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1. Introduction. Let c and τ be real numbers. A pair (α, ξ) of real
numbers is called (c, τ)-approximable if there exist infinitely many integers
q such that ‖qα − ξ‖ < c |q|−τ . If α and ξ are irrational real numbers such
that ξ is not of the form ξ = mα + n for integers m,n, then a theorem of
Minkowski (cf. e.g. [5, p. 48]) asserts that there exist infinitely many integers
q such that

‖qα− ξ‖ < 1

4|q| ,

where ‖·‖ denotes the distance to the nearest integer. Thus, almost all pairs
(α, ξ) are (1/4, 1)-approximable. Here and throughout the present paper,
“almost all” refers to the Lebesgue measure on the ambient space.
Dodson [7] proved that the set of pairs (α, ξ) in R2 which are (1, τ)-

approximable for some τ > 1 has Lebesgue measure zero and Hausdorff
dimension two. This is the so-called “doubly metric” statement, and we
may as well adopt two further points of view, which are “singly metric”.
The first one consists in considering that ξ is fixed and in looking at the
set of real numbers α for which (α, ξ) is (1, τ)-approximable. This is the
most classical point of view in inhomogeneous Diophantine approximation,
which has been considered by many authors. For instance, Levesley [13],
extending a classical result of Jarńık [10] and Besicovitch [3] dealing with
the homogeneous case ξ = 0, proved that, for any τ > 1 and any fixed ξ,
the Hausdorff dimension of the set of α such that the pair (α, ξ) is (1, τ)-
approximable is equal to 2/(1+τ). We stress that this value does not depend
on ξ.
The second point of view has been investigated by Bernik and Dod-

son [2, p. 105]. Their results have been improved upon by Schmeling and
Troubetzkoy [14] and, independently and at the same time (by means of a
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different approach), by Bugeaud [4] who showed that, for any τ > 1 and any
fixed irrational number α, the set

Tτ (α) := {ξ ∈ R : ‖nα− ξ‖ < 1/nτ for infinitely many n ∈ Z≥1}
has Hausdorff dimension 1/τ . We stress that this value does not depend
on α.
These questions can as well be addressed in a multidimensional setting,

by considering either inhomogeneous approximation of linear forms, or si-
multaneous rational inhomogeneous approximation, or even simultaneous
inhomogeneous approximation of linear forms. In the “doubly metric” case
and in the first “singly metric” case mentioned above, satisfactory answers
have been given by Dodson [7] and Levesley [13], respectively. However, no
multidimensional extension of the statements established in [14] and [4] has
been studied up to now, and it is the purpose of the present work to report
various results on this question.
Let k ≥ 1 be an integer and let α = (α1, . . . , αk) be a k-tuple of real

numbers. For real numbers v > 1 and w > 0, we set

Vv(α) :=
{
ξ ∈ R : ‖n1α1 + · · ·+ nkαk − ξ‖ <

c

(max1≤i≤k{|ni|})v

for some c > 0 and infinitely many (n1, . . . , nk) ∈ Zk
}

and

Ww(α) := {(ξ1, . . . , ξk) ∈ Rk : max
1≤i≤k

{‖nαi − ξi‖} < c/|n|w

for some c > 0 and infinitely many n ∈ Z}.
Observe that, for k = 1 and w = v > 1, neither set coincides with Tv(α). Ac-
tually, it is much more natural to work with Vv((α)) than with Tv(α), since,
for instance, the former set is clearly invariant under rational translations.
In addition, there is no reason for considering only the positive integers.
However, it is easily seen that both sets have the same Hausdorff dimension,
namely 1/v.
First, we recall a result of Cassels, which describes the “almost every-

where” situation. According to [5, p. 92], a system Lj(x) of n linear forms
in m variables is singular if, for every ε > 0, the set of inequalities

‖Lj(x)‖ < εX−m/n, |xi| ≤ X,
has a non-zero integer solution x for all X sufficiently large (in terms of ε).
Otherwise, the system is called regular (see Section 6 below). It follows from
the Borel–Cantelli lemma (see e.g. [5, p. 92]) that the set of singular sys-
tems has Lebesgue measure zero in themn-dimensional space. The following
result follows from [5, Theorem XIII, p. 93], by taking n = 1 or m = 1.
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Theorem A. Let k ≥ 1 be an integer. For almost all real k-tuples α =
(α1, . . . , αk), we have

Vk(α) = R and W1/k(α) = Rk.

In the present work, we are mainly interested in exceptional k-tuples,
that is, k-tuples α = (α1, . . . , αk) for which either Vk(α) is considerably
smaller than R, or W1/k(α) is considerably smaller than Rk. These are nec-
essarily singular tuples, and since singular k-tuples only exist when k ≥ 2
([5, p. 94]), k must be greater than or equal to 2. We prove that, for k = 2
or 3, there exist real k-tuples α = (α1, . . . , αk) with 1, α1, . . . , αk linearly
independent over the rationals and such that the Hausdorff dimension of
the set Vk(α) is equal to 1/k. In view of the results from [14] and [4], the
dimension cannot be smaller. Furthermore, we prove that, for any arbitrar-
ily small positive w, there exist real k-tuples α with 1, α1, . . . , αk linearly
independent over the rationals and such that the set Ww(α) is small, in the
sense that its Hausdorff dimension is at most equal to 1. This considerably
strengthens and generalizes a result of Khinchin, who proved [11] (see also
[5, Theorem XV]) that, for k = 2 and w > 0 arbitrary, there exist pairs
(α1, α2) such that the set Ww(α1, α2) is not R2.

The present paper is organized as follows. Section 2 is devoted to the
statement of the results, together with some additional remarks. Theorem 1,
concerning inhomogeneous approximation of linear forms, is proved in Sec-
tion 3. Section 4 is devoted to the proof of Theorem 2, on inhomogeneous
simultaneous rational approximation, and Section 5 to the proof of Theo-
rem 3, which shows that, to some extent, Theorem 2 is best possible. Finally,
Theorems 4 and 5, which deal with metric results, are proved in Section 6.

2. Statement of the results. We begin by stating an application of
the Hausdorff–Cantelli lemma, that provides us with upper bounds for the
Hausdorff dimension by an easy covering argument.

Proposition 1. Let k ≥ 2 be an integer and α = (α1, . . . , αk) be a real
k-tuple. Let v and w be positive real numbers. Then

dimVv(α) ≤ min{1, k/v} and dimWw(α) ≤ min{k, 1/w}.

Often, the upper bounds given by the Hausdorff–Cantelli lemma coincide
with the exact value of the Hausdorff dimension, thus Proposition 1 (whose
easy proof is postponed to the beginning of Section 6) gives the expected
values for the Hausdorff dimensions of Vv(α) and Ww(α).
We first turn our attention to inhomogeneous approximation of linear

forms.
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Theorem 1. Let k = 2 or 3. Let v > 1 be real. There exist real k-tuples
α = (α1, . . . , αk) such that 1, α1, . . . , αk are linearly independent over the
rationals and

dimVv(α) = 1/v.
It follows from the result on the sets Tτ (α) recalled in the introduction

that, for any real number v > 1 and any irrational number α1, the Hausdorff
dimension of Vv(α1) is 1/v. Consequently, the Hausdorff dimension of any
set Vv(α1, . . . , αk) as in Theorem 1 is at least 1/v.
The assumption that 1, α1, . . . , αk are linearly independent over the ra-

tionals (which occurs in the statements of Theorems 1 to 3) ensures that the
result is non-trivial, since e.g. dimVv(α, 2α, . . . , kα) = 1/v for any v > 1,
any k ≥ 2, and any irrational real number α, by the results from [14] and [4].
Theorem 1 shows that there exist real k-tuples α for which the upper

bound given by Proposition 1 for the Hausdorff dimension of Vv(α) is con-
siderably larger than the exact value.
We are convinced that Theorem 1 holds for all integers k ≥ 2. However,

we only succeeded in establishing it for k = 2 and k = 3. Our method of
proof is quite technical and it presumably works as well for k ≥ 4.
Remark. An interesting question remains. For any real numbers v and

d with v > 1 and 1/v < d < k/v, does there exist a k-tuple α for which
dimVv(α) = d?
We now consider inhomogeneous simultaneous rational approximation,

and we state a slightly sharper result than announced in the introduction.
For any function φ : Z≥1 → R>0 and any k-tuple of real numbers α =
(α1, . . . , αk), set

