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Patrik Lundström (Trollhättan)

1. Introduction. Let S/R be an extension of commutative rings always
assumed to be associative and possessing identity elements. Let G be a finite
group of R-algebra automorphisms of S such that R=SG :={s ∈ S | g.s=s,
g ∈ G}.

Recall that an R-basis for S is called normal , with respect to G, if it is
the G-orbit of some element s in S. In that case s is called a normal basis

generator. Normal bases do not always exist. In fact, by a result of Noether
[18], if S/R is a finite extension of Dedekind domains, G = AutR(S) and R
is a discrete valuation ring, then the extension has a normal basis precisely
when it is tamely ramified. On the other hand, if R is semilocal and S/R is a
Galois ring extension with finite group G, that is, if S/R is a separable ring
extension and for all g, g′ ∈ G, g 6= g′, and all nonzero idempotents e ∈ S,
there is s ∈ S such that (g.s)e 6= (g′.s)e, then the extension always has a
normal basis (see [5]). In particular, a finite Galois field extension always has
a normal basis. A Galois ring extension S/R with finite group G is called
odd if the order of G is odd.

The trace function trS/R : S → R, defined by trS/R(s) =
∑

g∈G g.s
for all s ∈ S, induces a symmetric bilinear form qS : S × S → R by the
relation qS(s, s′) = trS/R(ss′) for all s, s′ ∈ S. The bilinear form qS is also
a G-form, that is, it is invariant under the action of G. If a normal basis
{g.s | g ∈ G} is self-dual with respect to qS , that is, if qS(g.s, g.s) = 1
and qS(g.s, g′.s) = 0 if g 6= g′ for all g, g′ ∈ G, then it is called a self-dual

normal basis and s is called a self-dual normal basis generator. Note that
the existence of such a basis can alternatively be formulated by saying that
(S, qS) and (R[G], q0) are isomorphic as G-forms, where q0 is the unit G-
form, that is, the R-bilinear map R[G]× R[G]→ R defined by q0(g, g) = 1
and q0(g, g′) = 0 if g 6= g′ for all g, g′ ∈ G. The problem of when a self-dual
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normal basis exists has only been solved in particular cases. Bayer-Fluckiger
[1] has shown that if S/R is an odd Galois field extension, then a self-dual
normal basis always exists. For more results on self-dual normal bases for
field extensions, see the paper [2] by Bayer-Fluckiger and Lenstra and the
extensive paper [3] by Bayer-Fluckiger and Serre. By adapting an idea from
Kersten and Michaliček [8], Mazur [16] has shown the following result for
general Galois ring extensions.

Theorem 1 (Mazur). Let S/R be a finite odd abelian Galois ring ex-

tension with Galois group G. If S and R[G] are isomorphic as left R[G]-
modules, then (S, qS) and (R[G], q0) are isomorphic as G-forms.

If G is infinite, the definition of a normal basis makes no sense. However,
if we let (G, R) denote the set of functions f : G→ R and we let G operate
on (G, R) by (g.f)(g′) = f(g−1g′), g, g′ ∈ G, then the existence of a normal
basis can be formulated by saying that there is a left R-module isomorphism
F : (G, R)→ S that respects the action of G. Namely, if s is a normal basis
generator, then we can define F by F (f) =

∑

g∈G f(g)g.s for all f ∈ (G, R).
Conversely, if F : (G, R) → S is an isomorphism as above and f ∈ (G, R)
is defined by f(1) = 1 and f(g) = 0 for all g ∈ G \ {1}, then s := F (f) is a
normal basis generator. Lenstra [9] has shown that this version of the normal
basis theorem is valid for infinite Galois field extensions S/R provided we
only consider the continuous functions G→ R. In fact, he shows that if G is
equipped with the Krull topology, R with the discrete topology and we let
C(G, R) denote the set of continuous functions from G to R, then there is an
R-vector space isomorphism from C(G, R) to S respecting the action of G.

Recall that an extension of connected rings S/R is called infinite Galois

with group G if G = AutR(S), SG = R and S/R is locally finitely generated

separable, that is, every finite subset of S belongs to a finitely generated
separable ring extension of R in S. In that case, the Krull topology can be
defined on G and there is a bijection between the closed subgroups of G and
the set of locally finitely generated separable ring extensions in the usual
sense of Galois theory (see [17]). We say that such an extension is odd if S
is the union of finite odd Galois ring extensions of R. The main purpose of
this article is to prove the following infinite version of Theorem 1.

Theorem 2. Let S/R be an infinite odd abelian Galois ring extension

with S connected. If S and C(G, R) are isomorphic as left R[G]-modules,
then (S, qS) and (C(G, R), q0) are isomorphic as coherent G-forms.

