,) satisfying this equation a binomial

knapsack. The problem first came to the authors’ attention when consider-
ing a problem on symmetric functions, but the name is derived from the
connection to knapsack-type problems. This article considers the simplest
case of this problem. That is, we consider the problem of determining all
4-tuples (n,r, s,t) satisfying

2 ()= ()+()

withn>r>s>t>0.

The list of results on Diophantine equations involving factorials and bi-
nomial coefficients is long. Many such results, and related references, can
be found in Guy [12], Hajdu and Pintér [13], Grytczuk [11] and Goet-
gheluck [10]. It is not surprising that some of these results should be quite
close to, or overlap, the binomial knapsack problem. However, there does
not appear to be a complete resolution of the problem at hand, and the
results of this paper, to our knowledge, are new.

As with many classes of Diophantine equations, the problem splits nat-
urally into a finite case, where (1) has only finitely many solutions, and an
infinite case, where (1) has infinitely many solutions. In Section 2 we show
that the number of solutions of (1) is infinite if 1 < r—¢ < 2, and in Section 3
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we present a complete description of the solutions of (1) in these cases. In
Section 4 we restrict ourselves to the case s =t with r—t > 3. We conjecture
that in this case there can be only one or two solutions, with all such solu-
tions described. In support of our conjecture, we show that, for s =t = r—3,
the only solution is (n,r,t,t) = (8,5,2,2). The case s =t = r — 4 was re-
solved by Cohn in [8]: the only solution of (1) is (n,r,t,t) = (11,7,3,3).
One of our infinite cases is intimately related to Pythagorean numbers, that
is, integers which represent areas of right triangles with integer sides. In
the final section we use our results for this case to derive several results on
Pythagorean numbers.

2. Separating the finite and infinite solution cases. In this section
we show how the problem of determining all 4-tuples of binomial knapsacks
splits into two distinct cases. The main techniques for proving finiteness of a
solution set of Diophantine equations stem from the work of Runge [20] and
Thue [26]. Many of these results can be found in the classical text of Mordell
[19]. We are interested in integer points of curves F(x,y) = 0 over Z. The
result best suited for our purposes is one by Davenport and Lewis.

LEMMA 2.1. Let f, g € Z[x,y] be polynomials of degree n and m, respec-
tively. The equation f(x,y) = g(x,y) has only a finite number of integer
solutions if n > 2, m <n and f is an irreducible form.

This lemma appears as Theorem 22 on page 278 of [19] where it is also
mentioned that it is a consequence of a result of Schinzel [21]. The attribution
to Davenport and Lewis is made clear by Schinzel in [21] where he obtains
the result as a corollary.

Set r—s =mand r —t = k with £ > m > 0. For any non-negative
integer ¢, define the polynomial f.(z) € Z[x] by

c—1

felz) = [ (& — ).

i=0
It follows that a solution of (1) exists if and only if
fi(@) = f(r) fr—m(a) + fi(r),
where a =n —t =n+ k — r, or equivalently, if and only if
(2) Fym(z,y) = fe(x) = fr(y) = fm(y) fr—m(z) =0
has a solution (z,y) € Z x Z with y > 1.

LEMMA 2.2. Let k,m be positive integers, k > m and k > 3. If the
trinomial ¥ — £F=™ — 1 is irreducible over Q, then (2) has only a finite
number of integer solutions (z,vy).
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Proof. Expanding each product in (2), we can rewrite the equation as

B ghmmym — b = gz, y),
k

where g, is a polynomial of degree at most k — 1. Since ¥ — zF=my™ — ¢/ is
homogeneous, it is irreducible over Z if and only if the trinomial 2% —zF—™—1
is. Applying Lemma 2.1 completes the proof. m

X

The reducibility of trinomials over various fields has been a focal point
of several papers. The general problem of determining whether a given tri-
nomial ™ + ax™ + b is irreducible over a finite field remains open, even
for Fy and F3 (see von zur Gathen [9] on the F3 case). A more complete
answer, due to Schinzel [22], exists for algebraic number fields and function
fields in one variable. Many results deal with special cases, either in the
characteristic of the field, or the form of the trinomial, or both. One of the
most celebrated papers on the subject is by Swan [24] where, among other
results, the number of irreducible factors of a trinomial ™ + ™ + 1 over [y
is studied. For a good exposition of Swan’s paper and many additional de-
tails, see also Berlekamp [2, Section 6.6 and the problems at the end of
Chapter 6]. For later related results see, for example, Mills and Zierler [17],
Carlitz [7], Vishne [28], Loidreau [16], and Bluher [4]. For the reducibility
of the trinomial z* — 25~ — 1 over Q, a complete description was obtained
by Ljunggren [15] and Tverberg [27]. An application of Theorem 3 of [15]
yields the following.