Wφ(α) := {(ξ1, . . . , ξk) ∈ Rk : max
1≤i≤k

{‖nαi − ξi‖} < φ(|n|)

for infinitely many n ∈ Z}.
With this notation, for any positive real number w, the union of the sets
Wx7→cx−w (α) taken over the positive real numbers c is simply Ww(α).
Theorem 2. Let k ≥ 2 be an integer. Let φ : Z≥1 → R>0 be a function

tending to 0 at infinity. There exist real k-tuples α = (α1, . . . , αk) such that
1, α1, . . . , αk are linearly independent over the rationals and

dimWφ(α) ≤ 1.
Consequently , there exist k-tuples α for which

dimWw(α) ≤ 1 for every w > 0.

We point out that, in Theorem 2, the function φ can tend to 0 arbitrarily
slowly (in particular, w can be taken arbitrarily close to 0), and that it is
not assumed to be non-increasing.



Inhomogeneous Diophantine approximation 101

The existence of pairs (α1, α2) of real numbers such that Wφ(α1, α2) is
not R2 is due to Khinchin [11]. It follows from the proof of Theorem XV from
[5], combined with metric results of Schmidt on badly approximable pairs
[15], that there exist pairs (α1, α2) for which the complement of Wφ(α1, α2)
has Hausdorff dimension two (in R2). As far as we are aware, the existence
of pairs (α1, α2) such that Wφ(α1, α2) has Lebesgue measure zero was not
established up to now. Theorem 2 is even stronger.

We emphasize that the constructions given in the proofs of Theorems 1
and 2 are effective, thus, it is possible to give explicit examples of k-tuples
satisfying the conclusions of these theorems. Obviously, such k-tuples are
singular. They illustrate how the behaviour of singular systems can differ
from the behaviour of regular systems. In the light of Theorem A, Theo-
rems 1 and 2 may appear somehow surprising.

It turns out that the upper bound for the dimension obtained in Theo-
rem 2 is sharp.

Theorem 3. Let k ≥ 2 be an integer. For any real number w > 0 and
any real k-tuple α = (α1, . . . , αk) with 1, α1, . . . , αk linearly independent
over the rationals, we have

dimWw(α) = 1/w if w ≥ 1,
dimWw(α) ≥ 1 if 0 < w ≤ 1.

Actually, we prove a slightly sharper result than Theorem 3. The proof
of Theorem 3 follows from the application of the (easy half of) Frostman’s
lemma to a suitable Cantor-type set, constructed inductively and contained
in Ww(α). This can be viewed as a (difficult) extension of the proof of the
main result from [4].

Unlike the case of linear forms, the Hausdorff dimension of Ww(α) does
not depend on the k-tuple α, provided that w is large enough, namely greater
than or equal to 1.

We complement Theorems 1 to 3 by two statements valid for almost all
k-tuples.

Theorem 4. Let k ≥ 2 be an integer and v ≥ k be a real number. For
almost every real k-tuple α = (α1, . . . , αk), we have

dimVv(α) = k/v.
In view of Theorem 3, Theorem 5 below is interesting only in the range

1/k < w < 1.

Theorem 5. Let k ≥ 2 be an integer and w ≥ 1/k be a real number.
For almost every real k-tuple α = (α1, . . . , αk), we have

dimWw(α) = 1/w.
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Theorems 4 and 5 are particular cases of a more general statement on
systems of linear forms (see Theorem 6 in Section 6). They show that the
upper bounds given by Proposition 1 are “almost always” the exact values
of the dimension.
Theorems 1 and 2 state that, for k ≥ 2, v > 1 and w < 1, the Hausdorff

dimensions of the sets Vv(α) and Ww(α) depend on α. This is not the case
for k = 1, as proved in [14] and in [4]. Nor is it the case when we consider
the point of view taken by Levesley [13], who showed that, for any real
number ξ, any real k-tuple (ξ1, . . . , ξk), and for any real numbers v > k and
w > 1/k, the Hausdorff dimensions of the sets
{
(α1, . . . , αk) ∈ Rk : ‖n1α1 + · · ·+ nkαk − ξ‖ <

1

(max1≤i≤k{|ni|})v

for infinitely many (n1, . . . , nk) ∈ Zk
}

and

{(α1, . . . , αk) ∈ Rk : max
1≤i≤k

{‖nαi − ξi‖} < 1/|n|w

for infinitely many n ∈ Z}
are equal to k − 1 + (k + 1)/(v + 1) and (k + 1)/(w + 1), respectively,
independently of the real number ξ and of the real k-tuple (ξ1, . . . , ξk).
To complement this result, we mention that, in the “doubly metric” case,
Dodson [7] established that, for real numbers v > k and w > 1/k, the
Hausdorff dimensions of the sets{
(α1, . . . , αk, ξ) ∈ Rk+1 : ‖n1α1 + · · ·+ nkαk − ξ‖ <

1

(max1≤i≤k{|ni|})v

for infinitely many (n1, . . . , nk) ∈ Zk
}

and

{(α1, . . . , αk, ξ1, . . . , ξk) ∈ Rk : max
1≤i≤k

{‖nαi − ξi‖} < 1/|n|w

for infinitely many n ∈ Z}
are equal to k + (k + 1)/(v + 1) and k + (k + 1)/(w + 1).

Remark. In Theorems 1 and 2, we have given explicit constructions of
real k-tuples with non-typical behaviour. A natural extension of our present
work consists in studying the same questions, but for dependent k-tuples,
that is, for instance, for k-tuples α = (α, α2, . . . , αk), where α is a transcen-
dental real number. It is known that, for almost all real numbers α, the sets
Vv(α) and Ww(α) satisfy dimVv(α) = k/v and dimWw(α) = 1/w, for real
numbers v ≥ k and w ≥ 1/k. Maybe, this statement even holds for all α with
α transcendental. We plan to investigate this problem in a further work.
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Notation. Except in Section 5 (that is, for the proof of Theorem 3),
we use the following notation. Let k ≥ 2 be an integer. We endow Rk with
the supremum norm | · |, and, for any x in Rk, we set

‖x‖ = inf{|x− n| : n ∈ Zk}.
Clearly, ‖ · ‖ induces a distance on the k-dimensional torus Tk, which we
also denote by ‖ · ‖. If Y is a subset of Rk and x is a point in Rk, we denote
by d(x, Y ) the distance from x to Y , defined by

d(x, Y ) = inf{‖x− y‖ : y ∈ Y }.
For the proof of Theorem 3, it appears to be more natural to endow Rk

with the Euclidean norm, as specified at the beginning of Section 5.

3. Proof of Theorem 1. Let v > 1 be real. We treat only the case
k = 3, since the case k = 2 is much easier. Presumably, the argument works
as well for any integer k ≥ 4, but this is technically much more complicated.
We first prove the existence of triples α = (α1, α2, α3) for which the set

V ′v(α) :=
{
ξ ∈ R : ‖n1α1 + n2α2 + n3α3 − ξ‖ <

1

(max1≤i≤3{ni})v

for infinitely many (n1, n2, n3) ∈ Z3≥1

}

has Hausdorff dimension 1/v. At the end of this section, we then briefly
explain which adaptations should be made to get Theorem 1.
Throughout the proof of Theorem 1, we work on the circle [0, 1[, and

we denote by {·} the fractional part. In order to simplify the exposition we
need to fix some notation.

