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Bounds for the solutions of S-unit equations
and decomposable form equations

by

KALMAN GYORY (Debrecen) and KUNRUI YU (Hong Kong)

The main purpose of this paper is to considerably improve (in completely
explicit form) the best known effective upper bounds for the solutions of
S-unit equations and decomposable form equations.

1. Introduction. Several effective bounds have been established for
the heights of the solutions of unit equations and, more generally, of S-
unit equations in two unknowns; see e.g. [12], [13], [1], [5], [2], [17], [4],
[21] and the references given there. Except in [1] and [2], their proofs rely on
Baker’s method and its p-adic analogue as well as certain quantitative results
concerning fundamental/independent systems of units. In our Theorems 1
and 2 we improve upon the best known estimates for S-unit equations in
terms of the parameters of S and the ground field K. As a consequence of
Theorem 2 we deduce a completely explicit result (cf. Corollary 2) in the
direction of the abc conjecture over number fields.

To prove our results we use, among other things, some recent improve-
ments due to Matveev [25] and Yu [33] concerning linear forms in logarithms
of algebraic numbers, a recent theorem of Loher and Masser [22] on multi-
plicatively independent algebraic numbers, and our improved estimates for
fundamental /independent systems of S-units. In proving our Theorem 1 we
follow the arguments of [5] with some refinements and utilize the improve-
ments mentioned above.

In the bound in Theorem 1 there is a factor of the form s2°, where s
denotes the cardinality of S. This factor arises from the use of estimates
concerning fundamental S-units. To avoid such a factor in Theorem 2, we
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do not employ fundamental S-units and S-regulator in the proof. Instead we
combine some arguments of [12] with the aforementioned new ingredients,
and reduce the proof to the special case of our Theorem 1 with S = S.
The removal of s?* is crucial in some applications, e.g. in our Corollaries 4
and 5.

The first author reduced a large class of decomposable form equations
to (S-)unit equations and then, using his effective results concerning such
equations (cf. [10], [12], [13], [17] and the joint work [5] with Bugeaud),
gave upper bounds for the solutions of the decomposable form equations in
question; see e.g. [10], [19], [11], [14]-[16], [6], [17]. Our Theorems 1 and 2
together with thorough refinements upon the arguments of [17] enable us
to improve the earlier bounds for the solutions of decomposable form equa-
tions (cf. Theorem 3) and, in particular, of Thue equations in S-integers (cf.
Corollary 3). As an application, we obtain lower bounds for the greatest
prime factors of decomposable forms at integral points (cf. Corollary 4),
and get some new information about the arithmetical properties of integers
represented by decomposable forms (cf. Corollary 5). Further applications
of Theorem 2 are given in [18] and [20].

2. Bounds for the solutions of S-unit equations. The following
standard notation will be used throughout this paper. Let K be an algebraic
number field of degree d with regulator R, class number h and unit rank r.
Let S denote a finite set of places on K containing the set S, of infinite
places. Denote by s the cardinality of S, by ¢ the number of finite places
in S, and by P the largest norm of the prime ideals p1, ..., p; corresponding
to the finite places in S with the convention that P = 1 if § = S (i.e.
t = 0). Further, denote by Og the ring of S-integers, and by O% the group of
S-units in K, which has rank s — 1 = r 4+ ¢. The case s = 1 being trivial, we
assume throughout the paper that s > 2. We denote by Rg the S-regulator
of K (for its definition see e.g. [5]). For S = Sy (i.e. t = 0) we have Rg = R,
and Og is just the ring of integers Ok of K.

For any algebraic number «, we denote by h(«) the absolute logarithmic
height of a (cf. Section 4). By height we shall always mean the absolute
logarithmic height. We use the notation log* a for max{loga,1}.

Let « and 8 be non-zero elements of K with

max {h(a),h(8)} < H,

where, for technical reasons, we assume that H > max{1,7/d}. Consider
the S-unit equation

(1L.a) ar+py=1 inz,yec O

For § = S, this is an ordinary unit equation.
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THEOREM 1. All solutions x, y of (1.a) satisfy
(2) max{h(z),h(y)} < c1PRs(1 + (log* Rs)/log" P)H
where

c1 = c1 (d, 5) — ¢25+3.59Ts+27 log(28)d2(5+1)(log*(2d))3.
Further, if in particular S = S (i.e. t = 0), then the bound in (2) can be
replaced by
(3) caoR(log" R)H
where
co = ca(d,r) = (r + 1) 92320112 60(21 4+ 2)(dlog*(2d))°.

REMARK 1. It is clear that the factor (14 (log* Rg)/log™ P) in (2) does

not exceed 2log* Rg, and if log* Rg < log* P, then it is at most 2.

REMARK 2. Theorem 1 is an improvement of the Theorem of Bugeaud
and Gyéry [5]. Our constants ¢; and ¢y are smaller than the corresponding
ones in [5] (and do not contain any parameter related to the Lehmer prob-
lem). Further, from the upper bound in [5] concerning max{h(x), h(y)} an
extra factor log" Rg has been eliminated. We recall that in [5], [6] and [17]
the absolute height is used.

Consider now equation (1.a) in homogeneous form
(1.b) a1 + aoxe + asxs3 =0 in x1,x9, 23 € OF,

where o, a2, a3 are non-zero numbers in K with max h(ag) < H (H > 2).
For ¢t > 0, set
t

T = { Loifr= O} : Hmax{hi log N (p;), cadR},

2t ifr>1 -
=1
where h; denotes the smallest positive integer for which the ideal pi-” is prin-
cipal (and thus h; | k). The constant ¢z (coming from Lemma 3) is defined by
0 if r =0,
c3=1< 1/d ifr=1,
29er!ry/r — 1 logd if r > 2.
Further, let
R = max{h, csdR},
and for brevity, write .= Ox N O%.
THEOREM 2. Let t > 0. For every solution x1,x2,x3 of (1.b) there are
o € Og and o1, 02, 03 € . such that

(4) T = 00k, k:1,2,3,
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and

(5) max hox) < cshR?(log* R)R(1 + (log* R) /log* P)(P/log* P)T H,

where
cy = C4(d,’l“, t) _ (T + 1)4r+10210(r+t)+63(,r +t4+ 1)3'5dT+t+5(10g*(2d))6.

If in particular r = 0, then the bound in (5) can be replaced by

(6)  esh?(1+ (log" h)/log" P)(P/log" P){ ] hilog N(p) }H,
i=1

with
cs = cx(d, t) = 21021 1354042 (1og* (2d))3.
Finally, if xp, € .7 for k =1,2,3, then o can be chosen from ..

REMARK 3. Equations (l.a) and (1.b) can be transformed into each
other. For t > 0, the inequalities

t t
(7) R]Jlog N(p:) < Rs < hR] ] log N(p:)
=1 =1

(see e.g. [5]) and

t t
[Tlog N(pi) < T < (2R)' [ log™ N(p:)
i=1 i=1
make it easier to compare the upper bounds in Theorems 1 and 2. In the
important special case K = Q, the bound in (2) takes the form

c1(t)P(logp1) - - - (logp) H,

where c1(t) = (t + 1)20+6:52743416g(2¢ + 2). The same bound can be de-
duced from Theorem 2 for the solutions of (1.a) but with ¢;(¢) replaced by
2106423435 /1og* P, which is smaller than ¢;(t) for all ¢ > 1. Here py,...,p;
denote the rational primes corresponding to the finite places in S, and P is
the maximum of these primes.

In terms of S, s2° is the dominating factor in the bound in (2) whenever
t > log P. In the bounds of Theorem 2 there is no factor of the form s°
or t'. This improvement plays an important role in some applications; see
[18], [20] and Section 3 of the present paper.

REMARK 4. The factor s** occurring in the bound of Theorem 1 is a
consequence of the use of Lemma 2 concerning S-units. To obtain a bound
in Theorem 2 without this factor s2¢, we shall combine the proof of Lemma 6
of [12] with our Theorem 1 with ¢ = 0.
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Let aq, ag, a3 be non-zero elements in K with heights at most H (H > 2).
In some applications, it is more convenient to consider the following equation
instead of (1.b):
(l.e) aix1 +agwa +aszz3 =0 inx, € Og\ {0}

with Ng(zp) < N for k =1,2,3,
where Ng denotes the S-norm (see Section 4). Then setting
Q=N(pr---p) ift>0 Q=1 ift=0

and

h 1
N203R+ElogQ+H+ElogN,

it is easy to deduce from Theorems 1 and 2 (for ¢ > 0) and Theorem 1 (for
t = 0) the following.