LEMMA 2.3. Let a > b be positive integers and f(x) = 2* — x® — 1. Set
d = (a,b), a1 = a/d (mod6) and by = b/d (mod6). The trinomial f(z) is
reducible over Q if and only if (a1,b1) € {(1,2), (5,4)}.

Combining this result with Lemma 2.2, we obtain the following theorem.

THEOREM 2.4. Let k,m be integers satisfying k > m > 0. Set d =
(k,m), k1 = k/d (mod6) and m; = m/d (mod6). If k > 3 and (ki,m1) &
{(2,1),(5,4)}, then the equation

()= ()

has only finitely many solutions in n,r. If k < 2, then the equation has
infinitely many solutions.

The case k < 2 is covered in the next section. The case k > 3 follows
from the previous two lemmas.

CONJECTURE 2.5. With notation as above, there are only finitely many
solutions to (1) in the case where k > 3 and (k1,m1) € {(2,1),(5,4)}.

3. The infinite solutions case. Throughout this section r—t = k < 2.
There are three possible 4-tuples which give binomial knapsacks under this
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restriction: (n,r,r —1,r —1), (n,r,r — 1,7 — 2), and (n,r,r — 2,7 — 2). The
first case is easily dealt with. The following theorem is easily established
and is also mentioned in [10, Section 2].

THEOREM 3.1. For every positive integer v, a binomial knapsack of the
form (n,r,r — 1,r — 1) exists if and only if n = 3r — 1.

The second and third cases both reduce to examples of Pell’s equation
with additional conditions. Since the methods involved are similar, we ex-
hibit the method for one of the two cases, and simply state the results for
the other case.

Consider the equation

n\ n n n
r)  \r—1 r—2)
Expanding we obtain the equation
n*+3n(l—r)+(@*—4r+2)=0

and using the quadratic formula yields

2n=3r—3++/5r2 —2r+1.

Now n > rand 3r —3 — V512 —2r +1 < 2r — 3 for r > 1. It follows that

we can only have 2n = 3r — 3 + v/5r2 — 2r + 1.
It remains to establish when this equation yields integer solutions. If

r is an integer such that 572 — 2r 4+ 1 is a perfect square, then 3r — 3 +
VBr2 — 2r + 1 is always even, so we need only determine when 512 — 2r + 1
is a perfect square.

THEOREM 3.2. The 4-tuple (n,r,r — 1,7 — 2) is a binomial knapsack if

and only if
2n=3r—3+Vb6r2—2r+1

where r is any member of the sequence defined by r1 = 6, r9 = 40 and
(3) Tite = Triy1 —ri — L.

Proof. We first find the set of all positive r for which the Diophantine
equation
5r2 —2r +1 =1y
has a solution. Solving with respect to r, we get
1++by2—4 1+
(4) r= Lm0
5 5
where x = +/5y? — 4. Hence r is a positive integer if and only if z =
V5y? — 4 is a positive integer congruent to 4 modulo 5. So we need to
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find all positive integers x = 4 (mod5) for which the Diophantine equation
(5) a2 — 5yt = —4

has a solution. Finding the solutions to (5) is a non-trivial but well studied
problem (see for example LeVeque [14, Theorem 8.7]), and there are clas-
sical methods for giving all solutions to this Pell-like equation in terms of
recurrence sequences. We omit the details. m

Similar methods can be employed to prove the following.

THEOREM 3.3. The 4-tuple (n,r,r — 2,7 — 2) is a binomial knapsack if

and only if
2n=2r —3+ V82 —8r+1
where r is any member of the sequence defined by r1 = 3, ro = 15 and

Ti4+2 = 6’1"i+1 — Ty — 2.

4. The finite solutions case with s = t. We now consider (1) with
s =t. If we assume k = r — ¢ > 3, then (1) has only finitely many solutions
by Theorem 2.4.

The results of the last section for the cases k = 1 and k = 2 are also
relevant in the current context. To begin, it follows from Theorem 3.1 that
for any integer £ > 3, we must always have one solution to

0)-")

namely n = 3k — 1, r = 2k — 1. Also, any integer r > 3 from the sequence
in Theorem 3.3 generates a solution to (6) for

1= 2r V82 —8r+1
= 5 ,

k

Set
Sp={(z,y) €ZxZ| fr(x) =2f(y) and z >y > k}.