Notation. Let a and b be real numbers. If {b} > {a}, then [a, b] denotes
the interval [{a}, {b}], otherwise [a, b] denotes the union [{a}, 1[∪ [0, {b}].
The proof of Theorem 1 essentially rests on the following elementary

lemma.

Lemma 1. Let a1, . . . , an be positive integers. Set pn/qn = [0; a1, . . . , an].
Let τ and v ≥ 1 be real numbers. Let α = [0; a1, . . . , an, an+1, . . .] be real and
set pn+1/qn+1 = [0; a1, . . . , an+1]. Then

q
1/(2v)
n+1⋃

j=0

[jα+ τ − ε, jα+ τ + ε] ⊂
qn⋃

j=0

[jα+ τ − 2ε, jα+ τ + 2ε]

and

q
1/(2v)
n+1⋃

j=0

[−jα+ τ − ε,−jα+ τ + ε] ⊂
qn⋃

j=0

[−jα+ τ − 2ε,−jα+ τ + 2ε]

for any real number ε ≥ q−1/2n+1 .
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Proof. The basic idea of the proof of Lemma 1 is the following. Let qn
denote the denominator of the nth convergent of a real number α. Then
the points {α}, {2α}, . . . , {qnα} are well distributed in the unit interval I:
two consecutive points are at least 1/(3qn) and at most 3/qn distant. If the
(n + 1)th partial quotient an+1 of α is large, then for any integer q with

e.g. qn ≤ q ≤ q
1/4
n+1 the point {qα} is very close to some point {jα} with

1 ≤ j ≤ qn. This means that, for ℓ not too small, an interval centred at {qα}
of length ℓ is contained in the interval centred at {jα} of length 2ℓ. We now
turn to the proof.

Recall that, by the theory of continued fractions, we have ‖qnα‖ <
1/qn+1. Let m be an integer with qn ≤ m ≤ q

1/(2v)
n+1 . Euclidean division

of m by qn yields non-negative integers b and r with b ≤ q1/(2v)n+1 , 0 ≤ r < qn,
and m = bqn + r. Consequently, we get

‖{mα} − {rα}‖ ≤ q1/(2v)n+1 ‖qnα‖ ≤ q
−1+1/(2v)
n+1 ≤ q−1/2n+1 ≤ ε,

by assumption. The lemma follows.

We construct inductively the sequences of partial quotients of the real
numbers α1, α2 and α3, in such a way that we know a countable covering of
the set V ′v(α1, α2, α3). The basic idea consists in building numbers α1, α2,
and α3 so that their sequences of denominators of convergents increase very
rapidly and are far from one another.

For j = 1, 2, 3, we denote by αj = [0; a1,j , a2,j , . . .] the continued fraction
expansion of αj , and by (pn,j/qn,j)n≥1 the sequence of its convergents. In
the course of the proof, we adopt the following convention. For any set of
triples of integers

X̃ = {(j1, j2, j3) : ji ∈ Ji, i = 1, 2, 3},

we define

X =
⋃

(j1,j2,j3)∈X

[j · α− max
1≤i≤3

{ji}−v, j · α+ max
1≤i≤3

{ji}−v].

For brevity, we write j · α = j1α1 + j2α2 + j3α3 for j = (j1, j2, j3) and
α = (α1, α2, α3).

Assume that a1,1, . . . , an,1, a1,2, . . . , an,2 and a1,3, . . . , an,3 have already
been constructed and that we have

(In) qn,1 > q
2v(n−1)2

n−1,3 , qn,2 > q2vn
2

n,1 , qn,3 > q2vn
2

n,2 .

It will be implicit that we take an+1,1, an+1,2, and an+1,3 large enough in
order that (In+1) holds.
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By Lemma 1 applied with j2 and j3 fixed, the union of intervals

U (1)n :=
⋃

0≤j1≤j
1/n
3 , 0≤j2≤j

1/n
3

qnn,1≤j3≤q
1/(2v)
n+1,1

[j · α− 4j−v3 , j · α+ 4j−v3 ]

contains

V (1)n :=
⋃

0≤j1≤q
1/(2v)
n+1,1 , 0≤j2≤j

1/n
3

qnn,1≤j3≤q
1/(2v)
n+1,1

[j · α− 2j−v3 , j · α+ 2j−v3 ]

and thus as well the union

X(1)n =
⋃
[j · α− max

1≤i≤3
{ji}−v, j · α+ max

1≤i≤3
{ji}−v],

taken over the set of triples

(X̃
(1)
n ) 0 ≤ j1 ≤ q1/(2v)n+1,1 , 0 ≤ j2 ≤ j

1/n
3 , qnn,1 ≤ j3 ≤ q1/(2v)n+1,1 .

Furthermore, applying Lemma 1 to V
(1)
n with j1 and j3 fixed, we see that

V
(1)
n contains ⋃

0≤j1≤q
1/(2v)
n+1,1 , 0≤j2≤q

1/(2v)
n,2

qnn,1≤j3≤q
1/(2v)
n,2

[j · α− j−v3 , j · α+ j−v3 ]

and thus as well the union

Y (1)n =
⋃
[j · α− max

1≤i≤3
{ji}−v, j · α+ max

1≤i≤3
{ji}−v]

taken over the set of triples

(Ỹ
(1)
n ) 0 ≤ j1 ≤ q1/(2v)n+1,1 , 0 ≤ j2 ≤ q

1/(2v)
n,2 , qnn,1 ≤ j3 ≤ q1/(2v)n,2 .

In the same way, reversing the rôles played by j2 and j3, we find that

W (1)n :=
⋃

0≤j1≤j
1/n
2 , qnn,1≤j2≤q

1/(2v)
n+1,1

0≤j3≤j
1/n
2

[j · α− 4j−v2 , j · α+ 4j−v2 ]

contains the union of intervals

Z(1)n =
⋃
[j · α− max

1≤i≤3
{ji}−v, j · α+ max

1≤i≤3
{ji}−v]

taken over the set of triples

(Z̃
(1)
n ) 0 ≤ j1 ≤ q1/(2v)n+1,1 , qnn,1 ≤ j2 ≤ q1/(2v)n+1,1 , 0 ≤ j3 ≤ j

1/n
2 ,

and the union

T (1)n =
⋃
[j · α− max

1≤i≤3
{ji}−v, j · α+ max

1≤i≤3
{ji}−v]



106 Y. Bugeaud and N. Chevallier

taken over the set of triples

(T̃
(1)
n ) 0 ≤ j1 ≤ q1/(2v)n+1,1 , qnn,1 ≤ j2 ≤ q1/(2v)n,3 , 0 ≤ j3 ≤ q1/(2v)n,3 .

Proceeding as above and letting 2 and 3 play the rôle of the index 1,

we further define finite unions of intervals U
(2)
n , W

(2)
n , U

(3)
n and W

(3)
n taken,

respectively, over the triples defined by

0 ≤ j1 ≤ j1/n3 , 0 ≤ j2 ≤ j1/n3 , qnn,2 ≤ j3 ≤ q1/(2v)n+1,2 ,

qnn,2 ≤ j1 ≤ q1/(2v)n+1,2 , 0 ≤ j2 ≤ j1/n1 , 0 ≤ j3 ≤ j1/n1 ,

qnn,3 ≤ j1 ≤ q1/(2v)n+1,3 , 0 ≤ j2 ≤ j1/n1 , 0 ≤ j3 ≤ j1/n1 ,

0 ≤ j1 ≤ j1/n2 , qnn,3 ≤ j2 ≤ q1/(2v)n+1,3 , 0 ≤ j3 ≤ j1/n2 ,

and of length, respectively, 8j−v3 , 8j
−v
1 , 8j

−v
1 , and 8j

−v
2 .