COROLLARY 1. For every solution x1,x2,x3 of (1l.c) there is an € € O%
such that max;<g<s h(exy) is bounded above by

(8.a) 2.001¢1 PRs(1 + (log* Rg)/log™ P)N
and, fort >0, by
(8.b) cshR*(log* R)R(1 + (log* R) /log* P)(P/log* P)TN

with ¢1 and ¢4 occurring in Theorems 1 and 2. Further, if in particulart = 0,
the bound in (8.a) can be replaced by

(8.¢) 2.001c2R(log* R)N,
where co denotes the constant specified in Theorem 1.

We note that log @ < tlog P. Our Corollary 1 improves upon Lemma 6
of [12] and the Corollary of [5].

Denote by D the discriminant of K, and by log; the ith iterate of the
logarithmic function with log; = log. Further, let QQy denote the product of
the distinct prime factors of Q@ = N(p; ---p¢). Then we have

Qo< Q < Q.
The next corollary is a consequence of Theorem 2. We recall that ¥ =
Org N Oikq. Put
Q5 = max(Qo, 16).
COROLLARY 2. Let t > 0. If w1, x2, x3 € OF satisfy (1.b), then there
exist o € O and 1, 02, 03 € .7 such that x, = oo (1 <k < 3) and

P
(9) max hlox) < col DI *(log" D)~ (s

d(c7log™ |D|4+19.21ogs Qf)/logs QF
X Qq 0 °H,
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where
222 if d=1,
) 2% if d =2 withr =0,
7 2948 (10g(2d))° if r=1,
(7, 4 1)5r+1529r+71dr+9(log<2d))8 if r > 27
and
12.4 if d=1,
14.7 if d=2 withr =0,
T 9.7d ifr=1,

8.9d%logd if r> 2.

Further if d = 2 with v = 0, the expression |D|3/?(log* |D|)3¢! can be
replaced by |D|(log* |D|)2?=1. Finally, if ), € . (1 < k < 3), then o may
be chosen from <.

We note that P < Q4. Corollary 2 can be readily compared with [21,
Theorem 3.1] and [29, Theorem 1.5], and may be considered as an explicit
result related to the abc conjecture over number fields; see e.g. [3] and [24].
In the special case K = Q, in order to apply Corollary 2 to the equation

r+y=2z with (z,y,2) =1 and z > 2,

in positive rational integers x, y, z, which is the equation in Stewart and Yu
[28, Theorem 2], we take K = Q, and S\ Ss to be the set of all distinct
prime factors of zyz. Then we have D =1, H = 2, 0 = 1. Let p;,p,,p. be
the greatest prime factors of x,y, z, respectively, with the convention that
if x =1 (y =1), then p, =1 (p, = 1). Put P = max{p,,py,p.} and
p' = min{p,, py,p-}. In the notation of [28], we have Qy = G, Q§ = G*.
Now our Corollary 2 implies, on noting 12.4 + 19.2logs G* < 653logs G*,
that
2 < exp (223 P 653(10g; 6) g, G*)'
log P

Although this is completely explicit, it is still weaker than [28, Theorem 2]
in general, since there p’ occurs in place of the expression 223 P/log P. Fur-
thermore, Chim Kwok Chi [7], following the proof of [28], has proved that

s < eXp(p/G7lD(log3 G*)/log, G).

3. Bounds for the solutions of decomposable form equations.
Keeping the notation of Section 2, consider the equation

(10) Fx)=0 inx=(x1,...,2y) € 0%,

where § € K \ {0}, and F(X) = F(X1,...,X;n) is a decomposable form of
degree n > 3 in m > 2 variables which factorizes into linear forms over K.
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These linear factors of F' are uniquely determined over K up to proportional
factors from K. Fix a factorization of F' into linear forms, and denote by
L the system of these linear forms.

The first author established several effective bounds for the solutions
of equation (10), subject to certain assumptions on Lr (see e.g. [10], [19],
[14]-[17] and the references given there). The most general effective results
were obtained in [17]. Here we slightly refine the assumptions on L in [17],
in order to make them more transparent.

For a system L of non-zero linear forms in Xi,..., X, over K, let L*
denote a maximal subset of pairwise linearly independent linear forms of L.
We denote by G(L*) the graph with vertex set £* in which distinct [, in £*
are connected by an edge if A\l + NI’ + \'I"” = 0 for some " € £* and some
non-zero A\, X', A’ in K. Let Lq,..., L be the vertex sets of the connected
components of G(L*). When £ = 1 and £* has at least three elements,
L is said to be triangularly connected (cf. [19]). If k > 1, we introduce the
graph H(L1, ..., L) with vertex set {L1,..., Ly}, in which the pair [£;, £;]
is an edge if there exists a non-zero linear form which can be expressed
simultaneously as a linear combination over K of the forms in £; and of the
forms in L;.

Now we apply the above terminology to Lr. We suppose that the de-
composable form F in (10) satisfies the following conditions:

(i) Lp has rank m;

(ii) denoting by Ly, ..., L the vertex sets of the connected components
of G(L},), either k =1 or k > 1 with the graph H(L4, ..., L) being
connected.

It is obvious that (ii) depends only on Lg, but not on the choice of L.
For k = 1, assumptions (i) and (ii) imply that Lp is triangularly connected.

In (ii) with k& > 1, for each edge [L;, £;] of the graph H(L1, ..., L) there
is one (and apart from proportional factors at most finitely many) non-zero
linear form /; ; which can be expressed as ) ;. o, Nl = D oic c; Ml such that
the total number of non-zero terms on both sides of the equality is minimal.
We pick up for each edge [£;, £;] such an [; j, and we denote by L, the set
of the I; ;’s so chosen (1).

We recall that, throughout the paper, by height we mean the absolute
logarithmic height.

THEOREM 3. Let F' be a decomposable form as above with properties (i)
and (ii). Further, let B € K \ {0} with h(8) < B, and suppose that the
heights of the coefficients of the linear forms in Lr do not exceed A (> 1).

(*) As will be seen in the proof, it is enough to consider an L% which consists of I;
for a minimal number of edges [£;, £;] ensuring the connectedness of H(L1, ..., Lk).
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With the above notation, all solutions x = (z1,...,%m) € OF of (10) (with
I(x) #0 for alll € L% if k > 1) satisfy

(11) max h(z;) < d{PRg(1 + (log* Rg)/log* P)

h
X <03R + p log Q + mndA + B>

and, fort >0,
(12)  max h(z;) < cyhR?(log" R)YR(1 + (log* R)/log* P)

x (P/log* P)T(03R + g log Q + mndA + B) .

Further, if t =0 (i.e. Og = Ok), then the bound in (11) can be replaced by
(13) hR(log* R)(c3R + mndA + B).

Here if k = 1, then ¢, = 25m(n—1)¢; (i = 1,2) and ¢j = 12.5m(n—1)cq, and
if k>1, then ¢, = 50m(m +1/2)(n —1)¢; (1 = 1,2) and ¢ = 25m(m + 1/2)
X (n — 1)cq, where c1,co are the constants specified in Theorem 1, and ¢4 is
specified in Theorem 2.

Our bounds improve upon the corresponding estimates of Theorem 1 of
[16] and Theorem 1 of [17]. Further, (12) implies an improved and explicit
version of Theorem 3.4 of [21]. It should be observed that there is no factor of
the form s* or ' in the bound in (12). This will be important for Corollaries
4 and 5.

It is clear that binary forms having at least three pairwise non-proportio-
nal linear factors are triangularly connected. Further, as is known (see e.g.
[19], [16] and [17]), discriminant forms and index forms are also triangularly
connected, and a large class of norm forms in m variables satisfies conditions
(i), (i), with & > 1 and L% = {X,,}. Therefore our Theorem 3 improves
upon the bounds in Corollaries 2, 3, 4.1 and 5 of [16] on the S-integer
solutions of norm form, discriminant form and index form equations.

