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1. Introduction and statement of results. For an odd prime p let λp

denote the real Dirichlet character modulo p given by the Legendre symbol( ·
p

)
. Let L(s, χ) be the Dirichlet L-function associated with a character χ.

The value distribution of L(s, λp) for a complex number s with Re s > 1/2 as
p varies over the odd primes is investigated e.g. in [El]. The main purpose of
the present paper is to study the functional distribution of L(s, λp) on D, as
p varies over the primes in an arithmetic progression; here and henceforth
D denotes the strip {s ∈ C | 1/2 < Re s < 1}. More precisely, we shall
establish the so-called universality theorem for L(s, λp) in the p-aspect.

The universality theorem was first discovered by Voronin ([Vo], [KV])
for the Riemann zeta-function ζ(s) in the t-aspect; he showed the following.

Theorem ([Vo]). Let 0 < r < 1/4 and h(s) be a continuous function on

the disk |s| ≤ r which is holomorphic and has no zeros in |s| < r. Then for

any ε > 0 there exists a real number t such that

max
|s|≤r

|ζ(s + 3/4 + it) − h(s)| < ε.

The universality theorem for a Dirichlet L-function L(s, χ) in the t-
aspect was obtained by Bagchi [B1], [B2], Gonek [Go] and Voronin (see
[KV, Chapter VII, Section 3]) independently; indeed, the joint universality
theorem was shown.

Furthermore, Bagchi [B1], Eminyan [Em] and Gonek [Go] independently
showed an analogous result for Dirichlet L-functions in another aspect. In
fact, they established the universality theorem for the family of L(s, χ)’s as
χ varies over the set of characters modulo q with q large.

We denote by R, R+, Z and N the set of all real numbers, positive real
numbers, integers and positive integers, respectively. For a discriminant d, let
χd denote the real Dirichlet character modulo |d| defined by the Kronecker
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symbol
(

d
·
)
K
. Letting γ stand for the plus sign or the minus sign, we define

Dγ :=

{
{d > 0 | d is a square-free integer, d ≡ 1 mod 8, d 6= 1} if γ is +,

{d < 0 | d is a square-free integer, d ≡ 1 mod 8} if γ is −,

and

Dγ
X := {d ∈ Dγ | |d| ≤ X} for X ∈ R+.

The authors [MN1] have recently obtained the following universality theo-
rem, which is an analogue of Bagchi, Eminyan and Gonek’s result above for
the family {L(s, χd) | d ∈ Dγ} of L-functions associated with real characters
χd: Let Ω, h(s) and K be as in Theorem 1.1 below. Then for any ε > 0 we

have

(1.1) lim inf
X→∞

1

#Dγ
X

#{d ∈ Dγ
X | max

s∈K
|L(s, χd) − h(s)| < ε} > 0.

In the present paper we investigate the universality theorem for L(s, λp)
in the prime p-aspect, as mentioned above. Noting that L(s, λp) is equal
to L(s, χq) with a certain integer q (see (3.3)), we will deal with L(s, χq)
instead of L(s, λp). Throughout let γ ∈ {+,−} and let m and a = a(γ) be
any fixed positive integers such that gcd(m, a) = 1, 8 |m, a ≡ 1 mod 4 if γ
is + and a ≡ 3 mod 4 if γ is −. We define

Pγ(m, a) :=

{
{p | p is a prime, p ≡ a mod m} if γ is +,

{−p | p is a prime, p ≡ a mod m} if γ is −,

and

Pγ
X(m, a) := {q ∈ Pγ(m, a) | |q| ≤ X} for X > 0.

By the prime number theorem for arithmetic progressions,

#Pγ
X(m, a) ∼

1

ϕ(m)

X

log X
as X → ∞,(1.2)

where ϕ(m) denotes the Euler totient function. Every integer q in Pγ(m, a)
is a prime discriminant (for its definition, see e.g. [Ay, p. 310], [Da, p. 41]).
In the following, the letter p will stand for a prime number and q for a prime
discriminant.