By an application of Lemma 1 as above, they contain, respectively, the
unions of intervals corresponding to the sets of triples:

(X̃(2)n )

(Z̃(2)n

(X̃(3)n )

(Z̃(3)n )

0 ≤ j1 ≤ j1/n3 , 0 ≤ j2 ≤ q1/(2v)n+1,2 , qnn,2 ≤ j3 ≤ q1/(2v)n+1,2 ,

qnn,2 ≤ j1 ≤ q1/(2v)n+1,2 , 0 ≤ j2 ≤ q1/(2v)n+1,2 , 0 ≤ j3 ≤ j1/n1 ,

qnn,3 ≤ j1 ≤ q1/(2v)n+1,3 , 0 ≤ j2 ≤ j1/n1 , 0 ≤ j3 ≤ q1/(2v)n+1,3 ,

0 ≤ j1 ≤ j1/n2 , qnn,3 ≤ j2 ≤ q1/(2v)n+1,3 , 0 ≤ j3 ≤ q1/(2v)n+1,3 .

They also contain, respectively, the intervals corresponding to the sets
of triples:

(Ỹ (2)n )

(T̃ (2)n )

(Ỹ (3)n )

(T̃ (3)n )

0 ≤ j1 ≤ q1/(2v)n+1,1 , 0 ≤ j2 ≤ q1/(2v)n+1,2 , qnn,2 ≤ j3 ≤ q1/(2v)n+1,1 ,

qnn,2 ≤ j1 ≤ q1/(2v)n,3 , 0 ≤ j2 ≤ q1/(2v)n+1,2 , 0 ≤ j3 ≤ q1/(2v)n,3 ,

qnn,3 ≤ j1 ≤ q1/(2v)n+1,2 , 0 ≤ j2 ≤ q1/(2v)n+1,2 , 0 ≤ j3 ≤ q1/(2v)n+1,3 ,

0 ≤ j1 ≤ q1/(2v)n+1,1 , qnn,3 ≤ j2 ≤ q1/(2v)n+1,1 , 0 ≤ j3 ≤ q1/(2v)n+1,3 .

Lemma 2. The union
⋃

qnn,2≤j1≤q
1/(2v)
n+1,2

j1≥j2≥0, j1≥j3≥0

[j · α− j−v1 , j · α+ j−v1 ]

is included in Z
(2)
n ∪ Y (3)n ∪ Y (2)n ∪ T (2)n . The union⋃

q
1/(2v)
n+1,2≤j1≤q

n+1
n+1,2

j1≥j2≥0, j1≥j3≥0

[j · α− j−v1 , j · α+ j−v1 ]
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is included in X
(3)
n ∪ T (1)n+1. The union

⋃

qnn,1≤j2≤q
1/(2v)
n+1,1

j2≥j1≥0, j2≥j3≥0

[j · α− j−v2 , j · α+ j−v2 ]

is included in Z
(1)
n ∪ T (3)n ∪ Y (2)n ∪ T (1)n . The union⋃

q
1/(2v)
n+1,1≤j2≤q

n+1
n+1,1

j2≥j1≥0, j2≥j3≥0

[j · α− j−v2 , j · α+ j−v2 ]

is included in Y
(3)
n ∪ Z(3)n . The union⋃

qnn,1≤j3≤q
1/(2v)
n+1,1

j3≥j2≥0, j3≥j1≥0

[j · α− j−v3 , j · α+ j−v3 ]

is included in X
(1)
n ∪ Y (2)n ∪ T (1)n ∪ Y (1)n . The union⋃

q
1/(2v)
n+1,1≤j3≤q

n+1
n+1,1

j3≥j2≥0, j3≥j1≥0

[j · α− j−v3 , j · α+ j−v3 ]

is included in X
(2)
n ∪ Y (3)n .

Proof. We content ourselves with checking the first assertion, since the
proofs of the other five are similar. Observe that the set of triples (j1, j2, j3)

such that qnn,2 ≤ j1 ≤ q1/(2v)n+1,2 , j1 ≥ j2 ≥ 0, and j1 ≥ j3 ≥ 0 is contained in

Z(2)n ∪ {(j1, j2, j3) : qnn,2 ≤ j1 ≤ q1/(2v)n+1,2 , 0 ≤ j2 ≤ j1, j
1/n
1 ≤ j3 ≤ j1}.

The latter set is contained in

Y (3)n ∪ {(j1, j2, j3) : qnn,2 ≤ j1 ≤ qnn,3, 0 ≤ j2 ≤ j1, j1/n1 ≤ j3 ≤ j1},
hence, in the union

Y (3)n ∪ Y (2)n ∪ {(j1, j2, j3) : qnn,2 ≤ j1 ≤ qnn,3, 0 ≤ j2 ≤ j1, j1/n1 ≤ j3 ≤ qnn,2}.

Since j
1/n
1 > qnn,2 if j1 > qn

2

n,2, the last set of triples reduces to the set

{(j1, j2, j3) : qnn,2 ≤ j1 ≤ qn
2

n,2, 0 ≤ j2 ≤ j1, j1/n1 ≤ j3 ≤ qnn,2}.

Since qn,3 > q2vn
2

n,2 , this is included in T
(2)
n . This completes the proof of the

first assertion of the lemma.

Lemma 3. Let E be a Borel subset of Rk and {Uj}j≥1 be a countable
family of subsets of Rk such that

E ⊂ {ξ ∈ R : ξ ∈ Uj for infinitely many j ≥ 1}.
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If s is a real number such that
∑

j≥1

(diam(Uj))
s <∞,

then Hs(E) = 0 and dimE ≤ s.
Proof. This is the Hausdorff–Cantelli lemma (see e.g. [2]).

Lemma 4. For j = 1, 2, 3, the sets lim supU
(j)
n and lim supW

(j)
n have

Hausdorff dimension at most 1/v.

Proof. We only prove that dim lim supU
(1)
n ≤ 1/v. Let s > 1/v be a real

number. For any positive integer n0, the s-measure of the set lim supU
(1)
n is

at most ∑

n≥n0

∑

j≥qnn,1

(j2/n + 2)j−vs.

This double sum has the same behaviour as∑

n≥n0

q2n,1q
n(1−vs)
n,1 ,

which is convergent since s > 1/v. It then follows from Lemma 3 that

dim lim supU
(1)
n ≤ 1/v.

Now, we complete the proof of the theorem. Let ξ be in V ′v(α1, α2, α3)
with α1, α2 and α3 as above. Possibly after permuting α1, α2, and α3, ξ
belongs to infinitely many intervals

[j · α− j−v1 , j · α+ j−v1 ]
with j1 ≥ j2 and j1 ≥ j3. In view of Lemma 2, this means that

ξ ∈
⋃

0≤j≤3

lim supU (j)n ∪
⋃

0≤j≤3

lim supW (j)n .

The desired result follows from Lemma 4.
To go from the case of the sets V ′v to that of the sets Vv, we first have

to slightly increase the size of the intervals; basically, we replace j−vi by
j−vi log ji. It is easily seen that Lemma 4 remains true with these slightly
larger intervals. Furthermore, to go from the non-negative integers to all the
rational integers, we simply observe that, as a consequence of the second
part of Lemma 1, the above discussion applies not only to (α1, α2, α3), but
to any of the eight triples (±α1,±α2,±α3).
To conclude, it only remains to prove that 1, α1, α2 and α3 are linearly

independent over the rationals. Assume that there exist integers A1, . . . , A4,
not all zero, such that

A1α1 +A2α2 +A3α3 +A4 = 0.
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For any positive integer n, we have

A1qn,2qn,1α1 +A2qn,1qn,2α2 +A3qn,1qn,2α3 + qn,1qn,2A4 = 0.