We make the following conjecture:

CONJECTURE 4.1. Let k > 3. Then |Sk| = 1, unless

1—2r++v82—8r+1
2
for some integer v > 3 of the sequence in Theorem 3.3, in which case

1Sk| = 2.

The case k = 4 was established in [8]: the only solution to (6) with k = 4
isn =11, r = 7. We now establish the conjecture for k = 3.

k=
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THEOREM 4.2. The only integers n > r > 3 which satisfy

RN

aren =8 and r = 5.
Proof. Expanding and simplifying we obtain
mn—r+3)(n—r+2)(n—r+1)=2r(r—1)(r—2).

Set x = n—r+2 and y = r—1, so that our equation becomes z3—2y3 = 2—2y.
If t = x — 2y, then this equation can be rewritten as (¢ 4 2y)3 — 2y —t =0
or

(8) 6y° + 12ty* + 6t2y + (3 —t) = 0.

We will show that no solution to (8) exists for |¢| > 3. Exhaustively checking
for those solutions with |¢| < 3, we see that there are precisely 11 solutions
(t,y) of (8) under this restriction:

(070)7 (_371)7 <_374)7 (—2,1), <_170)7 (_171)7
(3,-1), (3,-4), (2,-1), (1,0), (1,-1).

Since (n,7r) = (t+3y—1,y+1) and r > 3, the only solution of (7) generated
from this list is (n,7) = (8,5).

It remains to show that for |¢| > 3, there are no solutions to (8). We note
t3 — t is divisible by 6 for all integers t. For any integers j, k with k > 2, we
denote the k-order of j by ordg(j). That is, ordg(j) is the largest power of k
dividing j. We divide the problem with |¢| > 4 into three cases: (¢,6) = 1;
ordy(t) > 2, where w = 2 or 3; and t = ct;, where ¢ = 2, 3, or 6, and
(t1,6) = 1.

Firstly, suppose |t| > 4 and (¢,6) = 1. In this case ¢t must be divisible by
a prime p > 5. Set a = ord,(t) and b = ord,(y). Note a = ord,(t> —t). Since
t divides 32, we must have a < 3b. If a < 3b, then reducing both sides of (8)
by p®, we obtain a contradiction: the resulting equation cannot be solved
modulo p. So a = 3b and ¢ = I3 for some integer [ > p > 5 with ({,6) = 1.
Hence y = ml for some integer m. We must have (m,l) = 1, as otherwise
reducing both sides of (8) by ¢ gives a contradiction: the resulting equation
cannot be solved modulo (m, ). Substituting y = ml into (8), then reducing
by 1? and setting s = 2, gives

9) f(m,s) =6m3 +12m?s + 6ms? + 53 = 1.

The binary cubic form f(m,s) in (9) is irreducible over Z. This follows, for
instance, by an application of Eisenstein’s criterion using the prime 2 in the
ring Z[m|[s]. We have thus reduced our equation to a Thue-type equation.
Efficient methods exist for finding all solutions for such an equation; see Bilu
and Hanrot [3] for example. The Magma algebra package, [6], immediately
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yields the solutions (m,s) = (0,1) and (m,s) = (—1,1) for this equation.
In either case we get 12* = 1, contradicting the condition I > p > 5. (The
computational results were checked using the Maple package, which uses
a different algorithm, and an effective bound of 10%?41® for the maximal
absolute value of m in the solutions (m, s) of (9). This bound was calculated
using the results of Walsh [29].)

Now suppose [t| > 4 and ord,,(t) > 2, where w = 2 or 3. In this case we
see that w divides y. Reducing (8) by w=(®) we obtain a contradiction:
the resulting equation cannot be solved modulo w.

Finally, suppose |t| > 4 and t = ct1, where ¢ = 2, 3, or 6, and (¢1,6) = 1.
For each of these values of ¢, an argument similar to the one used in the first
case gives t = 6, or t = cl®, where [ > 5 and ([,6) = 1. Continuing as in the
first case, we again end without a solution of (8).

We have exhausted all the possibilities and the proof is complete. n

The proof just given reduces the equation z3 — 2y® = = — 2y to a more
complicated appearing Thue-type equation, and then uses an algebra pack-
age to determine all solutions. Given the simple form of the original, this
might appear somewhat puzzling to the reader. The reason we proceeded
this way is as follows. Many results on Diophantine equations of the form
F(x) = G(y) give bounds on the maximal absolute value of either x or y
for those cases where the equation is known to have a finite number of solu-
tions. Unfortunately, these bounds are generally very large. One of the best
bounds is given by Tengely [25]. However, the result requires both F' and G
to be monic, and so cannot be applied to our situation. As noted by the
referee, the equation under consideration is an elliptic equation. Theory for
solving such equations is well established and developed, see the article by
Stroeker and de Weger [23], and it could also be used to solve our equation.