Theorem 1.1. Let γ ∈ {+,−}. Let m, a ∈ N be as above. Let Ω be a

simply connected region in D which is symmetric with respect to the real axis.

Suppose that h(s) is a holomorphic function on Ω which has no zeros on Ω
and is R+-valued on the set Ω ∩R. Let K be a compact set in Ω, and ε > 0.
Then there exist infinitely many q ∈ Pγ(m, a) such that maxs∈K |L(s, χq)−
h(s)| < ε. More precisely , we have

(1.3) lim inf
X→∞

1

#Pγ
X(m, a)

#{q ∈ Pγ
X(m, a) | max

s∈K
|L(s, χq)−h(s)| < ε} > 0.
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It should be noted that the results (1.1) and (1.3) do not directly imply
each other, because the density of the set Pγ(m, a) in Dγ is 0 in the sense
that #Pγ

X(m, a)/#Dγ
X → 0 as X → ∞ (see [MN1, Lemma 4.1] and (1.2)).

In the same way as in the present paper, we can generalize (1.1) to the
result in which d varies over the fundamental discriminants in the arithmetic
progression {km + a | k ∈ Z}, where m, a ∈ N are as in Theorem 1.1.

Theorem 1.1 yields the following corollaries, for example. First we get
a denseness result on values of L(s, χq)’s for fixed s ∈ D and variable q ∈
Pγ(m, a). This is analogous to Bohr–Courant’s result [BC] on values of the
Riemann zeta-function ζ(s).

Corollary 1.2.

(1) Let any s0 ∈ D with Im s0 6= 0 be fixed. Then the set {L(s0, χq) | q ∈
Pγ(m, a)} is dense in C. More precisely , for any z0 ∈ C and ε > 0
we have

(1.4) lim inf
X→∞

1

#Pγ
X(m, a)

#{q ∈ Pγ
X(m, a) | |L(s0, χq) − z0| < ε} > 0.

(2) Let 1/2 < σ0 < 1 be fixed. Then the set {L(σ0, χq) | q ∈ Pγ(m, a)}
is dense in R+. More precisely , for any x0 ∈ R+ and ε > 0 we have

lim inf
X→∞

1

#Pγ
X(m, a)

#{q ∈ Pγ
X(m, a) | |L(σ0, χq) − x0| < ε} > 0.

Next we have a non-vanishing result for L(s, χq)’s on D, and the following
stronger result.

Corollary 1.3. Let α, β be any positive real numbers with α < β. Let

K be a compact set in D. Then

lim inf
X→∞

1

#Pγ
X(m, a)

#{q ∈ Pγ
X(m, a) | α < |L(s, χq)| < β

uniformly for s ∈ K} > 0.

Noting that L(s, χq) is R-valued on the real segment (1/2, 1), we can ob-
tain a result concerning the horizontal distribution of zeros of the derivatives
L(r)(s, χq) on (1/2, 1) in the q-aspect.

Corollary 1.4. Let α, β ∈ R with 1/2 < α < β < 1 and r′, N ∈ N.

Then there exist infinitely many q ∈ Pγ(m, a) such that for every integer r
with 1 ≤ r ≤ r′ the rth derivative L(r)(s, χq) has at least N zeros on the

interval [α, β] ⊂ R. More precisely ,

lim inf
X→∞

1

#Pγ
X(m, a)

#{q ∈ Pγ
X(m, a) | L(r)(s, χq) has at least N zeros

on [α, β] for every r = 1, . . . , r′} > 0.
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We shall also study the denseness result on values of L(s, χq) for a fixed
complex number s 6= 1 with Re s = 1 and variable q ∈ Pγ(m, a).

Theorem 1.5. Let t ∈ R−{0} be fixed. Then the set {L(1+ it, χq) | q ∈
Pγ(m, a)} is dense in C. More precisely , for any z0 ∈ C and ε > 0 we have

lim inf
X→∞

1

#Pγ
X(m, a)

#{q ∈ Pγ
X(m, a) | |L(1 + it, χq) − z0| < ε} > 0.