Classical results from the theory of continued fractions (see e.g. [16]) imply
that

‖A1qn,2qn,1α1‖ ≪ qn,2q
−1
n+1,1

and

‖A2qn,1qn,2α2‖ ≪ qn,1q
−1
n+2,1;

here and below, the numerical constants implied in ≪ depend only on
A1, . . . , A4. If A3 6= 0, we get

‖A3qn,1qn,2α3‖ ≪ qn,2q
−1
n+1,1 ≪ (|A3|qn,1qn,2)−2

for n large enough. Then Legendre’s theorem (see e.g. [16]) implies that
|A3|qn,1qn,2 is the denominator of a convergent to α3. This is a contradiction,
since

qn−1,3 < |A3|qn,1qn,2 < qn,3

for n large enough. Consequently, A3 = 0 and we argue in a similar way
to show that A1 = A2 = A4 = 0, contrary to assumption. Thus, we have
established that 1, α1, α2 and α3 are linearly independent over the rationals.
This completes the proof of the theorem.

4. Proof of Theorem 2. For simplicity we only do the proof for k = 3.
This is much more illustrative than the case k = 2, and slightly less technical
than the general case. At the end of this section, we indicate which (slight)
changes are necessary in order to treat the case k ≥ 4.
Replacing φ by the function φ̃ defined by φ̃(n) = supj≥n φ(j) if necessary,

we may assume without any loss of generality that φ is non-increasing.

We aim to construct α such that the Hausdorff dimension of

W ′φ(α) = {(ξ1, ξ2, ξ3) ∈ R3 : max
1≤i≤3

{‖nαi − ξi‖} < φ(|n|)

for infinitely many n ∈ Z≥1}
is less than or equal to 1. Indeed, since Wφ(α) = W ′φ(α) ∪ (−W ′φ(α)), this
implies the first statement of the theorem.

Let (f(n))n≥0 be an increasing sequence of integers such that f(0) = 0
and set

α =
( ∞∑

n=0

2−f(3n),

∞∑

n=0

3−f(3n+1),

∞∑

n=0

5−f(3n+2)
)
.

We construct inductively the sequence (f(n))n≥0 so that the corresponding
triple α satisfies dimW ′φ(α) ≤ 1.
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In the following, θ denotes an element of R3 and Θ its projection on the
torus T3. Consider the sequence (θn)n≥0 of triples defined by

θ0 = (2
−f(0), 0, 0), θ1 = (2

−f(0), 3−f(1), 0), θ2 = (2
−f(0), 3−f(1), 5−f(2)),

θ3n =
( n∑

m=0

2−f(3m),
n−1∑

m=0

3−f(3m+1),
n−1∑

m=0

5−f(3m+2)
)
,

θ3n+1 =
( n∑

m=0

2−f(3m),

n∑

m=0

3−f(3m+1),

n−1∑

m=0

5−f(3m+2)
)
,

θ3n+2 =
( n∑

m=0

2−f(3m),

n∑

m=0

3−f(3m+1),

n∑

m=0

5−f(3m+2)
)
.

The sequence (θn)n≥0 converges to α.

For any integer p ≥ 2, the projection Θp of θp is an element of T3 of
finite order Qp = 2

f(p0)3f(p1)5f(p2), where pi denotes the largest integer ≤ p
of the form pi = 3m+ i.

Observe that all the exponents f(m) occurring in ηn := α−θn are strictly
larger than f(n). Thus, we can choose the sequence (f(n))n≥0 such that |ηn|
decreases arbitrarily rapidly to 0. Further, we check that

Zθp + Z3 = Z(2−f(p0), 0, 0) + Z(0, 3−f(p1), 0) + Z(0, 0, 5−f(p2)) =: Γp

for any integer p ≥ 2. Therefore, the distance of any point x of R3 to Γp goes
to zero as p tends to infinity. For every integer q in {0, . . . , Qp}, we have

d(qθp, qα) ≤ q|ηp| ≤ Qp|ηp|.
Thus, the distance of any point x in R3 to Zα+Z3 is at mostQp|ηp|+d(x, Γp).
Consequently, Zα + Z3 is everywhere dense in R3. This shows that 1 and
the three coordinates of α are linearly independent over the rationals.

The proof of Theorem 2 rests on the next three lemmas.

Lemma 5. For any integer p ≥ 2, the projection Gp of Γp in T3 is con-

tained in a set Dp which is a union of segments of total length

Lp =





3f(p−2)5f(p−1) if p = 3n,

5f(p−2)2f(p−1) if p = 3n+ 1,

2f(p−2)3f(p−1) if p = 3n+ 2.

Furthermore, all these segments are of length 1.

Proof. We only treat the case p = 3n, since the other two are similar.
We observe that Gp is included in the projection of the segments [0, 1] ×
{(a 3−f(p−2), b 5−f(p−1))} for a = 1, . . . , 3f(p−2) and b = 1, . . . , 5f(p−1).
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Lemma 6. The sequence (f(n))n≥0 may be chosen in such a way that
there exists a sequence (Pn)n≥0 of integers satisfying

Qn < Pn < Qn+1,

φ(Qn) ≤ e−Ln and φ(Pn) ≤ e−Ln+1 ,(1)

Qn 2
−f(n+1) ≤ 1

2
φ(Pn−1) and Pn 2

−f(n+1) ≤ 1
2
φ(Qn),(2)

for any integer n ≥ 1.
Proof. We proceed by induction. Assume that f(0), . . . , f(n) and P0, . . .

. . . , Pn−1 are constructed. Since Ln+1 depends only on f(0), . . . , f(n), we
can choose an integer Pn > Qn such that φ(Pn) ≤ e−Ln+1 . Taking f(n+ 1)
large, we get (2), φ(Qn+1) ≤ e−Ln+1 , and Qn+1 > Pn.

Lemma 7. Let (εn)n≥1 be a sequence of positive real numbers which tends
to 0. If (En)n≥1 is a sequence of sets such that

∑
n≥1Hsεn(En) <∞, then

Hs(lim sup
n→∞

En) = 0,

and the Hausdorff dimension of lim supn→∞En is at most s.

Proof. This is an easy consequence of the Hausdorff–Cantelli lemma (see
e.g. [2, p. 68]). Since

Hsδ(lim sup
n→∞

En) ≤
∑

n : εn≤δ

Hsεn(En)

for any δ > 0, we get Hs(lim supn→∞En) = 0.

For a subset E of T3 and a positive real number r, we put

V (E, r) = {x ∈ T3 : d(x,E) ≤ r}.
Further, for a positive integer q, we set Eq = {0, Θ, 2Θ, . . . , qΘ}.
Since Qn < Pn < Qn+1 and φ is non-increasing, W ′φ(α) is included in

lim sup
n→∞

V (EPn , φ(Qn)) ∪ lim sup
n→∞

V (EQn+1 , φ(Pn)).

To establish that the Hausdorff dimension of W ′φ(α) is at most 1, it is suffi-
cient, by Lemma 7, to prove that, for any s > 1, there exist two sequences
(εn)n≥1 and (ε

′
n)n≥1 which decrease to 0 and are such that the series

∑

n

Hsεn(V (EPn , φ(Qn))) and
∑

n

Hsε′n(V (EQn+1 , φ(Pn)))

converge.

Let q ≤ Pn be a positive integer. Euclidean division of q by Qn yields
integers l and a such that q = lQn + a and 0 ≤ a < Qn. Therefore,

‖qΘ − aΘn‖ = ‖(lQn + a)(Θn + ηn)− aΘn‖ ≤ |(lQn + a)ηn| ≤ Pn|ηn|.
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Furthermore, by (2), we get Pn |ηn| ≤ φ(Qn), thus
EPn ⊂ V ({0, Θn, . . . , (Qn − 1)Θn}, φ(Qn)).