For the proof, see Section 3, and for the definition of coherent G-forms,
see Section 2. The secondary purpose is to apply Theorem 2 to infinite odd
abelian Galois extensions of fields, connected Galois ring extensions where
the base ring is local and compact in the induced topology, and number rings
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in local fields where the residue field of the base ring is finite (see Corollaries
1–3 in Section 3).

For related results concerning normal bases for infinite extensions, see
[6], [7], [10]–[15].

2. Coherent G-forms. For the rest of the article, unless otherwise
stated, we assume that S/R is an infinite Galois extension of connected
rings with group G. We also fix the following notation. Let N denote the set
of open normal subgroups of G and for N, N ′ ∈ N , put N ′ ≺ N if N ⊆ N ′.
Note that the relation ≺ makes N a directed set.

Let M be a discrete left R-module equipped with a continuous R-linear
left action of G. If the group G is infinite, then instead of considering R-
bilinear maps M ×M → R, it is more natural to study coherent systems of
R-bilinear maps MN ×MN → R, N ∈ N , in the sense defined below.

Definition 1. We say that q = (qN )N∈N is a coherent G-form on M
if each qN is an R-bilinear G-form on MN such that qN ′

(x, trN ′/N (y)) =

qN (x, y) whenever N ′ ≺ N , x ∈MN ′

, y ∈MN , where trN ′/N : MN →MN ′

is defined by trN ′/N (x) =
∑

s∈N ′/N s.x for all x ∈ MN . Furthermore, if

(M1, q1) and (M2, q2) are coherent G-forms, then we say that f = (fN )N∈N

is a morphism of coherent G-forms (M1, q1) → (M2, q2) if each fN is a
morphism of G-forms (MN

1
, qN

1
) → (MN

2
, qN

2
) such that if N ′ ≺ N , then

fN |
MN′

1

= fN ′

.

Remark 1. Every coherent G-form (M, q) defines, in a natural way, an
R-bilinear map q : M × M → R, where M = lim←−N∈N MN , the inverse
limit taken with respect to the maps trN ′/N , N ′ ≺ N . In fact, if x ∈ M

and y = (yN )N∈N ∈ M , then choose N ′ ∈ N such that x ∈ MN ′

and put
q(x, y) = qN ′

(x, yN ′

). It is easy to check that q is well defined.

We now define the two coherent G-forms mentioned in the introduction.

Example 1. (i) If we put qS = (qSN )N∈N , then (S, qS) is a coherent
G-form.

(ii) Suppose that N ′ ≺ N . The set C(G, R)N can, in a natural way, be
identified with R[G/N ]. With this identification, the map trN ′/N : C(G, R)N

→ C(G, R)N ′

coincides with the canonical map nN ′/N : R[G/N ]→ R[G/N ′].

If we let qN
0

denote the unit G-form on R[G/N ], then it is easy to check
that if we put q0 = (qN

0
)N∈N , then (C(G, R), q0) is a coherent G-form.

Note also that if we use the notation from Remark 1, then we may write
C(G, R) = R[[G]] := lim←−N∈N R[G/N ], where the last inverse limit is taken
with respect to the maps nN ′/N .
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3. Resolvents for infinite extensions. In this section, we introduce a
resolvent map for infinite Galois ring extensions (Definition 2) and show two
results (Propositions 1 and 2) concerning the existence of (self-dual) normal
bases and units (norm one elements) in the image of the resolvent. Then we
use these results to prove Theorem 2. At the end of this section, we apply
Theorem 2 to three different cases of infinite extensions (see Corollaries 1–3).

Recall that in the finite case, the resolvent map r : S → S[G] is defined
by r(s) =

∑

g∈G(g.s)g−1 for all s ∈ S. The importance of this map stems
from the fact that s ∈ S is a normal basis generator for S/R if and only if
r(s) is a unit in S[G], and s is a self-dual normal basis generator for S/R if
and only if r(s) is a norm one element in S[G], that is, r(s)r(s) = 1, where
S[G] ∋ x 7→ x ∈ S[G] is the involution defined by the S-linear extension of
the relation g = g−1 for all g ∈ G (for the details, see e.g. [16]).

Definition 2. The resolvent map r : S → S[[G]] is defined by
r((sN )N∈N ) = (rN (sN ))N∈N for all (sN )N∈N ∈ S where rN : SN →
SN [G/N ] is the usual resolvent map for the extension SN/R. The invo-
lution S[[G]] ∋ x 7→ x ∈ S[[G]] and hence, norm one elements, are defined
by the natural extension from the finite case.