In [MN2] the authors showed an analogue of Theorem 1.5 for L(1, λp)
and deduced from it a quantitative result for a problem of Ayoub–Chowla–
Walum on certain character sums.

2. Denseness lemma. The purpose of this section is to show Proposi-
tion 2.3 below. For s ∈ C we write s = σ + it with σ, t ∈ R. The next lemma
is proved in [MN1, Proposition 2.4].

Lemma 2.1. Let Ω be a simply connected region in D symmetric with

respect to the real axis, as in Theorem 1.1. Let U be a bounded , simply

connected region in Ω which is symmetric with respect to the real axis and

which satisfies U ⊂ Ω, where U denotes the closure of U . Suppose that g(s)
is a holomorphic function on Ω which is R-valued on the interval Ω∩R. Let

y > 0 be fixed. Then for any ε > 0 there exist ν ∈ R+ and cp ∈ {1,−1}, for

each prime p with y ≤ p ≤ ν, such that\
U

∣∣∣∣g(s) −
∑

y≤p≤ν

cp

ps

∣∣∣∣
2

dσ dt < ε.

The next lemma is a generalization of [Ti, p. 303, Lemma] and was
obtained in [MN1, Lemma 2.5].

Lemma 2.2. Let U be a bounded region in C. Let K be a compact sub-

set of C such that K ⊂ U . Let B > 0. Suppose that f(s) is a holomor-

phic function on U satisfying
T
U |f(s)|2 dσ dt ≤ B. Then maxs∈K |f(s)| ≤

b(U, K)B1/2, where b(U, K) is a certain positive constant depending only on

U and K.

Proposition 2.3. Let Ω be a simply connected region in D symmetric

with respect to the real axis. Suppose that g(s) is a holomorphic function on

Ω which is R-valued on Ω ∩ R. Let K be a compact set in Ω and ν1 ∈ R+

with ν1 > m+1. Let ap ∈ {1,−1} for each prime p with p |m. Then for any

ε > 0 there exist ν > ν1 and ap ∈ {1,−1}, for each prime p with p ≤ ν and

p ∤ m, such that

max
s∈K

∣∣∣∣g(s) − log
∏

p≤ν

(
1 −

ap

ps

)−1∣∣∣∣ < ε,
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where

log
∏

p≤ν

(
1 −

ap

ps

)−1

= −
∑

p≤ν

log

(
1 −

ap

ps

)
=

∑

p≤ν

∞∑

n=1

an
p

npns
.

Proof. Take a bounded, simply connected region U in Ω which is sym-
metric with respect to the real axis and which satisfies K ⊂ U and U ⊂ Ω.
Set σ1 := min{Re s | s ∈ U} > 1/2. Let ε > 0 be arbitrary. Fix a real
number y satisfying y > ν1 and y1−2σ1/(2σ1 − 1) < ε. Then we have

∑

p≥y

∞∑

n=2

1

npnσ1
≤

∑

p≥y

∞∑

n=2

1

pnσ1
=

∑

p≥y

p−2σ1

1 − p−σ1
(2.1)

≪
∑

n≥y, n∈N

1

n2σ1
≪

y1−2σ1

2σ1 − 1
< ε.

Set ap = 1 for each prime p with p < y and p ∤ m. From Lemma 2.1
it follows that there exist ν ≥ y and cp ∈ {1,−1}, for each prime p with
y ≤ p ≤ ν, such that\

U

∣∣∣∣
(

g(s) −
∑

p<y

∞∑

n=1

an
p

npns

)
−

∑

y≤p≤ν

cp

ps

∣∣∣∣
2

dσ dt < ε2.

This and Lemma 2.2 yield

(2.2) max
s∈K

∣∣∣∣g(s) −
∑

p<y

∞∑

n=1

an
p

npns
−

∑

y≤p≤ν

cp

ps

∣∣∣∣ ≪U,K ε.