It follows that

V (EPn , φ(Qn)) ⊂ V ({0, Θn, . . . , (Qn − 1)Θn}, 2φ(Qn)),
thus, by Lemma 5, we get

V (EPn , φ(Qn)) ⊂ V (Dn, 2φ(Qn)).
Let s > 1 be a real number and n be a positive integer. Throughout the
remaining part of the proof, ≪ means that there is an implied absolute
positive constant. Setting εn = φ(Qn), we have

Hsεn(V (Dn, 2φ(Qn)))≪
length of Dn

εn
· εsn ≪ Lnφ(Qn)

s−1.

It then follows from (1) that

Hsεn(V (EPn , φ(Qn)))≪ Lne
−(s−1)Ln .

This last inequality shows that the series
∑
nHsεn(V (EPn , Q−vn )) converges.

For the other series, set ε′n = φ(Pn). For q ≤ Qn+1, we have
‖qΘ − qΘn+1‖ ≤ Qn+1|ηn+1|,

and then, by (2),
‖qΘ − qΘn+1‖ ≤ φ(Pn).

Therefore, we get

V (EQn+1 , φ(Pn)) ⊂ V ({0, Θn+1, . . . , Qn+1Θn+1}, 2φ(Pn))
⊂ V (Dn+1, 2φ(Pn))

and

Hsε′n(V (EQn+1 , φ(Pn)))≪
length of Dn+1

ε′n
· ε′sn ≪ Ln+1φ(Pn)

s−1.

Finally, by (1), we obtain

Hsε′n(V (EQn+1 , P
−v
n ))≪ Ln+1e

−(s−1)Ln+1 ,

which shows that the series
∑
nHsε′n(V (EPn , φ(Qn))) converges.

Consequently, the Hausdorff dimension of W ′φ(α) is at most 1.
Taking for φ a function tending to 0 more slowly than any function

x 7→ x−w with w > 0, we get the second statement of the theorem.
To conclude, we briefly explain how to deal with the general case. For

any integer k ≥ 2, we choose the first k prime numbers p1 = 2, p2 = 3, . . . , pk
and we set

α =
( ∞∑

n=0

p
f(kn)
1 ,

∞∑

n=0

p
f(kn+1)
2 , . . . ,

∞∑

n=0

p
f(kn+k−1)
k

)
.
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We define a sequence (θn)n≥0 in the same way as above, that is, such that
for any i and j in {0, . . . , k − 1}, the jth coordinate of θkn+i is

n∑

m=0

p
f(kn+j−1)
j if j ≤ i+ 1,

n−1∑

m=0

p
f(kn+j−1)
j if j > i+ 1.

The proof goes exactly as in the case k = 3. The main point is that in
Lemma 6 the length Lp depends only on f(0), . . . , f(p− 1).

5. Proof of Theorem 3. In this section, we use the following notation.
Let k ≥ 2 be an integer. We endow Rk with the Euclidean norm | · |2, and,
for any x in Rk, we set

‖x‖2 = inf{|x− n|2 : n ∈ Zk}.
Clearly, ‖ · ‖2 induces a distance on the k-dimensional torus Tk, which we
also denote by ‖ · ‖2. If Y is a subset of Rk and x is a point in Rk, we denote
by d2(x, Y ) the distance from x to Y , defined by

d2(x, Y ) = inf{‖x− y‖2 : y ∈ Y }.
We could as well have worked with the supremum norm, as in the rest

of the paper; however, since geometric arguments are applied in the present
case, it seems to us more natural to use the Euclidean norm.
Furthermore, throughout this section, the constants implied by ≍, ≪

and ≫ depend only on the dimension k.
First, we introduce the notions of best approximation in Rk and in the

torus Tk (see e.g. [12]). These are needed to establish Lemma 9. As in
Section 4, if θ is an element of Rk, we denote by Θ its projection on the
torus Tk.

Definition 1. Let Θ be in Tk. A positive integer q is a best approxima-
tion of Θ if we have ‖pΘ‖2 > ‖qΘ‖2 for every integer p with 0 < p < q. Let
θ be in Rk. A positive integer q is a best approximation of θ if it is a best
approximation of Θ.

Let θ be in Rk. Arranging the set of best approximations of θ in increasing
order, we get an increasing sequence (qn)n≥0 of positive integers starting
with q0 = 1. For any positive integer n, let εn be the vector in Rk and Pn
be the integer k-tuple such that

qnθ = Pn + εn and |εn|2 = ‖qnΘ‖2.
Put

θn = θ −
1

qn
εn =

1

qn
Pn and rn = |εn|2 = ‖qnθ‖2.
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Then θn is the rational approximation of θ corresponding to the best ap-
proximation qn, and obviously ‖qnθn‖2 = 0. We consider the lattice

Λn := Zk + Zθn,

which is included in Qk, since θn has rational coordinates. We denote by
λ1,n, . . . , λk,n the successive minima of Λn.

Lemma 8. The subgroup 〈Θn〉 of Tk generated by Θn has exactly qn
elements, that is, kΘn is non-zero for any k = 1, . . . , qn − 1. Furthermore,
for any p = 0, 1, . . . , qn − 1, we have

‖pθ − pθn‖ ≤ rn.
Moreover , the lattice Λn has determinant 1/qn and its first minimum λ1,n
satisfies

2rn−1 ≥ λ1,n ≥ rn−1/2.
Proof. This follows from [6, Lemme 2], since, with the notation of [6], the

first minimum of Λn is equal to d(0, 〈Θn〉 \ {0}) and therefore to r(〈Θn〉).
Lemma 9. The last minimum of Λn tends to 0 as n tends to infinity.

The product qnrn−1 tends to infinity with n.

Proof. For any positive integer q, set Fq = {0, θ, . . . , qθ}+ Zk. By Lem-
ma 8, the distance of each point of Fqn−1 to Λn is less than rn, and

max
x∈Rk

d2(x,Λn) ≍ λk,n.

Consequently, we have

λk,n ≪ max
x∈Rk

d2(x, Fqn−1) + rn,

and, since Zθ + Zk is dense in Rk, we get

(3) lim
n→∞

max
x∈Rk

d2(x, Fqn−1) = 0 and lim
n→∞

λk,n = 0,

thus the last minimum of Λn tends to 0 as n tends to infinity.
By Minkowski’s second theorem on successive minima (see e.g. [5,

p. 156]), we have

detΛn = 1/qn ≍ λ1,nλ2,n · · ·λk,n ≤ λ1,nλk−1k,n .
Combined with Lemma 8, this gives

(4)
1

qnrn−1
≍ 1

qnλ1,n
≤ λk−1k,n .

Since k ≥ 2, it follows from (3) and (4) that qnrn−1 tends to infinity with n,
as asserted.

After these preliminaries, we turn to the proof of Theorem 3. Let w ≥ 1
be a real number and s be any real number in ]0, 1/w[. Let α = (α1, . . . , αk)
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with 1, α1, . . . , αk linearly independent over the rationals. We shall prove
that Ww(α) contains a Cantor-type set K whose Hausdorff dimension is
greater than s. By the mass distribution principle (see e.g. [9, p. 24]; this is
also called the Frostman lemma), it is sufficient to construct a probability
measure µ on K such that

lim
r→0

µ(B(x, r))

rs
= 0

for all x in K. We divide our inductive construction into 6 steps.
Step 1. For any positive integer q, set Fq = {0, α, . . . , qα} + Zk and

Eq = Fq ∩ [0, 1]k. Let (qn)n≥0 denote the sequence of best approximations
of α and, for any positive integer n, put

Λn = Zk +
Z

qn
Pn,

where Pn is the point of the lattice Zk for which qnα− Pn is minimal.
For any positive integer n, put

An = {x ∈ [0, 1]k : d2(x,Eqn−1) ≤ 1/qwn }.
Let (nj)j≥1 be an increasing sequence of positive integers, which will be
chosen in Step 6, and put

K =
⋂

j≥1

Anj .