We present a consequence of Theorem 3 for the Thue equation

(14) F(zi,29) = in x1,22 € Og,

where F'(X7, X2) denotes a binary form of degree n with splitting field K
and with at least three pairwise non-proportional linear factors. Suppose
that the heights of the coefficients of F' do not exceed A (> 1).

The next corollary is a significant improvement of Corollary 1 of [17].

COROLLARY 3. All solutions (x1,x2) € O% of (14) satisfy (11) and (12)
fort >0 and (13) for t =0 (when Og = Of), with ¢, for k =1 replaced by
5d2n5cg fori=1,4,2, respectively.
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As is known (see e.g. [16]), equation (10) is in fact equivalent to the
equation of Mahler type

(15) F(x) ey inx=(x1,...,zy) € OF,

where, as above, .= O N O%. If F satisfies the assumptions of Theorem 3
and 1, ...,y is a solution of (15) for which the norm N((z1,..., %)) of
the ideal (z1,...,zy,) is bounded, then Theorem 3 implies an explicit upper

bound for maxi<j<, h(ez;) with an appropriate € € OJ.

We formulate a further consequence of Theorem 3. We denote by w(a)
the number of distinct prime ideal divisors of o € Og \ {0}, and by P(«)
the greatest of the norms of these prime ideals (with the convention that
P(a) =1if o € O).

COROLLARY 4. Let F' be a decomposable form as in Theorem 3 with
coefficients in O, and let Ny be a positive integer. If x = (z1,...,2m) € OF
and N((z1,...,2zm)) < No with F(x) # 0 (and with I(x) # 0 forl € L% if
k> 1) then

(16) P(log P)“ > cg(log N)*

and

(7) P> c1p(log Nt if w <log P/log, P,
c12(logy N)(logz N)/(logy N)  otherwise,

provided that N = maxi<j<m |Ng/g(zi)] > N1, where P = P(F(x)) and
w = w(F(x)). Here cg,...,c12 and Ny are effectively computable positive
numbers which depend at most on F, K, and Ny.

An important special case is when k£ = 1, m = 2, i.e. when F is a binary
form with splitting field K and with at least three pairwise non-proportional
linear factors. Our Corollary 4 can be compared with the estimate (10)
in [11], Theorem 7 in [15], and with Theorems 3.3 and 3.5 in [21] where, for
k =1, the second of our lower estimates in (17) is proved for all w.

We note that if F'(X) € Og[X] is a polynomial of degree n with splitting
field K and with at least two distinct zeros, then, applying Corollary 4 to
the binary form Y"1 F(X/Y), we obtain (16) and (17) for P = P(F(z)),
w=w(F(z)), N = |Ngg(r)| with x € Ok, provided that N is sufficiently
large.

Corollary 4 motivates the following.

CONJECTURE. With the assumptions and notation of Corollary 4, we
have
P> C13 (lOg]V)C14 if N > Nl,

where c13, c14 and Ny are effectively computable positive constants depending
at most on F', K and Ny.
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The following corollary enables us to obtain some new information about
the arithmetical structure of those algebraic integers of K which can be
represented by a decomposable form of the above type.

COROLLARY 5. Suppose F and Ny are as in Corollary 4. Let Fy be any
non-zero integer in K represented by F(x1,...,Ty), where x1,..., 2, € O
with N((z1,...,2m)) < No (and with l(z1, ..., zp) # 0 forl € L% if k> 1).
Then

P> c15(log V)16 if w<logP/log, P,
c17(logy N)(logs N)/(logy N)  otherwise,

provided that N = |Ngo(Fo)| > N2, where P = P(Fp) and w = w(Fp).
Here c15, c16, c17 and No are effectively computable positive numbers which
depend at most on F', K, and Ny.

This is a generalization and a considerable improvement of Corollary 1
of [11]. As was mentioned above, binary forms, discriminant forms and index
forms (with £ = 1) and a large class of norm forms satisfy the conditions of
our Corollaries 4 and 5.

4. Auxiliary results. Keeping the notation of the preceding sections,
let again K denote an algebraic number field with the parameters d, R, h
and r specified above. Denote by My the set of places on K. For every
place v we choose a valuation | - |, in the usual way: if v is infinite and
corresponds to ¢ : K — C, then we put, for a € K, |a|, = |o(a)|®, where
d, =1 or 2 according as o(K) is contained in R or not; if v is a finite place
corresponding to the prime ideal p in K, then we put |al, = N(p)~ "%« for
a € K\ {0}, and |0], = 0. Here, for o # 0, ordy o denotes the exponent to
which p divides the principal fractional ideal (o).

The absolute logarithmic height h(«) of a € K is defined by

1
ha) = p E log max{1, |a,}.
vEME

It depends only on «, and not on the choice of the number field K contain-
ing a. For properties of this height, we refer to [31].

Asin Section 2, p1, ..., p; will denote the prime ideals of K corresponding
to the finite places of S. For a € K \ {0}, the fractional ideal («) can be
written uniquely as a product of two fractional ideals aj, as, where a; is
composed of p1,...,ps and as is composed solely of prime ideals different
from pi,...,ps. Then the S-norm of « is defined as Ng(a) = N(az).

Finally, wx will denote the number of roots of unity in K.
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PROPOSITION 1. Forn > 1, let aq,...,a, be multiplicatively indepen-
dent non-zero elements of K. If K is of degree d > 2, then

58(nle™ /n™)d" (log d)h(ay) - - h(an) > wrk,
while if d = 1, the expression 58d" T (logd) can be replaced by 17.
Proof. This is a consequence of Theorem 3 of Loher and Masser [22]. m
As is known, nle™ /n" is asymptotic to v/27n and
(18) nle” /n™ < ey/n.

For simplicity, we shall apply Proposition 1 together with (18).
For s > 2, let
as=((s = DY?/(2°72d7 ),  cg=(s—1)l/d" ",
Further, for s > 3, let
, 8.5ev/s — 2 c1g (resp. clg) ifd=1,
c19 (resp. cjg) = ) ]
29e/s — 2 d* ' (logd) c18 (resp. cjg) ifd>2,

and

(((s — 1)N?%/257 ) (log(3d))® if d > 2.

LEMMA 2. Let s > 2. There ezists in K a fundamental (resp. indepen-
dent) system {e1,...,es—1} of S-units with the following properties:

{ ((s — 1)12/(25"210g 2) ifd=1,
C20 =

s—1
(i) H h(ei) < cigRg (resp. cigRs);
i=1
(ii) max h(g;) < ci9gRs  (resp. cjgRs) if s > 3;
1<i<s—1
(iii) the absolute values of the entries of the inverse matrix of
(log|€ilv; )i j=1,...s—1 of the fundamental system {e1,..., €5 1}

do not exceed cag.

We note that (i) and (iii) were proved in [5] and [6], respectively, in
the “fundamental” case, and (i) was obtained in [4] in the “independent”
case. The inequality (ii) is an improvement, at least in terms of s, of the
corresponding statements of [5], [6] and [4].

Proof of Lemma 2. For the proof of (i), see Lemma 1 in [5] and its
proof. (ii) is an immediate consequence of (i), Proposition 1 and (18). To
prove (iii), it is enough to combine the proof of (iii) in Lemma 1 of [5] with
the inequality

log 2 if d=1
(19) dh(e;) > 8 ' ’
2/(log3d)® if d > 2,

which, for d > 2, is due to Voutier [30]. =
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The next lemma has various variants in the literature.

LEMMA 3. For every a € Og\ {0} and for every integer n > 1 there
exists an € € Oy such that

1 h
h(e"a) < pi log Ng(a) +n <03R + g log Q)
with c3 defined in Section 2.

Lemma 3 was proved in [5] and [17] with a larger c3. We remark that in
the special case t = 0, the unit ¢ € O} occurring in Lemma 3 can be chosen
from the group generated by independent units having properties specified
in (i) and (ii) of Lemma 2.

Proof of Lemma 3. We combine the proof of Lemma 2 of [5] with our
Lemma 2. First consider the case t = 0, when a € Ok \ {0}. If r = 0, the
assertion immediately follows with € = 1. Suppose that » > 1, and choose a
system of independent units 1, ...,&, in K with the properties specified in
Lemma 2. As in [5], consider the system of linear equations

T
D (loegl) X; = ~log(M "/ lal,), =11,
j=1
where M = |Ngg(a)| and v1,...,v,11 denote the infinite places on K.