We gather some well known results concerning units and norm one ele-
ments in group rings in the following lemma (parts of which can be found in
e.g. [16]). Recall that the action of G on S induces an action of G on S[G].

Lemma 1. Let S/R be a finite Galois ring extension with Galois group G.

(a) If x ∈ R[G] ∩ S[G]∗, then x−1 ∈ R[G]∗.
(b) Take x ∈ S[G]. Then x is a resolvent if and only if g.(xg−1) = x for

all g ∈ G.

(c) If x ∈ S[G]∗ is a resolvent , then x−1 is a resolvent.

Suppose that G is an odd abelian group and let
√· be the unique S-linear

extension to S[G] of the group automorphism
√

g2 = g on G.

(d) If x, y ∈ S[G] are resolvents, then
√

xy is a resolvent.

(e) If x ∈ S[G]∗ is a resolvent , then
√

xx−1 is a resolvent which is a

norm one element.

Proof. (a) Suppose that x−1 = y ∈ S[G]. Applying the action of G on
S[G] to the equality xy = 1 gives us x(g.y) = (g.x)(g.y) = g.(xy) = g.1 = 1
for all g ∈ G. Since the inverse of x is unique this implies that g.y = y for
all g ∈ G. Hence y ∈ R[G].

(b) Take x ∈ S[G]. Suppose that x = r(s) for some s ∈ S. Take g ∈ G.
Then

g.(xg−1) = g.(r(s)g−1) = g.
(

∑

h∈G

h(s)h−1g
)

=
∑

h∈G

gh.(s)(gh)−1 = r(s).
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On the other hand, suppose that x =
∑

h∈G shh for some sh ∈ S, h ∈ G,
and that g.(xg−1) = x for all g ∈ G. Then

∑

h∈G(g.sh)hg−1 =
∑

h∈G shh
for all g ∈ G. Equating coefficients for 1 gives g.sg = s1 for all g ∈ G and
hence sg = g−1.s1 for all g ∈ G. Therefore x = r(s1).

(c) Suppose that x is a resolvent and put y := x−1. Then, by (b),
h.(xh−1) = x for all h ∈ G. Hence, since G is abelian, we infer for each
h ∈ G that

1 = h.1 = h.(xy) = h.(xh−1hy) = (h.(xh−1))(h.(yh)) = x(h.(yh)).

Since the inverse of x is unique, h.(yh) = y and hence h.(yh−1) = y for all
h ∈ G. By (b), y is a resolvent.

(d) Assume that x =
∑

g∈G g.(s)g−1 and y =
∑

g∈G g.(s′)g−1 for some

s, s′ ∈ S. Then xy =
∑

g∈G cgg
−1 where cg =

∑

h∈G(h.s)(gh−1.s′) for all

g ∈ G. Then, since G is abelian, we get f.c1 =
∑

h∈G(h.s)(f2h−1.s′) = cf2

for all f ∈ G. Hence, since the order of G is odd, we find

√
xy =

√

∑

g∈G

cgg−1 =

√

∑

g∈G

cg2g−2 =
∑

g∈G

g.(c1)g
−1 = r(c1).

(e) Put y = x−1. A straightforward calculation shows that
√

xy is a norm
one element. The rest follows from (c) and (d).

Proposition 1. The left R[G]-modules S and C(G, R) are isomorphic

if and only if there is a unit in the image of the resolvent.

Proof. Suppose that we have an R[G]-module isomorphism ϕ : C(G, R)
→ S. Take N ∈ N and define δN ∈ C(G, R)N by δN (s) = 1 if s ∈ N
and δN (s) = 0 otherwise. Since each δN is a free generator for the R[G/N ]-
module C(G, R)N , the same is true for sN := ϕ(δN ) ∈ SN . From the finite
case we know that each rN (sN ) is a unit in SN [G/N ]. Then s := (sN )N∈N

∈ S. In fact, this follows from the commutativity of the diagram

C(G, R)N

trN′/N

��

ϕN
// SN

trN′/N

��

C(G, R)N ′
ϕN′

// SN ′

for all N ′ ≺ N , and the fact that trN ′/N (δN ) = δN ′ , where ϕN denotes the

restriction of ϕ to C(G, R)N . Hence, r(s) is a unit in S[[G]].

On the other hand, suppose that there is s = (sN )N∈N ∈ S such that
r(s) is a unit in S[[G]]∗. Then, by Lemma 1(a), each rN (sN ) is a unit in
SN [G/N ] and hence each sN is a normal basis generator for SN . Now we
define ϕ : C(G, R) → S. Take f ∈ C(G, R). Since G is compact and R is
equipped with the discrete topology, there is N ∈ N such that f is constant
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on cosets of N in G. Define ϕ : C(G, R)→ S by ϕ(f) =
∑

g∈G/N f(g)(g.sN).