First, we observe that K is a Cantor-type set. Indeed, the sets An are made
up of closed balls and, by the definition of best approximation, the distance
between the centres of two balls composing An is at least rn−1. Furthermore,
it follows from Lemma 9 that, for n sufficiently large, An is a disjoint union
of balls of the same radius.

To simplify the notation, for any integer j ≥ 1, we put
Qj = qnj , Λj = Λnj , ̺j = rnj−1,

and

Kj =
⋂

1≤p≤j

Anp .

Step 2. Since 1, α1, . . . , αk are linearly independent over the rationals,
the sequence (mα)m≥1 is uniformly distributed in the torus Tk. Thus, we
may select nj+1 sufficiently large in order that each ball of Kj contains a
number

N ∈ [ckQj+1Q−wkj /2, 2ckQj+1Q
−wk
j ]

of balls ofKj+1, where ck denotes the volume of the unit ball of R
k. Dropping

some of these balls if necessary, we can suppose that each of the balls of Kj
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contains exactly Nj = [ckQj+1Q
−wk
j /2] balls of Kj+1. Let Ej denote the set

of centres of the balls composing Kj .
We define inductively a sequence of discrete probability measures (µj)j≥1

such that, for any j ≥ 1, we have:
(i) the support of µj is equal to Ej ;
(ii) all the points of Ej have the same mass mj .
Since the µj are probability measures, we get

mj+1 =
mj
Nj
≍ mj

2

ck
Qwkj Q−1j+1.

The sequence (µj)j≥1 weakly converges to a probability measure µ whose
support is contained in K.
Step 3. Let x be in K. Let j ≥ 1 be an integer. We wish to estimate

µ(B(x, r))r−s for r in
[
1
2Q
−w
j+1,

1
2Q
−w
j

]
. There is a point Pj in EQj−1 such

that the ball Bj = B(Pj , Q
−w
j ) of Kj contains x. Let Cj be the set of centres

of balls of Kj+1 included in Bj . Since all balls of Kj+1 have the same radius
Q−wj+1, we have

µ(B(x, r)) ≤ µj+1(B(x, r +Q−wj+1)).
Therefore, in order to estimate µ(B(x, r)), it is sufficient to count the number
of points of Cj lying in B(x, r +Q−wj+1).
We begin with an obvious upper bound. By the definition of ̺j+1, the

distance between any two points of EQj+1−1 is at least ̺j+1 and since Cj is
contained in EQj+1−1, we get

(5) cardB(x, r) ∩ Cj ≪ max{1, (r/̺j+1)k}.
When r/̺j+1 is large, this estimate is useless and a sharper upper bound
is required. Since the set EQj+1−1 is close to the lattice Λ

j+1, we begin by
counting the points of Λj+1 ∩B(x, r).
Step 4. Let (e1, . . . , ek) be a reduced basis of Λ

j+1. By “reduced”, we
mean (see [1]) that the following two properties hold true:

|e1|2 ≤ · · · ≤ |ek|2,
sin( 6 (ei, Vi)) ≥ (

√
3/2)k for i = 1, . . . , k,

where Vi = span(e1, . . . , ei−1, ei+1, . . . , ek). This last inequality implies that,
for any real numbers t1, . . . , tk, we have

(6)
∣∣∣
k∑

i=1

tiei

∣∣∣
2
≥ (
√
3/2)kmax{|ti| · |ei|2 : i = 1, . . . , k}.

Let y =
∑k
i=1 aiei be in Λ

j+1 ∩ B(0, r). Assume first that there exists i
with 1 ≤ i ≤ k − 1 such that r is in [(

√
3/2)k |ei|2 , (

√
3/2)k |ei+1|2 [. Then,
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by (6), we have

|aj | ≤
r

(
√
3/2)k|ej |2

, j = 1, . . . , i,

and, since the aj ’s are integers,

aj = 0, j = i+ 1, . . . , k.

Therefore, we get

(7) cardΛj+1 ∩B(0, r)≪ ri

|e1|2 · · · |ei|2
.

Assume now that r ≥ (
√
3/2)k |ek|2. Then we get the upper bound

(8) cardΛj+1 ∩B(0, r)≪ rk

|e1|2 · · · |ek|2
≪ rk

detΛj+1
= rkQj+1,

by Lemma 8. Furthermore, we observe that, for any x in Rk, we have

cardΛj+1 ∩B(z, r) ≤ cardΛj+1 ∩B(0, 2r).

Step 5. Thanks to (5), (7) and (8), we are now able to bound
µ(B(x, r))r−s from above. We distinguish three cases.

Assume first that r is in
[
1
2Q
−w
j+1, |e1|2

]
. From the “obvious” estimate (5),

we get

µ(B(x, r))

rs
≤
µj+1(B(x, r +Q

−w
j+1))

rs

≪ mj+1max{1, (2r/|e1|2)k}r−s

≪ mj+1r
−s ≪ mj+1Q

sw
j+1 ≪ mjQ

wk
j Qws−1j+1 .

Assume now that r ≥ |e1|2 and that r is in

[(
√
3/2)k|ei|2/6, (

√
3/2)k|ei+1|2/6]

for some i = 1, . . . , k − 1. Then we infer from (7) that

µ(B(x, r))

rs
≤
µj+1(B(x, r +Q

−w
j+1))

rs
(9)

≪
mj+1 cardΛ

j+1 ∩B(x, r +Q−wj+1 + |e1|2)
rs

≪ mj+1
rs

ri

|e1|2 · · · |ei|2
=
mj+1
rs

ri|ei+1|2 · · · |ek|2
|e1|2 · · · |ek|2

.
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Since |e1|2 · · · |ek|2 ≥ detΛj+1 = 1/Qj+1, from (9) we get
µ(B(x, r))

rs
≪ mj+1r

i−sQj+1|ei+1|2 · · · |ek|2

≪ mj
Qwkj
Qj+1

|ei+1|i−s2 Qj+1|ei+1|2 · · · |ek|2

≪ mjQ
wk
j |ek|k−s2

≪ mjQ
wk
j · (last minimum of Λj+1)k−s.

Indeed, for each i, |ei|2 is greater than or equal to the ith minimum and,
since the basis is reduced, the product of the norms of the vectors of the
basis is of the same order as the determinant of Λj+1 and, thus, as the
product of the minima. It follows that, for each i, |ei|2 is of the same order
as the ith minimum.
Finally, if r is in [(

√
3/2)k|ek|2/6, Q−wj ], we deduce from (8) that

µ(B(x, r))

rs
≤
µj+1(B(x, r +Q

−w
j+1))

rs

≤
mj+1 cardΛ

j+1 ∩B(x, r +Q−wj+1 + |e1|2)
rs

≪ mj+1
rs

rkQj+1 ≪ mj
Qwkj
Qj+1

rk−sQj+1

≪ mjQ
wk
j (Q

−w
j )

k−s ≪ mj−1Q
wk
j−1Q

sw−1
j .

Step 6. To conclude, it is sufficient to define inductively the sequence
(nj)j≥1 such that:

• the uniform distribution condition stated in Step 2 holds;
• (mjQwkj Qws−1j+1 )j tends to zero as j →∞;
• (mjQwkj · (last minimum of Λj+1)k−s)j tends to zero as j →∞.

This is possible since ws− 1 < 0 and thanks to Lemma 9. Then the results
obtained in Step 5 show that, for any x in K, we have

lim
r→0

µ(B(x, r))

rs
= 0.

If we take s arbitrarily close to 1/w, this proves that the Hausdorff dimension
of Ww(α) is at least 1/w. Theorem 3 now follows from Proposition 1.