This system has a unique solution (x1,...,z,) € R". Let (b1,...,b,) be the
unique point in Z" such that

1 1
x; =nbj +0; with —§n<gj§§n,j:1,...,r.

Putting ¢ = 5111 .- gl we infer that

T
_ n
log(M "/ |e"al, )| < 5 > log el

j=1
fori=1,...,r 4+ 1. Then using the product formula for €;, we deduce that
1 r+1 1 n roor
n n .
h(e"a) < E;Hogle aly| < Slog M + E;;Hogleglvih

We assert that if > 1, then the inner sum in the extreme right-hand side
of the above inequality is at most (d/r)c3R. This can be seen by using [5,
(9), (10)], the second inequality of [5, (12)] and by applying Proposition 1
to any r — 1 of the ; (1 < ¢ < r). Thus Lemma 3 is proved for » > 1. If
r =1, we can use (i) of Lemma 2 to prove the assertion.
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The case t > 0 of our lemma follows from the case ¢t = 0 in the same
way as in the proof of Lemma 10 of [8], observing that ) can be taken

everywhere in place of P/ with P = max{py,...,p;} considered in [§]. =
Let
(20) A=t ol 1,
where ag,...,q, are n (> 2) non-zero elements of K, and by,...,b, are
rational integers, not all zero, with
B* = max{|b1],...,|bn|}.
Set

A; > max{dh(e;), 7}, i=1,...,n.
The following result is a consequence of a deep theorem of Matveev [25].

PROPOSITION 4. Suppose A # 0, b, = +1 and B satisfies

(21) B > max{B*,2e max(nr/V2, A1, ..., Ay_1)An}.
Then

(22) log | 4] > —ex1 (. d) A -+ Ay log(B/(v3 Ay)),
where

co1(n, d) = min{1.451(30v2)" 4 (n + 1)>5, 7205727142 log(ed).

Proof. Let log denote the principal value of the logarithm. There exists
an even rational integer by such that |bg| < |b1| + -+ + |b,| < nB* and that
[Im(X)| < m, where

Y :=bylogag + bilogay + - + by log ay,

and ag = —1. The assumption A # 0 implies that X' % 0. We may assume
that |e* — 1| = |A| < 1/3. Then |¥| < 0.6, whence

(23) eyl
Using |log|a;|| < dh(a;), it is easy to show that
log ;| < vV2max(dh(ey), ), i=1,...,n.
Thus, setting Ag = 7/+/2, we have
V2 A; > max{dh(e;), [log;],0.16}, i=0,1,...,n.
Further, (21) implies

B 2>ema 1, ma M
V2A4,) U 0%ien \ A, ’

By applying now Corollary 2.3 of [25] to || and using (23), we obtain (22). =
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For s > 3, let

8.5 ifd=1

cos = evs — 2 (((s — 1)) /25 )52 ’

2 (s = DH7/27) 29dlogd if d > 2.

When we apply Proposition 4, we shall get better bounds by using the
following technical lemma.

LEMMA 5. Let {e1,...,e5—1} be a fundamental system of S-units in K
with the properties specified in Lemma 2. Then
s—1 .
Rg, =2,
(24) Hmax(dh(ei),ﬂ) < max(Rs, ) Z_f °
Pty coRg if s> 3.

Proof. The case s = 2 is trivially true by Lemma 2. Suppose s > 3. Let
k denote the number of indices ¢ with 1 < i < s — 1 such that dh(e;) < 7.

Suppose first 1 < k < s—2 and, without loss of generality, dh(e;) < 7 for
i=1,...,kand dh(ej) > wfor j = k+1,...,s—1. Thus, using Proposition 1
and Lemma 2, we infer that

s—1 k
T
dh(s; = d*Thigy) - h(es
Z]__[lIna“X( (5 )77T) dkh(El)h(Ek) (51) (8 1)
7 [ 8.5 ifd=1 (s —1)H?2
< evVk ~"——" Rg< cyRyg,
= dF {29dk+1 logd if d> 2} gs—2 8= TR

which proves (24).

If £ = 0, then (24) immediately follows from (i) of Lemma 2. Consider
now the case k = s — 1. Then (7) and Rx > 0.2052 (cf. [9]) imply that if
s > 3 then

(25) .
0.2052(log 2)*2 if d > 2.
By k = s — 1 we have dh(g;) < m for all 7. Hence (24) follows from (25). =

Consider again A defined by (20). Let B and B,, be real numbers satis-
fying
(26) B > max{|bi|,...,|bn|}, B > By > |by|.
Denote by p a prime ideal of Ok lying above the prime number p, and by e,
and f, the ramification index and the residue class degree of p, respectively.
Thus N(p) = p/v.

The following result is due to Yu [33].

> { (log 3)(log 2) if d =1,

PROPOSITION 6. Assume that ord, b, < ord,b; for j =1,...,n, and set
h; = max{h(a;), 1/(16e%d*)}  (j=1,...,n).
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If A#0, then for any real § with 0 < § < 1/2 we have

N(p) Y 0B
A n__ W) B loe M, —— 2
ordy A < ea3(n, d)ey Toe N () 2 max{hl h;, log B |

where

cas(n, d) = (16ed)?"HDn3/2 1og(2nd) log(2d),

ca4(n,d) = (2d)*" ! log(2d) log?(3d),
and

M = (By/8)cas(n, d)N (p)" hy - b,y

with

co5(n, d) = 2eHDOM+5) g3 166(9).

Proof. This is the Corollary of Theorem 4 in [33]. As is remarked in [33],
for p > 2, the expression (16ed)2™t1) can be replaced by (10ed)2("*1). u

Proposition 6 will be used in the proof of Theorem 1. In the proof of
Theorem 2 we shall apply the next proposition, which is sharper than Propo-
sition 6 in the dependence on d and n when all o; (j =1,...,n) are p-adic
units.

PROPOSITION 7. Suppose that ord, b, < ord,b; and ordya; = 0 for
j=1,...,n, and that a1, ..., an_1 are multiplicatively independent. Set

h! = max{h(ay), 1/(8¢%d)}.
If A#0, then for any real § with 0 < § < 1/2 we have

N(p)
ordy, A < chs(n,d)el) ——"—
P A<l D% oy NP
x max { h(ay) -« h(ap—1)h! log M’ _ 9B
1 n—1 n 7Bncl24(n7d) 9
where
hs(n, d) = ca™n’2d"? log(2nd) log(2d)
with
1692, p > 2, 48¢2, p>2,
Cc = a =
292, p=2, 128¢2, p =2,
cha(n, d) = (2d)"* log(2d) log? (34),
and
M' = (By/6)chs(n, d)N(p)"h(ci) - - h(an—1)
with

6,25(71, d) _ 26(n+1)(6n+5)d2n+1 10g(2d)

Proof. This is again a consequence of Theorem 4 in [33]. =
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5. Proofs of the theorems

Proof of Theorem 1. We follow the proof of the Theorem of [5], and only
those steps will be detailed which differ from those in [5].

Let x,y be a solution of (1.a). We may assume that h(x) > h(y). Let
€1,...,8s—1 be a fundamental system of S-units in K with the properties
specified in Lemma 2. Then y can be written in the form

(27) y=Ceft e

s—1>
where ( is a root of unity in K and b1,...,bs—1 are rational integers. We
derive as in [5] that
(28) max{|b1|,...,|b5,1|} S QCgodh(l‘).

Set as = (f and by = 1. Let v € S for which |z|, is minimal. Then, using
(1.a), we deduce that

(20)  loglelt - ehial 1], = loglaal, < h(x) + dH.
First assume that v is infinite. We shall prove that

(30) h(zx) < co6(s,d)Rg(log” Rg)H,

where

co6(5, d) = min{s25 793251352 25H15943540) 100(94) (dlog* (2d) )

with

40 ifs>3,d>2,

A=4¢373 ifs=2withd>2, or s >3 withd=1,

354 ifs=2, d=1.
Set
A; = max(dh(e;),m), i=1,...,s—1,
As = dH > max(dh(ag), ).
We may assume that

2¢90dh(z) > 2e max(sw/\/i, Ay, ..., As—1)As,

since otherwise (30) follows easily from Lemma 2 and Proposition 1. By
applying Proposition 4 and Lemma 5, and using (29) and (4), we infer that

R if s=2
max{ S’W} s - dH log (M)
c22Rs if s >3 V2 H

with the ¢21(s, d), co2 occurring in Proposition 4 and Lemma 5, respectively.
Together with (29) this implies (30).
We note that for ¢ = 0, (30) implies the second part of Theorem 1.