It is clear that ϕ is R-linear and that it respects the action of G. Since s ∈ S,
ϕ is well defined, and since each sN is a normal basis generator for SN ,
ϕ is bijective.

Proposition 2. The coherent G-forms (S, qS) and (C(G, R), q0) are

isomorphic if and only if the image of the resolvent contains a norm one

element.

Proof. This follows from the finite case in the same way as in the proof
of Proposition 1.

Proof of Theorem 2. Assume that there is an isomorphism of left R[G]-

modules from C(G, R) to S. Then, by Proposition 1, there is s=(sN )N∈N ∈S
such that r(s) is a unit in S[[G]]. Since the square root maps and the invo-
lutions (·) on S[G/N ], N ∈ N , are ring homomorphisms and they commute
with the natural maps S[G/N ] → S[G/N ′], N ′ ≺ N , we can use Lemma
1(e) to construct s′ ∈ S such that r(s′) is a norm one element in S[[G]].
Theorem 2 now follows from Proposition 2.

Now we apply Theorem 2 to three different cases. First we consider
infinite Galois field extensions.

Corollary 1. If L/K is an infinite odd abelian Galois field extension,
then (L, qL) and (C(G, K), q0) are isomorphic as coherent G-forms.

Proof. In [9] Lenstra shows that the left K[G]-modules L and C(G, K)
are isomorphic. The result now follows from Theorem 2.

Next, we consider infinite Galois ring extensions. Recall that an ideal I
in a ring is called residually nilpotent if

⋂∞
n=1

In = {0}. In that case {In}n≥1

form a basis of neighborhoods of zero of a Hausdorff topology on the ring
called the I-adic topology (see e.g. [4]).

Corollary 2. Let S/R be an infinite odd abelian Galois ring exten-

sion with S connected. If R is a local ring with a residually nilpotent maxi-

mal ideal I such that R is compact in the I-adic topology , then (S, qS) and

(C(G, R), q0) are isomorphic as coherent G-forms.

Proof. By Theorem 1.3 in [11], the left R[G]-modules S and C(G, R) are
isomorphic. The result now follows from Theorem 2.

Finally, we consider infinite extensions of number rings. Recall that ex-
tensions are called unramified (resp. tamely ramified) if all finite subexten-
sions are unramified (resp. tamely ramified).

Corollary 3. Let S/R be an infinite odd unramified abelian extension

of number rings in local fields. If the residue field of R is finite, then (S, qS)
and (C(G, R), q0) are isomorphic as coherent G-forms.
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Proof. We prove this in two different ways. The extension S/R being
unramified, it is a Galois ring extension (see e.g. [5]). The claim now follows
from Corollary 2.

On the other hand, the extension S/R being unramified, it is, of course,
tamely ramified. Hence, by Theorem 1.5 in [14], the left R[G]-modules S
and C(G, R) are isomorphic. Now we can again use Theorem 2 to obtain
the desired result.

Remark 2. Corollaries 1 and 3 have already appeared in [13] and [14]
in the cases when the characteristic of K is odd and the residue class field
of R is of odd order, respectively; they were proved by other means.
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[8] I. Kersten und J. Michaliček, Kubische Galoiserweiterungen mit Normalbasis,
Comm. Algebra 9 (1981), 1863–1871.

[9] H. W. Lenstra, Jr., A normal basis theorem for infinite Galois extensions, Indag.
Math. 47 (1985), 221–228.

[10] P. Lundström, Self-dual normal bases for infinite Galois field extensions, Comm.
Algebra 26 (1998), 4331–4341.

[11] —, Normal bases for infinite Galois ring extensions, Colloq. Math. 79 (1999), 235–
240.

[12] —, Normal integral bases for infinite abelian extensions, Acta Arith. 100 (2001),
79–83.

[13] —, Cohomology and self-dual normal bases for infinite Galois field extensions, J. Al-
gebra 256 (2002), 531–541.

[14] —, Self-dual normal integral bases for infinite unramified extensions, J. Number
Theory 97 (2002), 350–367.

[15] —, Cohomology and the normal basis theorem, preprint, Univ. of Trollhättan/
Uddevalla, 2005.

[16] M. Mazur, Remarks on normal bases, Colloq. Math. 87 (2001), 79–84.

[17] T. Nagahara, A note on Galois theory of commutative rings, Proc. Amer. Math.
Soc. 18 (1965), 334–340.



8 P. Lundström

[18] E. Noether, Normalbasis bei Körpern ohne höhere Verzweigung , J. Reine Angew.
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