For each prime p with y ≤ p ≤ ν we set ap = cp. Then we obtain, by
(2.1) and (2.2),

max
s∈K

∣∣∣∣g(s) − log
∏

p≤ν

(
1 −

ap

ps

)−1∣∣∣∣

= max
s∈K

∣∣∣∣g(s) −
∑

p<y

∞∑

n=1

an
p

npns
−

∑

y≤p≤ν

cp

ps
−

∑

y≤p≤ν

∞∑

n=2

cn
p

npns

∣∣∣∣

≤ max
s∈K

∣∣∣∣g(s) −
∑

p<y

∞∑

n=1

an
p

npns
−

∑

y≤p≤ν

cp

ps

∣∣∣∣ + max
s∈K

∣∣∣∣
∑

y≤p≤ν

∞∑

n=2

cn
p

npns

∣∣∣∣

≪U,K ε +
∑

p≥y

∞∑

n=2

1

npnσ1
≪ ε,

which completes the proof.
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3. Approximation by finite Euler products. As usual, let π(X)
denote the number of primes not exceeding X ∈ R+. For large X ∈ R+, let
RX denote the set

{s = σ + it ∈ C | 1/2 + (log log log X)−1/2 ≤ σ ≤ 5/4, |t| < X
1

13
(2σ−1)}

and put

(3.1) hX := (log log X)2.

The next lemma is obtained in [El, Lemma 8].

Lemma 3.1. For all large X and uniformly for s ∈ RX we have

∑

3≤r≤X
r : prime

∣∣∣∣L(s, λr) −
∏

p≤hX

(
1 −

λr(p)

ps

)−1∣∣∣∣
2

≪ π(X)h1−2σ
X (log hX)3(2σ − 1)−4.

Recall that for an odd prime r and a positive integer n we have the
relation (see e.g. [Ay, p. 290, Lemma 2.2])

(3.2)

(
n

r

)
=





(
r

n

)

K

if r ≡ 1 mod 4,

(
−r

n

)

K

if r ≡ 3 mod 4,

and hence

(3.3) L(s, λr) =

{
L(s, χr) if r ≡ 1 mod 4,

L(s, χ−r) if r ≡ 3 mod 4.

Proposition 3.2. Let ε > 0 and K be a compact set in the region

1/2 < Re s < 5/4. Define Aγ
X(m, a) = Aγ

X(m, a, ε, K) by

Aγ
X(m, a) :=

{
q ∈ Pγ

X(m, a)

∣∣∣∣ max
s∈K

∣∣∣∣L(s, χq) −
∏

p≤hX

(
1 −

χq(p)

ps

)−1∣∣∣∣ < ε

}
.

Then
#Aγ

X(m, a)

#Pγ
X(m, a)

> 1 − ε

if X is sufficiently large.

Proof. Take an open rectangle U of the form {s ∈ C | σ1 < Re s < σ2,
|Im s| < A} satisfying 1/2 < σ1 < min{Re s | s ∈ K} ≤ max{Re s | s ∈ K}
< σ2 < 5/4 and max{|Im s| | s ∈ K} < A. Then K ⊂ U . For large X ∈ R+

we define Ãγ
X(m, a) to be the set

(3.4)

{
q ∈ Pγ

X(m, a)

∣∣∣∣
\
U

∣∣∣∣L(s, χq)−
∏

p≤hX

(
1−

χq(p)

ps

)−1∣∣∣∣
2

dσ dt<
ε2

b(U, K)2

}
,
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where b(U, K) is the constant in Lemma 2.2. By Lemma 2.2,

(3.5) Ãγ
X(m, a) ⊂ Aγ

X(m, a).