(31)

log |ax|, > —dyca1(s, d) {
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Next assume that v is finite, corresponding to the prime ideal p. So the
equality in (29) implies that

(32) log ||, = —ordp(elfl . -52‘“’_’110/5’5 —1)-log N(p).
We set B = 2¢9pdh(z). Further, we assume that
(33) B Z 2624(8, d)h(f;‘l) e h(Es_l)H,

since otherwise, using Lemma 2, we obtain (2). In view of (19) and H > 1,
fori=1,...,5s—1 we have

1 1
h;:max{h(si),m} :h(5i), h;:max{h(as),m} SH

We choose
0 = coa(s,d)h(e1) -+ h(es—1)H/B.

Then, by (33), we have § < 1/2. Applying Proposition 6 we get the following
lower bound for the right side of (32):

N(p)

(34) —023(8, d)ds M

0B
.. s—1)Hlog M, ——— ¢,
max {h(fl) h(es-1)H log c24(s, d) }

where

M =6 Leas(s,d)N(p)* T h(er) - h(es_1)

and ca3, co4, Co5 denote the expressions occurring in Proposition 6, with n
replaced by s. Using (29), (34), our choice of §, and Lemma 2(i), we infer

that
N(p)

W) ReHlogY,
log N(p) 57 0810

g h(z) < (14 107N e8(s, d)cas(s, d)d®

where
ca5(s,d) 2¢20(s, d)dh(x)

024<8, d) H

Yi = N(p)**!

)

whence
c25(s, d) s N(p)*+2
caa(s,d) " log N(p)

Yi
log V3

< 2(1 + 10_11)018(S, d)Cgo(S, d)CQ3(S, d) Rg

= Ml‘
This gives
Y71 < 1.059M; long,

since M; > 2.24-1032. Observe that N (p)/log N(p) < (1/log2)P/log* P and
log M; < 10.2 s*log*(2d)(log* P + log* Ry),

where 10.2 can be replaced by 7.9 when d > 2. Now

h(x) < s25T3:52T5H1941650(25)d* T2 (log*(2d))* PRs(1 + (log* Rs)/log* P)H

by a careful computation. On combining this with (30), we arrive at (2). =
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Proof of Theorem 2. To obtain better bounds, we combine the proof of
Lemma 6 of [12] with the case ¢ = 0 of our Theorem 1. Further, we use
Lemmas 2 and 3 in the present improved forms, and replace the estimate
used in [12] for linear forms in logarithms in the p-adic case by a recent
improved bound of Yu’s (cf. Proposition 7).

We may assume without loss of generality that, in (1.b), z, € Ox N O%
for k = 1,2, 3. This can be achieved by multiplying (1.b) by an appropriate
S-unit. We write

u u
() =py™ - --p,™* and  wy, = hog + ik

with rational integers w;i,v;r, > 0 and 0 < ry < h; for £ = 1,2,3 and
i = 1,...,t. There are integers m; and v; in O such that p;” = (m;) and
(k) = p1* - - - pit*. Further, by Lemma 3 with ¢ = 0, m; and 7 can be chosen
so that

h; 2 )
(35)  h(m) < 2max{glogN(pi),03R} < ERlog* P i=1,...,t,

and

1 t
(36)  h(w) < p ; hilog N(p;) + c3R

t
1
§2max{E;hilogN(pi),03R} =Z, k=1,2,3.
Then we have

37 T = €k kﬂvlk-nﬁvtk, k‘=1,2,3,
( TETy t

with some units ¢, from K. We note that if » = 0, then ¢3 = 0 and the
factor 2 in (35) and (36) can be replaced by 1.

Let a; = ming vy, and v}, = vy, —a; for k = 1,2,3 and @ = 1,...,t.
We may assume that V' := max; v, = vj; > 0 and vjy = 0. If r > 1,
let n1,...,n be a fundamental system of units in K with the properties
specified in Lemma 2. Then
(38) Ek/€3 - Cknqlvlk "'n;urka k= 172737
where (i is a root of unity in K and wyg, ..., w,; are rational integers such
that (3 = 1 and w3 = --- = w3 = 0. Obviously, (38) holds for » = 0 as

well. Putting o = egny? -+ - 7", we infer that
Ly = 00k, k=1,2,3,
where

(39) Ok :Ck’}/kn;vlk‘--U;U”kﬂflk‘--ﬂftk S OKQOE, k= 1,2,3.
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We are going to derive an upper bound for V. In order to be able to apply
Proposition 7 and avoid the use of 74 (which yields a slight improvement in
our bound on V'), we introduce some further notation. Put

W = max |lwji] and B = max{V,W}.
J7

For r > 1, there are rational integers t1, . .., t,r and a root of unity C,’ﬁ in K
such that
(40) ’YIQL = Cl,cnilk e 'nﬁrkﬂglk T Wgtkv k=1,2,3,

where 7%, = rjph/h; for i = 1,...,¢. This implies that

r t
Z tjklog[n;lo = hlog |vklv — Z rir; 10g |7ilo
=1 i=1

for each infinite place v of K (which are normalized as in Lemma 2). Using
the fact that |log|al,| < dh(a) for a € Ok \ {0} and applying (35), (36)
and Lemma 2, we deduce that

(41) max [tjk] < corZ
]7

with co7 = (t + 3)hdc,, where 5, denotes the constant cyg with the choice
s=r+1,1ie ¢ = (r)2(log(3d))3/2" for r > 1. For r = 0, let co; = 0. We
may assume that

(42) V > 17dH.
We show that as092/(a303) is not a root of unity. Indeed, if ag0s = (asos

with some root of unity ¢, then (1.b) gives
a101 = —(1+ Q)asos.
But we have
43 ordy, a| < —— h(«w
( ) ’ p1 ‘— IOgN(pl) ( )
for each v € K, a # 0 (see e.g. [32, p. 124]). Hence we deduce that

3d
hiV <ordy, o1 < ordy, ((1+ ¢)as/ar) + ordy, o3 < @ H + hq,
which contradicts (42).
In view of (42) it follows that ord, (

(39) and (42) that

h
(44) 0.8h1V < ordy, <%> < ordy, << a2g2> — 1).

a303 Q303

21) > (. Thus we infer from (1.b),

a1
Q303
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To apply Proposition 7 to the right side of (44) we have to make some
preparation. In view of (39) and (40) we can write

h
0202 b by by by by
(45) <_ > =ty (T Br),
0303
where by, ..., b4 are rational integers and 3,.; = ¢/(—a2/a3)" with an

appropriate root of unity ¢’. Further, by virtue of (41) and h < 2co7 Z if
r > 1, we obtain

46 bi| < hB + 2¢97 2.
(46) 153-913?};#“' sl < hB + 2exr

We infer from (44) that (—ag02/(a303))" is a pr-adic unit. Then, by (45),
7T11)T+1ﬁr+t is also a pi-adic unit, that is, we have

(47) ordy, Brit + hibr1 = 0.
Putting 3, = ﬂr+t7rll)’“+l and using (43) and (47), we obtain

) 6
(48) Mrd) < Fog N (o)

Here 6 may be replaced by 4 if » = 0. We note that

1
h;«/+t ‘= Inax {h(ﬁ;‘-i-t)? @}

has the same upper bound. Further, we recall that ny,...,n,,m2,..., 7 are
p1-adic units and are multiplicatively independent.

We are now in a position to apply Proposition 7. We may assume that
in (46),

max{h1 log N(pl), ngR}hH.