6. Proof of Proposition 1 and Theorems 4 and 5. Theorems 4 and
5 are particular cases of a more general result on systems of linear forms.
For u > 0 and A in Mn,m(R), set

Uu(A) = {ξ ∈ Rn : ‖Ax− ξ‖ ≤ 1/|x|u for infinitely many x in Zm},
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where |x| denotes the maximum of the absolute values of the entries of the
integer m-tuple x, and Ax is the (usual) product of the matrix A by the
column vector x.
This section is devoted to the proof of the following assertion.

Theorem 6. Let n,m be positive integers and u ≥ m/n be a real num-
ber. Then for almost all A in Mn,m(R), we have

dimUu(A) = m/u.
Theorems 4 and 5 follow straightforwardly from Theorem 6. Actually,

we prove a slightly stronger result, since (in contrast to Vv(α) and Ww(α))
no positive constant c is involved in the definition of Uu(A).
Let A be in Mn,m(R). The Hausdorff–Cantelli lemma easily yields the

upper bound dimUu(A) ≤ m/u. Indeed, for any positive integer n, we set
En =

⋃

|x|=n
x∈Z

m

{ξ ∈ Rn : ‖Ax− ξ‖ ≤ 1/nu} ∩ [0, 1]n

and εn = n
−u. Let s > m/u be real. Observe that

Hsεn(En)≪ nm−1 εsn ≪ nm−1−us,

where the constant implied in ≪ only depends on n and m. Since Uu(A) ∩
[0, 1]n = lim supn→∞En and m− 1−us < −1, we infer from Lemma 7 that

Hs(Uu(A) ∩ [0, 1]n) = 0.
Consequently, the Hausdorff dimension of Uu(A) is at most m/u. The same
argument shows that, for any positive real c, the Hausdorff dimension of the
set

{ξ ∈ Rn : ‖Ax− ξ‖ ≤ c/|x|u for infinitely many x in Zm}
is at most m/u. This proves Proposition 1.

However, the reverse inequality is slightly more difficult to obtain. Our
proof uses on the one hand a classical result of Cassels [5], asserting that
almost all matrices A in Mn,m(R) share a certain approximation property.
On the other hand, we use the notion of ubiquitous systems, introduced by
Dodson, Rynne and Vickers [8] to get the expected lower bound for the
dimension of Uu(A).
First, we recall some results about Diophantine approximation.

Definition 2. A matrix A in Mn,m(R) is regular if there exists δ > 0
and infinitely many positive integers X such that

inf{‖Ax‖ : x ∈ Zm, x 6= 0, |x| ≤ X} ≥ δX−m/n.
It follows from the Borel–Cantelli lemma that almost all matrices are

regular (see e.g. [5, p. 92]).
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We further need a transference theorem between homogeneous and in-
homogeneous approximation.

Theorem B. Let A be in Mn,m(R). Suppose that for every non-zero x
in Zm with |x| ≤ X0 we have ‖Ax‖ > c. Then, for all ξ in Rn, there exists
x in Zm such that

‖Ax− ξ‖ ≤ 1
2
(X−m0 c−n + 1)c and |x| ≤ 1

2
(X−m0 c−n + 1)X0.

Proof. This is [5, Theorem VI, p. 82].

We shall deduce from Theorem B that the lower bound dimUu(A) ≥ m/u
holds for every regular matrix A.
We first recall some facts about ubiquitous systems. Let Ω be a bounded

open subset of Rn, (Sα)α∈J be a family of subsets of Ω, µ : J → R+ be a
positive function, and ψ : R+ → R+ be a non-increasing function tending
to 0 as x→∞. Finally, set

Sα(̺) = {ξ ∈ Ω : d(ξ, Sα) < ̺}
and

L(Sα, µ, ψ) = {ξ ∈ Ω : d(ξ, Sα) ≤ ψ(µ(α)) for infinitely many α in J}.
In what follows, we denote by diam C the diameter of a hypercube C, that
is, the supremum of the distances between any two points of C. Assume
that the following hypothesis is satisfied. For each j, there exists a Lebesgue
measurable subset E(j) and a positive number λ(j) such that

lim
j→∞
|Ω \E(j)| = 0, lim

j→∞
λ(j) = 0,

and for any hypercube C ⊂ Ω with diam C = λ(j) and 12C ∩E(j) 6= ∅, there
exist a real number d and α in J , with µ(α) ≤ j and 0 ≤ d ≤ j, such that
for all ̺ satisfying 0 < ̺ ≤ λ(j), we have
(10) |C ∩ Sα(̺)| ≫ ̺n−d(diam C)d

and

(11) |C′ ∩ C ∩ Sα(̺)| ≪ ̺n−d(diam C′)d,
where C′ is any hypercube in Ω with diam C′ ≤ λ(j). The system (Sα, µ)
is called a ubiquitous system relative to λ. The real number d is called the
dimension of (Sα). The following result was proved by Dodson, Rynne and
Vickers [8].

Theorem C. Suppose that (Sα, µ) is a ubiquitous system with respect
to λ and that ψ : R+ → R+ is a decreasing function. Let t = d + γ(n − d),
where

γ = min

{
1, lim sup
j→∞

log λ(j)

logψ(j)

}
.
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Then

dimL(Sα, µ, ψ) ≥ t.
Proof. This is Theorem 1 from [8].

We are now ready to prove Theorem 6.

Proof of Theorem 6. Let A be a regular matrix in Mn,m(R). There exist
δ > 0 and an increasing sequence of integers (xp)p≥0 with xp → ∞, such
that for every p we have

inf{‖Ax‖ : x ∈ Zm, x 6= 0, |x| ≤ xp} ≥ δx−m/np .

By Theorem B, for any ξ ∈ Rn there exists x ∈ Zm such that

‖Ax− ξ‖ ≤ 1
2
(x−mp (δx

−m/n
p )−n + 1)δx−m/np(12)

=
1

2
(δ−n + 1)δx−m/np = ∆δx−m/np

and

(13) |x| ≤ 1
2
(δ−n + 1)xp = ∆xp,

where ∆ = 1
2 (δ
−n + 1). For a positive integer p, set Sp = {Ax : |x| ≤

∆xp}+Zn, and µ(p) = p. We claim that (Sp, µ) is a ubiquitous system with

respect to λ(p) = ∆δx
−m/n
p (and Ω = ]0, 1[

n
). Indeed, by (12) and (13),

any hypercube C of diameter at least λ(p) = ∆δx−m/np contains at least one
point of Sp; therefore, we have

|C ∩ {ξ ∈ Ω : d(ξ, Sp) < ̺}| ≫ ̺n

for any ̺ satisfying 0 < ̺ ≤ λp, and (10) holds with d = 0. As for (11),
consider the sets

Tp(x) = Ax+

{
Ay : y ∈ Zm, |y| ≤ 1

2
xp

}
+ Zn, x ∈ Zm.

There exists an integer a depending only on δ and n such that for all p there
exist x1, . . . , xa ∈ Zm with

Sp ⊂
a⋃

i=1

Tp(xi).

Let C′ be a hypercube with diameter less than λ(p) = ∆δx−m/np . Since the

distance between two points of Tp(x) is at least δx
−m/n
p , the hypercube C′

contains at most ∆−n points of Tp(x). We get

|C′ ∩ {ξ ∈ Ω : d(ξ, Tp(x)) ≤ ̺}| ≪ ̺n

and therefore
|C′ ∩ {ξ ∈ Ω : d(ξ, Sp) < ̺}| ≪ ̺n.
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Consequently, (11) holds for d = 0. Let ψ : R+ → R+ be a non-increasing
function such that ψ(p) = x−up . Theorem C yields the lower bound

dimL(Sα, µ, ψ) ≥ nmin
{
1, lim sup
p→∞

log λ(p)

logψ(p)

}

= nmin

{
1, lim sup
p→∞

log∆δx
−m/n
p

log x−up

}
= min

{
n,
m

u

}
.

Since we have

L(Sp, µ, ψ) ⊂ Uu(A) ∪ (AZm + Zn),

the proof is finished.
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