From Lemma 3.1, (3.2), (3.3), the prime number theorem, and (1.2), we
infer that for all large X,

(3.6)
∑

q∈Pγ
X

(m,a)

\
U

∣∣∣∣L(s, χq) −
∏

p≤hX

(
1 −

χq(p)

ps

)−1∣∣∣∣
2

dσ dt

≤
∑

3≤r≤X
r : prime

\
U

∣∣∣∣L(s, λr) −
∏

p≤hX

(
1 −

λr(p)

ps

)−1∣∣∣∣
2

dσ dt

≪U π(X)h1−2σ1

X (log hX)3(2σ1 − 1)−4

≪ ϕ(m)#Pγ
X(m, a)h1−2σ1

X (log hX)3(2σ1 − 1)−4.

Since h1−2σ1

X (log hX)3 → 0 as X → ∞, it follows from (3.6) that there exists
a large number X0 = X0(ε, U, K, m) such that for all X > X0,

(3.7)
∑

q∈Pγ
X

(m,a)

\
U

∣∣∣∣L(s, χq) −
∏

p≤hX

(
1 −

χq(p)

ps

)−1∣∣∣∣
2

dσ dt

<
ε3

b(U, K)2
#Pγ

X(m, a).

Now assume that there exists a real number X > X0 such that #(Pγ
X(m, a)

− Ãγ
X(m, a)) ≥ ε#Pγ

X(m, a). For this X we have, by (3.4),

∑

q∈Pγ
X

(m,a)

\
U

∣∣∣∣L(s, χq) −
∏

p≤hX

(
1 −

χq(p)

ps

)−1∣∣∣∣
2

dσ dt

≥
∑

q∈Pγ
X

(m,a)−Ãγ
X

(m,a)

\
U

∣∣∣∣L(s, χq) −
∏

p≤hX

(
1 −

χq(p)

ps

)−1∣∣∣∣
2

dσ dt

≥ ε#Pγ
X(m, a)

ε2

b(U, K)2
=

ε3

b(U, K)2
#Pγ

X(m, a).

However, this contradicts (3.7). Hence for any X > X0 we have

#(Pγ
X(m, a) − Ãγ

X(m, a)) < ε#Pγ
X(m, a),

that is, #Ãγ
X(m, a)/#Pγ

X(m, a) > 1−ε. This and (3.5) complete the proof.

4. Results on characters χq for prime discriminants q. The aim
of this section is to obtain Proposition 4.3. As before, the letter γ denotes
the plus sign or the minus sign. For X ∈ R+ we define IX to be the interval
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[0, X] if γ is +, and [−X, 0] if γ is −. We define

(4.1) δ = δ(γ) =

{
1 if γ is +,

−1 if γ is −.

Lemma 4.1. Fix a number ν ∈ R+ such that π(ν) > π(m). Let ap ∈
{1,−1} for each prime p satisfying p ≤ ν and p ∤ m. Define Pγ

X,ν(m, a) =

Pγ
X,ν(m, a, {ap}) to be the set

{q ∈ Pγ
X(m, a) | χq(p) = ap for every prime p with p ≤ ν and p ∤ m},

and put Cν(m) :=
∏

p≤ν, p∤m
1
2 . Then

lim
X→∞

#Pγ
X,ν(m, a)

#Pγ
X(m, a)

= Cν(m).

Proof. In general, for n ∈ N and b ∈ Z, we denote by [b]n the set of all
integers x such that x ≡ b mod n, that is, the residue class mod n which b
belongs to.

Let p be an odd prime. Let Qp be the set of all residue classes [b]p mod p
such that b is a quadratic residue mod p, other than the residue class [0]p,
and let Q′

p be the set of all residue classes [c]p mod p such that c is a
quadratic non-residue mod p. It is well known that

(4.2) #Qp = #Q′
p =

p − 1

2
.