(49) hB + 2y Z < Z hB =: B,

since otherwise we get at once a better upper bound for B, and hence also
in (5), than required. For brevity, we write

IT = h(m) - -~ h(ny)h(m2) - - - h(m).
We may assume that
(50) B' > chy(r 4 t,d)et T P2BRY max{IT, 1},

since otherwise we again obtain a better upper bound for B than required.
We choose ) ,
5 = Coq (’I" +1, d)hr-‘rtn
= Vel .
Then, by (50), we have 0 < § < 1/2. Proposition 7 gives the upper bound

N(pl) " /
(og N(py))2 1 retos M

Chs(r + t, d)d“‘t
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for the right side of (44), where

r.— M ( )T+t+1 i/
- chy(r+t,d) hyet

In view of (50) we have

B/
log M" <2(r+t+ 1)log<h,, >
r+t

Set
t
T’ =271 [ [ max{hilog N(p;), csdR},
=2
where 2/=! may be replaced by 1 if » = 0. Using now (35), (45), (46), (48),
(49), (50) and Lemma 2 we deduce that

N(pl) N/ < B’ >
Cog ————2 _ RT'h" ,log( ——
% (log N (p1))? w8\,

is an upper bound for the right side of (44), where

cog = 2(r +t + 1)d T cfgchs(r 4+ t,d).
Here cjg denotes the constant cjg with the choice s = r + 1, ie. ¢jg =
(rh2/(271d") if r > 1, and ¢fg = 1 if r = 0. In view of (44) we infer that

N(p1)

B/
51 V < a9 ——PU i 1, <—>
(51 % (log N (pn))2 7 i log|

where cog = 1.25¢s3.
If V = B then (51) and (49) yield
Y N(p1)
< 1.25¢c0g ———————
log¥, ~ 7™ (log N(p1))?
for Yy = B'/h".,. Now My > 1.53-10 if r = 0 and My > 2.41- 10 if r > 1.
Thus

hRT/ = M2

Yo < 1.2 M IOgMQ,

where 1.2 can be replaced by 1.13 if » > 1. By the definition of 7 in Section 2,
the definition of 7’ and (48), we have

T'h,, < AThH/log N(py),
where 4 can be replaced by 3 if » > 1. Observe further that
log My < 0.646(log co9)(log™ P + log™ R),
and that

N(p)  _ 2 (log19 op
(log N(p1))? 19\ log2 / (log* P)3"
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It follows from the above estimates that

P
52 B < c3g ————= Rh(log™ P + log* R)TH
(52) €0 (g P)? (log" P +log" R)T H,
where 39 = 25.02¢29(log cag), and 25.02 may be replaced by 17.68 if r > 1.
If in particular r = 0, then obviously V = B. In this case c3 =0, R =1,
R = h, and the right-hand side of (52) is greater than 4.59 - 10%. Thus using
(39), (35), (36), we obtain

max h(or) < (B+1) 2 hlog* P
t P
1+2.18-10")e30 = ———
<( + 8- 10 )Cgod (log* P)2
which yields the bound (6) for maxy h(ox), since
(1+2.18-10"Y)esot < ¢5(d, t)d

(in fact the left-hand side of the above inequality reaches its maximum
0.789...at r=0,d=2,t=13). If r > 1 and B =V, then (39), (35), (36),
Lemma 2(ii) and (52) imply

(53) max h(ex) < (B +1)(2t/d +r!/(d 2R log* P

h?(log* P + log* h)T H,

< e31 RhR(log" P +log*R)TH,

P
(log” P)?
where c31 = (4t/d)(r!/2" 1) e30.

There remains the case r > 1 with B = W. In this case we shall use (51).
We reduce equation (1.b) to the case t = 0 of equation (1.a). Let

¢ t
_ Q171 vl —vls _ Q272 Vis Vi3
a=-Q ||7T ; 5—-(2( ) ; :
<043’}/3) ' o373 H !

=1 i=1

Then

w1 wWr1 w1 W2

L =1 N, Y= M

is a solution of equation (1.a) in z, y € O} . We may assume that h(z) >
h(y). Then we deduce as in (28) that B = W < 2dchyh(x), where ¢5, =
cao(d,m + 1) = ((r1)?/2")(log(3d))3. We may assume further that h(x) >
2.5hdcyyh!l, .. Thus we have, by (49), B’/ , < (h(x)/h!,,)?. In view of
(35), (36), (42) and (51) we obtain

(54)  max{h(a),h(B)} <2H+ (t+1+Vt)(2/d)Rlog" P

2t Lo 1 t+1 37 ¢t
<V = e _ _
<V = Rlog P(m+ T +1>_17dv731 P
t N(p1)log" P 170 (h(x)> /
< 435309 - 2y RRT'H lo = H.
" d log N(p1))? AN
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With the above choice of o, 3 we can now apply the case t = 0 of our
Theorem 1 to equation (1.a) and we get

h(z) < ea(d,r)R(log* R)H'
N(p1)log™ P 10 h(l')
2 - R?(log* RYRT'h), 1
g Npr)y? (o8 TR hrlog
with cgo = 4.353(t/d)cagca(d, ), where ca(d, r) denotes the constant occur-
ring in (3). This implies that, with Y3 := h(z)/h; .,

Y3 < e N(p1)log™ P
log Y3 (log N (p1))?

On noting Mz > 1.74-10%8, we get Y3 < 1.066M3 log Ms. Observing further
that

log M3 < 0.646(log c31)(log* P + log* R), T'h),, < 3ThH/log N (p1),
N(p1)/(log N(p1))® < (2/19)(log 19/log 2)* P/ (log" P)?,

we obtain

R?(log* R)YRT' =

(55)  h(x) < c33 (log*iP)? hR%(log* R)R(log* P 4+ log* R)T H =: Xy,
where c33 = 16.67c32 log c32. Putting
T = Ck’}/kﬂ';)ik . "ﬂ':ék, k=1,2,3,
we have
(56) o1 =%T1, 02 =YT2, 03 =T
Fix k € {1,2,3}. If h(7;) < h(x), then (56) and (55) give
(57) h(or) <2Xo for this k.

Now suppose that h(rg) > h(z). We deduce as in (54) that
(58)  h(m) < (t+1+2Vt (1/d)R log* P

<V- Rl (——1—2) @EVRI

68t =344
t N(pl)bg P 111 <h(7_k))
< 4.06 VTS C RRTR  log [ —2
9 (log N (p1))? AT
(pl)log P 2 N/ <h(Tk))
U ES . R2(1og* RYRT R L2
2 log N(py))2 1 (08 FIRT hrilog|

since ca(d,r)Rlog™ R > 1 by the fact that R > 0.2052 (cf. [7]). As before,
this gives h(7;) < Xo. Hence we obtain (57) again. On combining (57) with
(53) and noting that

C31/R < 031/0.2052 < 2c33 < C4(d, T, t)



32 K. Gyory and K. R. Yu

(in fact 2¢33/cq(d, r, t) reaches its maximum 0.59...at r =1,d =2, ¢t = 13),
we see that (5) holds when r > 1. It is readily seen that the right-hand side of
(5) with » = 0 is greater than the quantity in (6). Thus Theorem 2 follows. =

Proof of Corollary 1. The assertion with the bounds (8.a) and (8.c)
follows from Theorem 1 in the same way as the Corollary was deduced from
the Theorem in [5], but using the fact that, by (7),

Rs > 0.2052(log 2)" > 0.2052(log 2)°.
Next suppose that ¢ > 0. If the bound in (8.b) is greater than that
in (8.a) then we are done. Consider now the case when the bound (8.b) does

not exceed (8.a). Let x1,x2,x3 be a solution of (1.c). Then, by Lemma 3,
there are g, € OF such that

h(zg/ex) <N —H, k=1,23.
Now e1, €9, €3 satisfy
pie1 + Boga + B3z = 0,

where [ = agpzk/ek, k = 1,2,3. Note that h(8) < h(ax) + h(zk/er) < N.
By Theorem 2, there exists € € O such that

h(eer) < 0.6¢shR?(log* R)R(1 + (log* R)/log* P)(P/log* P)YTN
(k=1,2,3).

Here for the factor 0.6 see the end of the proof of Theorem 2. Thus for
k=1,2,3 we have

h(ea:k) < h(EEk) + h(l‘k/Ek)
< ¢shR*(log* R)R(1 + (log* R)/log* P)(P/log* P)TN,
which completes the proof of Corollary 1. =

Proof of Corollary 2. In view of Theorem 2 it suffices to deduce (9) from
(5) for r > 1 and from (6) for » = 0. We have

(59) hR < |D|"?*(log" |D|)4~".