5. Connections to Pythagorean numbers. Recall that a Pythagor-
ean triangle is a right triangle with all sides of integer length. A Pythagorean
triangle is called primitive if the side lengths are relatively prime. A Pytha-
gorean number is an integer which represents the area of a Pythagorean
triangle. A primitive Pythagorean number is an integer which represents the
area of a primitive Pythagorean triangle. This is equivalent to the weaker
requirement that at least one pair of the side lengths is relatively prime.
In Theorems 3 and 4 of [18], Mohanty and Mohanty showed that there are
infinitely many primitive Pythagorean numbers which are the products of
three consecutive integers, and asked the question about the existence of
infinitely many primitive Pythagorean numbers that are the products of
two consecutive integers. They answered the question by giving an explicit
construction, derived from their results on products of three consecutive
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integers and using several properties of Fibonacci numbers. They also gave
two essentially different explicit constructions of infinite sequences of non-
primitive Pythagorean numbers that are the products of two consecutive
integers.

One goal in this section is to show that these results (but for differ-
ent sequences) follow immediately from our proof of Theorem 3.2. These
sequences are more natural in the following sense: to find a Pythagorean
number r(r — 1), one may attempt to construct Pythagorean triangles with
legs of length » — 1 and 2r, or r and 2(r — 1). Another goal of this section
is to generalise these results to Pythagorean numbers of the form r(r — k).

Indeed, consider the right triangle with legs of length » — 1 and 2r, and
hypotenuse of length y, so that

5r2—2r+1:y2.

In the proof of Theorem 3.2 we established that the triangle is Pythagorean
if and only if » = r;, i > 1, and the sequence {r;} is defined by the re-
currence (3). These triangles yield the Pythagorean numbers r;(r; — 1). If
r; is even, the numbers r; — 1 and 2r; are relatively prime, which implies
that r;(r; — 1) is a primitive Pythagorean number. Finally, we observe that
infinitely many members of {r;} are even: r; is even if and only if i # 0
(mod 3).

In light of the above argument, it is also natural to consider Pythagor-
ean triangles with legs of length r and 2(r — 1), since their areas are the
Pythagorean numbers r(r — 1). Denoting the length of the hypotenuse by v,
we get the Diophantine equation 52 — 8r + 4 = 32. Note that

512 —8r+4=51-7r)?—-2(1—7r)+1.

This reduces the problem to the one we dealt with in Theorem 3.2. We
leave the details to the reader and summarise our results in the following
statement.

THEOREM 5.1. The integer r(r — 1) is a Pythagorean number obtained
from a right triangle with legs of length r — 1 and 2r if and only if r is a
member of the sequence defined by r1 = 6, ro = 40 and

Ti4+2 = 7’I"i+1 —T; — 1.

For this sequence, r; is even if and only if i £ 0 (mod 3), and all such terms
give rise to primitive Pythagorean numbers.

The integer r(r — 1) is a Pythagorean number obtained from a right
triangle with legs of length v and 2(r — 1) if and only if r is a member of
the sequence defined by r1 = 3, ro = 15 and

Ti+2 = 67’i+1 — T — 2.
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For this sequence, r; is odd if and only if i Z 2 (mod 3) and all such terms
give rise to primitive Pythagorean numbers.

We now consider the following generalisation of the question asked in
[21], namely, for a given positive integer k, are there infinitely many Pytha-
gorean numbers of the form r(r — k)? An obvious solution is to consider the
Pythagorean triangles with legs of length ' — 1 and 27/, or " and 2(r' — 1),
and to take similar triangles with coefficient of similarity k, i.e., r = kr’.
It turns out that for some k, all Pythagorean triangles with legs of length
r —k and 2r, or r and 2(r — k), can be obtained this way.

For a positive integer d, let

dPy = {(dr,dy) | (2r)* + (r — k)* = y*, 1,y € N},
dQy = {(dr,dy) | (2(r — k))* + 1% =y* r,y € N}.

We write P, and Q) for 1P, and 1Q, respectively. It is easy to check that,
for every divisor k' of k, we have

K'Pyjer C© Pr,  K'Qpw C Q.
The following theorem describes these relations completely.