In view of the definitions of Kronecker’s symbol and Legendre’s symbol,
a discriminant q satisfies χq(p) = ap if and only if q belongs to one of
residue classes in Qp if ap = 1 and in Q′

p if ap = −1. From this, (4.2) and
the Chinese remainder theorem, it follows, for an integer r such that δr
is a prime number, that r satisfies r ≡ δa mod m (i.e. r ∈ Pγ(m, a)) and
χr(p) = ap for every prime p with p ≤ ν and p ∤ m if and only if r belongs
to one of exactly

∏
p≤ν, p∤m (p − 1)/2 distinct residue classes mod Q, where

Q = Q(m, ν) := m
∏

p≤ν, p∤m

p

and δ is as in (4.1). Let Rγ = Rγ(m, a, ν) denote the set of those residue
classes mod Q, so that

(4.3) #Rγ =
∏

p≤ν, p∤m

p − 1

2
.
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Thus

(4.4) Pγ
X,ν(m, a) = {r ∈ IX | δr is a prime, r ≡ δa mod m,

χr(p) = ap for every prime p with p ≤ ν and p ∤ m}

=
⋃

[c]Q∈Rγ

{r ∈ IX | δr is a prime, r ≡ c mod Q}.

We note that if [c]Q ∈ Rγ then

(4.5) gcd(c, Q) = 1,

since [0]p /∈ Qp and [0]p /∈ Q′
p for all primes p with p ≤ ν and p ∤ m, and

gcd(a, m) = 1.
From (4.4) we have

#Pγ
X,ν(m, a) =

∑

[c]Q∈Rγ

∑

r∈IX , δr : prime
r≡c mod Q

1 =
∑

[c]Q∈Rγ

∑

p≤X
p≡δc mod Q

1.

By the prime number theorem for arithmetic progressions and (4.5),

(4.6)
∑

p≤X
p≡δc mod Q

1 ∼
1

ϕ(Q)

X

log X
as X → ∞.

Note that the right-hand side of (4.6) is independent of [c]Q ∈ Rγ . Therefore
for fixed ν we have

#Pγ
X,ν(m, a) ∼

#Rγ

ϕ(Q)

X

log X
(4.7)

=

( ∏

p≤ν, p∤m

1

2

)
X

ϕ(m) log X
=

Cν(m)

ϕ(m)

X

log X

as X → ∞, using (4.3) and the fact

(4.8) ϕ(Q) = ϕ(m)
∏

p≤ν, p∤m

ϕ(p) = ϕ(m)
∏

p≤ν, p∤m

(p − 1).

Thus (4.7) and (1.2) give us

#Pγ
X,ν(m, a)

#Pγ
X(m, a)

=
#Pγ

X,ν(m, a)

Cν(m)
ϕ(m)

X
log X

Cν(m)
ϕ(m)

X
log X

1
ϕ(m)

X
log X

1
ϕ(m)

X
log X

#Pγ
X(m, a)

→ Cν(m)

as X → ∞. This completes the proof.

Lemma 4.2. Fix ν ∈ R+ such that π(ν) > π(m). Let ap ∈ {1,−1} for

each prime p with p ≤ ν and p ∤ m. Let Pγ
X,ν(m, a) and Cν(m) be as in

Lemma 4.1, hX = (log log X)2 be as in (3.1), and σ1 > 1/2. Then for all
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large X and uniformly for s ∈ C with Re s ≥ σ1 we have

(4.9)
∑

q∈Pγ
X,ν

(m,a)

∣∣∣∣
∑

ν<p≤hX

χq(p)

ps

∣∣∣∣
2

≪
ν1−2σ1

2σ1 − 1
Cν(m) #Pγ

X(m, a).

Proof. Let Q and Rγ be as in the proof of Lemma 4.1. From (4.4) it
follows that

∑

q∈Pγ
X,ν

(m,a)

∣∣∣∣
∑

ν<p≤hX

χq(p)

ps

∣∣∣∣
2

=
∑

[c]Q∈Rγ

∑

r∈IX , δr : prime
r≡c mod Q

∣∣∣∣
∑

ν<p≤hX

χr(p)

ps

∣∣∣∣
2

(4.10)

=
∑

[c]Q∈Rγ

∑

u≤X,u : prime
u≡δc mod Q

∣∣∣∣
∑

ν<p≤hX

χδu(p)

ps

∣∣∣∣
2

.