This can be seen as follows. If K = Q or K = Q(1/—3), we have h = R =1,
and D = 1 or D = —3, respectively, hence (59) holds trivially. The remaining
cases of (59) follow from (2) in [23] and

(60) wi < 20dlogyd ifd >3,

where wg denotes the number of roots of unity in K. Since Euler’s function
¢d(wg) divides d, (60) is an immediate consequence of [27, Theorem 15].

We treat first the case r > 1. Using the notation of Theorem 2, we infer
from (59) and R > 0.2052 that

(61) R < e34D|"*(log" D))
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with ¢34 = max {c3d, 4.88}, and

t
(62) T < (ess| D|'*(0g" [D))*™")" [ T 108 N(ps),

i=1
where ¢35 = (2/log 2)cs4. Further it follows from (59) and (61) that

log* R
log* P
here we have used the facts that 1.5+ (d — 1)/e < 1.5d and logcgs + 0.5 +
(d—1)/e < 1.32dlog c3a.

Denote by tp the number of distinct prime factors of @ = N(py---p¢).
Then ¢ < dtg. It follows from explicit estimates in [27] or [26] that

(63)  hR*(log* R)R(l + ) < 4d?cs4(log c34)| D)% (log* | D)3,

(64) to < 1.5
0g

Further, from (64), t < dtg, and

t t t
[0 = (59) < (%)

it follows that

t
(%) [T 10 N(p.) < Qp 101008 /o5 25
i=1
Indeed, let
%\ —1
n= tlog(dlog QO) <d(log Qo) lo*g3 Q0>
t log, Qg
_ (dlog Qo -1 . dlog Qo logy Q;
t © t logs Qf
If log, Q) < 1.5¢, then
1 log, 16 1.5¢
Sz 19.16.
= €max<log3 16’ 10g(1.5€)> < 19.16

In the opposite case we have

dlogQo _ logQo _ 1o Q5 -
t ~ ty — 15 T 7

Hence

dlog @0 ™"\ (dlosQu) _ (loza @3\ ™" (lom QfY _ - log @5
t t 1.5 1.5 log, Q)

and n < 1.5. Thus we get (65).
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Now using the facts that » > 1, ¢ > 1, whence r+t+1 < (r+1)(t+0.5)
and (t + 0.5)3% < 2232 we see that

o < (212320 ess  with e = (1 + 1)1 H1359107H63 15 (1g0% (9))0
and

(66)  log(2'%%2dess| DI (log* | D|)?1) < 2.42d(log e35) log* | D|.

By t < dty, (64) and (66), we obtain

(67) (212 32d035]D\1/2 (log* | D)) )d- Lt < Q363d (log ess)(log™ | D])/log, Q5

Let ¢f = 3.63dlogcgs. Then the product of the left-hand sides of (67)
and (65) does not exceed

Qd(cé log™ |D|+19.161ogs Qf)/logs QF
0 .

If r = 1, then ¢35 = 9.76/log 2, while if » > 2, then logcss < 2.43dlogd
(here we used the fact that » + 1 < d). Thus ¢, < ¢ if r > 1.

Let

C% = 4d2034(10g 634)036.

We recall that cgy = 4.88 if r = 1, and ¢34 = c3d if » > 2. Hence we have
log 34 < 1.3d(log 2d) if r > 2. It is readily verified that cg < ¢ if r > 1.

Summing up, we obtain (9) for the case r > 1 from inequality (5) in
Theorem 2. The results for the cases d = 1 and d = 2 with » = 0 can be
deduced from inequality (6) in Theorem 2 and we omit the details here. =

Denote by [al the maximum absolute value of the conjugates of an al-
gebraic number «, and by den(«) the denominator of a. The fact will be
used in the next proofs that [a + g8l < a1+ 18], [a8] < @] for o, 8 € K,
h(a) < loglal < dh(a) for a € Og \ {0} and den(a) < exp{dh(a)} for
ac K.

Proof of Theorem 3. In fact we follow the proof of Theorem 1 of [17] with
some modifications, corresponding to the refined assumptions on Lp intro-
duced in Section 3. Moreover, to obtain as good upper bounds as possible,
we shall need more detailed deduction. Hence we give here a self-contained
proof for our theorem.

Multiplying (10) by the product of the denominators of the coefficients
of the linear factors of F', we can write (10) in the form

[[ix =
1=1

where the linear forms [;(X) already have integral coefficients in K with
heights A; = (md + 1)A and g is of height at most By = mndA + B. We
may assume that § € Og, since otherwise our equation is not solvable.
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Let x = (x1,...,2m) € O be a solution of (10) (with [(x) # 0 for all
leflyif k> 1). Put l;(x) = §; for i = 1,...,n. Let £}, be a maximal
subset of pairwise linearly independent linear forms from Lp, and consider
the vertex sets L1,...,Ly of the connected components of G(L}). Then
Li,..., Ly is a partition of L.

For j with 1 < j < kK, denote by Z; the set of ¢ with I; € £; and by
n; the cardinality of Z;. Then either n; > 3 or n; = 1. If n; > 3 and
liy,liy € L; are connected by an edge in G(L;), then there are I;, , € £; and
non-zero gy, Aiy; Ajy , in O with heights at most H := 4A; + log2 such
that )\illil + )\’izliz + )‘i1,2li1,2 = 0, whence

(68) )‘ilﬁil + )‘i25i2 =+ )‘il,zﬁil,z =0.
For each ¢ with 1 < ¢ < n, (3; is an S-integer which divides § in Og, hence

Ngs(Bi) < Ng(B) < exp{dB;} = N. By applying Corollary 1 to equation
(68) we infer that there is an 7; € O% such that

.3.) < E'
max h(n;B,) < B,

where EY denotes the bound from (8.a) or (8.b) for ¢ > 0 and the bound
from (8.c) for t = 0 with

h 1
N203R+ElogQ+H+ElogN,

where H and N are given above. It is easy to see that for ¢ > 0,
h
(69) N <312 <03R+ ElogQ-andA—FB).

Write Ey for Ef with N replaced by its upper bound in (69).

If now l;,,1;, are also connected by an edge in G(£;), then we deduce
in the same way that max,—23h(ef;,) < E1 with some € € OF, whence it
follows that

1213%(3h(77]51q) < 3E;

Using the connectedness of G(L;), we proceed as follows. Given any I; in
L;, we choose the shortest path P between [;, and [;. If P goes through [;,,
then by repeating the above procedure we obtain h(n;3;) < (2n; — 3)Eq. If
P does not go through [;,, then we use the path between [;, and [;, which is
[liy, li;] combined with P. In this way we get h(n;0;) < (2n; — 3)E1 again.
Hence we have

(70) h(?]j,@i) < max(2nj — 3, I)El for i € Ij.

If n; = 1, then, by Lemma 3, there is also an n; € O% with a bound for
h(n;B;) smaller than E;. Hence (70) holds for each j with 1 < j < k and for
each 7 € Z;.
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We now consider the case k = 1. Thus n > ny > 3. If Iy € Lp\ LT
is proportional to a linear form [; € L3, then l;; = §l; with some non-zero
0 € K of height at most 2A;. Then §; = §3;, and so (70) implies

(71) h(mpBi) < (2n—3)E1 +2A; fori=1,...,n.
Then it follows that
L. ((mpBr)- - (mPBn) 1
h < —h < (2n—3)F 2A — Bj.
(nl)_n < 55, < (2n —3)E; + 1+~ B

Together with (71) this gives .
h(Bi) < (4n — 6)E1 + TmdA + EB =Fy fori=1,...,n.

We may assume, without loss of generality, that I1,...,l, are linearly in-
dependent. Denote by A the m x m matrix whose ith row consists of the
coefficients, say a;1,..., Qm, of l;. Then

(72) A(x1,...yzm)” = (B, Bm)7,

where 7 signifies matrix transposition. Since det A € O, we infer that

h(det A) < log‘z a1y iy, | < log(max(ai;, - ama,,1) + log(m!)
< mdA; + log(m!) = As.