THEOREM 5.2. Let ki, ko be positive integers, and let k = kika. Then
Py, = ko Py, and Qf, = kaQy, if and only if ko has no prime factor congruent
to £1 (mod 10).

Proof. Substituting k—r for r in (2r)2+4(r—k)?, we obtain (2(r—k))?+r2.
This reduces the statement for QO to the one for Py, and so, in what follows
we concentrate only on the latter.

Since koPj, C Py for every divisor kg of k, we first must show that
every Pythagorean triangle with legs of length r — k and 2r is similar to
a Pythagorean triangle with legs of length r/ks — k1 and 2r/ky with the
coefficient of similarity ko. This is equivalent to saying that every solution
of

(r—k)?+2r)?=5r2 — 2rk + k2 =42

can be obtained from a solution of
(r/ks — k1)* + (2r/ko)? = 5(r/ko)* — 2ki7[ko + ki = (y/k2)?

by multiplying the latter by ks. For these Diophantine equations, quadratic
in 7 or 7/kg, to have a solution, their discriminants must be squares. There-
fore the last statement is equivalent to saying that every solution of

(10) z? — 5y? = —4k?
is obtained from a solution of
(11) 2% — 5y = —4k?

by multiplying both 2’ and y’ by ks.
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Let (z,y) be a solution of (10), and p be a prime divisor of kq. If p = 2,
then 22 — 5% = 0 (mod 16) if and only if both 2 and y are even, which can
be checked by a direct computation. Hence p divides both x and y. If p = 5,
then 22 — 5y? = 0 (mod 25). This implies that 5 divides 22, and hence p
divides both = and y again.

Now suppose p # 2,5. Consider the ring R = Z[w]| of algebraic integers
where w = (1 4+ +/5)/2. With respect to the usual norm, R is a Euclidean
domain; see, for example, Baker [1, Chapter 7, Section 5] for a short proof.
Hence it is a unique factorization domain and there is no distinction between
irreducibles and primes in R. The prime decompositions of rational integers
in this ring, as well as in other rings of algebraic integers of fields Q(\/ﬁ),
D € Z, is well understood (see Borevich and Shafarevich [5, Chapter 8,
Section 1]).

The discriminant of the binary form 22 — 52 is 20 and since our prime
p does not divide 20, it does not ramify in R. So it remains prime in R if

I RCR

Note that the last condition is equivalent to the prime p satisfying p = +3
(mod 10).

If p = £3 (mod 10), then since p? divides (z — yv/5)(z + yv/5), it follows
that p divides one of the factors, say the first. Hence 2 — yv/5 = p(u + vw)
for some integers 2u and 2v. So p (being odd) divides both = and y. We have
therefore shown that every prime divisor p of k£ which is 2, 5, or congruent
to +3 (mod 10) satisfies pP, /o= Py;,. This implies ko Py, = Fk.

To complete the proof of the theorem, we must show that if p is a prime
divisor of kg such that (g) = 1, then ko Py, # P;. We do this by showing
that for such p there exists a solution (z,y) of (10) with (p,z) = (p,y) = 1.

Let £ = K1 K5, where now K> is the product of all prime divisors of k
which are 2, 5, or congruent to £3 (mod 10), and K is the product of all
prime divisors of k congruent to +1 (mod 10).

We now invoke the following result on representation of integers by bi-
nary quadratic forms: a number n is represented by some binary quadratic
form f of discriminant d, that is, n = f(z,y) with (z,y) = 1, if and only if
d is a quadratic residue modulo 4n (see [1, Chapter 5, Section 3]). We now
apply this result with d = 20 and n = —4K?. Note that 20 is a quadratic
residue modulo —16K7 if and only if 5 is a quadratic residue modulo 4K?%.

Since )
5\ 5\ [(Ki\ _
(3)-1 = ()= (5)-1

it follows that 5 is a quadratic residue modulo 4K7. As the discriminant of
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2% —5y? is 20 and the class number h(v/5) = 1 (see [5, p. 481]), the equation

22 —5y? = —4K? has an integer solution (7, y) with  and y being relatively

prime. Since P, = K2 Py, , and K3 is not divisible by p, we have therefore
established the existence of a solution (z,y) of (10) with (p,z) = (p,y) =1. =

Note that for k£ = 1, we get (5) from the proof of Theorem 3.2. Hence
we have the following corollary.

COROLLARY 5.3. Let k be any positive integer. Then P, = kP; and
Qr = kQ1 if and only if k has no prime factor congruent to +1 (mod 10).
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