Let A; be the m x m matrix obtained by replacing the ith column of A
by (61, .., 0m)". Expanding det A; by its ith column, we have

det A; = $1C1 + B2C2% + -+ + B Cni,
where Cj; is the (j,4)-cofactor of A; and hence
h(Cji) < (m — 1)dA; +log((m — 1)!) = As
for 1 < 7 < m. We deduce that
h(det A;) < m(E2 + Az) + logm.
Hence we get, for each i,
(73) h(z;) = h(det A;/det A) < m(E2 + Az) + Ay + logm.

If E1 denotes the bound from (8.a), one can show by careful computation
that each of mdA, mdA;, n~'B, log(m!) is smaller than 10~'4E;. Thus it
follows from (73) that

h(z;) <4m(n—1)E; fori=1,...,m.

This gives (11) for £k = 1. Using the bounds E; from (8.b) and (8.c), one
can deduce in a similar manner (12) and (13) for k = 1.

Now we treat the case k > 1. By assumption (ii) of Theorem 3, the
graph H(Ly,..., L)) is connected. Assume, for convenience, that [L1, Lo]
is an edge in this graph. Then there is a non-zero l; 5 € £} which can be
represented in the form
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(74) Z Aili = Z Aili,

1€ 1€712

such that the total number of non-zero A\; € K in both sides of (74) is
minimal. Denote by n} and n), respectively, the number of non-zero \;
in these sums. Putting m’ = n{ + n), it is easy to see that among the
linear forms ; in (74) with non-zero coefficients exactly m’ — 1 are linearly
independent, whence m’ < m + 1. Note that m’ > 4, since £; and £y are
the vertex sets of distinct connected components of G(L£},). Comparing the
coefficients of z1,...,2,, in (74), we obtain a homogeneous linear system
of m’ — 1 linearly independent equations in m’ unknowns J);, among which
exactly one, say A;,, is a free variable. Moving \;, to the right-hand side of
each equation, we obtain a system of m’ — 1 linearly independent equations
in m’ — 1 unknowns, with the coefficient matrix denoted by A’. Setting
Xip, = —det A, this system of linear equations determines uniquely the
values \; € Ok \ {0} for which h();) < Ag. With this set of \;’s, the two
linear combinations in (74) are equal to A1 2lq 2 for some A\; 2 € K\ {0}.

For the solution x considered above we deduce from (74) and (70) that

h(ngAi 2l 2(x)) < n;(Ag + (2nq — 1)E1) + log nfl for g =1, 2.
But 11 2(x) # 0, hence it follows that
h(ni/n2) < (m+1)As +m((2n; — 1) + (2ne — 1))Ey 4+ 2logm = Ej.
In view of (70) this implies
h(mpBi) < Es+ (2ng —1)E;  for each i € Zs.
Using the fact that H(L, ..., L) is connected and repeating this procedure
with the shortest path connecting two vertices, we infer that
h(mpBi) < (m(4n — 2k — 2) 4+ 2n — 2k + 1) E4
+(k—=1)(m+1)A2+2(k —1)logm = E,4
for each i in Z1 U- - -UZy. It follows as above in the case k = 1 that h(m ;) <
Ey+2A1=FE5fori=1,...,n, and so
h(B;) < 2E5+%Bl =Fg fori=1,...,n.
We now infer in the same way as in the case k = 1 that forz=1,...,m,
(75) h(z;) < m(Eg + A3z) + Az + logm.
We deduce from (75) with careful computation that
max h(z;) < 8m(m+1/2)(n —1)E;.

1<i<m

Finally, this implies (11), (12) or (13) according as E; is from (8.a), (8.b)
or (8.c). m
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Proof of Corollary 3. We follow the proof of Corollary 1.1 in [16], but
we use here our Theorem 3 in place of Theorem 1 of [16] and we work with
logarithmic height instead of the usual height H(-).

There is an a € Z with 1 < a < n such that F(1,a) # 0. Consider
the binary form G(X,Y) = F(X,aX +Y) in which the coefficient of X"
is F'(1,a) # 0 and the heights of the coefficients of G do not exceed (n + 1)
x (A + nlogn) + log(n + 1) = A;. Denoting by dy the product of the de-
nominators of the coefficients of G, we can write

(76) doG(X,Y) = ap X" + a1 X" 'Y 4+ a, Y™
=ay(X —a1Y) - (X —a,Y)
where aq,...,a, are already integers in K with heights not exceeding

d(n+ 1)A; + A = Ajy. Further, at least three from among aj,...,«, are
pairwise distinct.
We infer that for each solution x1,z2 of (14),

(77) T =apr1, Y= —ari+ To

is a solution of the equation

where 3 = doap ' 3. Tt follows from (76) that apa; € O and
(79) (agoy)™ + a1ao(a0ai)"—1 N anag_l -0

for each i. Put maxo<i<pla;l = Ag. Then (79) implies that [apcs]l < nAg,
whence
h(apa;) < ndAg +logn = Az for each i.

Further,
h(ﬁ,) < d(’I’L + 1)A1 + (n - 1)A2 + B = Bj.

Applying now our Theorem 3 to (78), we obtain
(80) max{h(z),h(y)} < Ex,

where F denotes the bound in (11) or (12) for ¢ > 0 and (13) for ¢t = 0, with
the choice k = 1 and with A and B replaced by As and B, respectively. It
follows from (80) and (77) that

max{h(x1), h(x2)} < 2E; + Ag + log 2n.
But it is easy to see that
2ndAz + By < 2.45d*n°(2ndA + B),

hence z1, g satisfy (11), (12) for ¢ > 0 and (13) for ¢ = 0, with ¢ for k =1
replaced by 5d?n’c, for i = 1,4,2. u

Proof of Corollary 4. Below, c37,...,cq3 will denote effectively com-
putable positive constants which depend at most on F, K and Ny. Let
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X = (x1,...,2m) € OF with N((x1,...,2m)) < Ny. Suppose that F(x) # 0
and that [(x) # 0 for | € L% if k > 1. Denote by p1, ..., p; the distinct prime
ideal divisors of F(x), and by S the set consisting of Ss, and of the finite

places corresponding to pi, ..., ps. Keeping the above notation, by Lemma
3 there is an ¢ € O% such that
(81) h(F(ex1,...,exy)) < c37log Q.

Then (12) and (13) in Theorem 3 and, for ¢ > 0, the inequality log @ <
tlog* P imply that

t
(82) max. h(exz;) < 03gc§9P1_[110g* N(p;) := C1.

i=
For t = 0 this gives log N < degs, where N = maxi<i<m | Nk /g(zi)| Hence,
if log N > dcsg, then t > 0 must hold.

Inequality (82) implies that —ordy; ez;(log2) < dC; for each 7 and j.
Further, in view of N((z1,...,2my)) < No we infer that for each j there is
an 7 such that ordy, z; <log No/log 2. Thus — ordy, ¢ < (dC +1log Np)/log 2
:= () for all j. By Lemma 3 we can choose a g9 € O \ {0} such that.

(83) (0) = (p1---p) ™" and k(o) < caoCalog Q.

Then pe € Ok and, for each i, we have

(84) log [N g(z:)| < log [Nk g(oezi)| < dh(oewi) < ca1Calog Q.

If N > Njp for a sufficiently large and effectively computable N depend-

ing only on F', K and Ny then (16) follows from (84) and (82). For ¢t <

log P/log, P, the first inequality of (17) is an immediate consequence of (16).

It follows from Theorem 1 of [27] that ¢t < c42P/log P. Now the second in-

equality of (17) follows from (16), provided that Nj is large enough. =
Proof of Corollary 5. Let F(x1,...,xn,)=Fy with some z1,...,2, €0k

such that N((z1,...,2m)) < No (and with I(z1,...,2,) # 0 for | € L) if

k > 1). Following the proof of Corollary 4 and using its notation, we deduce

from (81) and (83) that

(85) h(F(0exi, ..., 06Tm)) < caaCi(t+ 1) log" P,

where P = P(Fp), t = w(Fp) and cy4q is an effectively computable positive

number which depends only on F', K and Ny. But ge € Ok, hence

(86) log N < dh(F(pex1,. .., 06Tm))

where N = [N /g(Fp)|. If now N > Ny with a sufficiently large and effec-
tively computable Ny, then (85) and (86) imply the required lower estimates
for P. m
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