For [c]Q ∈ Rγ we have

(4.11)
∑

u≤X, u : prime
u≡δc mod Q

∣∣∣∣
∑

ν<p≤hX

χδu(p)

ps

∣∣∣∣
2

=
∑

u≤X, u : prime
u≡δc mod Q

( ∑

ν<p≤hX

|χδu(p)|2

|ps|2
+

∑

p1,p2 : primes, p1 6=p2

ν<p1,p2≤hX

χδu(p1)χδu(p2)

ps
1p

s
2

)

=
∑

ν<p≤hX

1

|ps|2

∑

u≤X,u : prime
u≡δc mod Q

|χδu(p)|2

+
∑

p1,p2 : primes, p1 6=p2

ν<p1,p2≤hX

1

ps
1p

s
2

∑

u≤X, u : prime
u≡δc mod Q

χδu(p1)χδu(p2)

= S1 + S2, say.

Using the prime number theorem for arithmetic progressions, we deduce
that for all s ∈ C with Re s ≥ σ1

|S1| ≤
∑

ν<p≤hX

1

p2σ1

∑

u≤X, u : prime
u≡δc mod Q

1(4.12)

≪

( ∑

n>ν, n∈N

1

n2σ1

)
1

ϕ(Q)

X

log X

≪
ν1−2σ1

2σ1 − 1

1

ϕ(Q)

X

log X
.
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Next we shall consider the sum S2. Fix two distinct primes p1, p2 satisfy-
ing ν < p1 ≤ hX and ν < p2 ≤ hX . Then by the definition of the Kronecker
symbol and the orthogonality relation for Dirichlet characters, we have

(4.13)
∑

u≤X, u : prime
u≡δc mod Q

χδu(p1)χδu(p2) =
∑

u≤X,u : prime
u≡δc mod Q

(
δu

p1

)(
δu

p2

)

=
∑

u≤X, u : prime

(
δu

p1

)(
δu

p2

)
1

ϕ(Q)

∑

λ mod Q

λ(u)λ(δc)

=
1

ϕ(Q)

(
δ

p1

)(
δ

p2

) ∑

λ mod Q

λ(δc)
∑

u≤X, u : prime

(
u

p1

)(
u

p2

)
λ(u),

where
∑

λ mod Q means the sum over all the Dirichlet characters λ mod Q.
Since p1, p2 and Q are relatively prime in pairs, we find from the Chinese
remainder theorem that for any character λ mod Q the product

( ·
p1

)( ·
p2

)
λ(·)

is a non-principal Dirichlet character mod p1p2Q. From this, the Siegel–
Walfisz theorem (see [Da, p. 132, (3)]) and partial summation, it follows, for
fixed ν, that for all large X and all pairs of distinct primes (p1, p2) satisfying
ν < p1 ≤ hX and ν < p2 ≤ hX , we have

∑

u≤X, u : prime

(
u

p1

)(
u

p2

)
λ(u) ≪ Xe−b

√
log X ,(4.14)

where b is an absolute positive constant. From this and (4.13) we infer

|S2| ≤
∑

p1,p2 : primes, p1 6=p2

ν<p1,p2≤hX

1

pσ1

1 pσ1

2

∣∣∣∣
∑

u≤X, u : prime
u≡δc mod Q

χδu(p1)χδu(p2)

∣∣∣∣(4.15)

=
∑

p1,p2 : primes, p1 6=p2

ν<p1,p2≤hX

1

pσ1

1 pσ1

2

O(Xe−b
√

log X)

≪

( ∑

p≤hX

1

pσ1

)2

O(Xe−b
√

log X) ≪ h2
XXe−b

√
log X

= o

(
X

log X

)
.

Consequently, for fixed ν we find, from (4.11), (4.12) and (4.15), that for
all large X and uniformly for s ∈ C with Re s ≥ σ1,

∑

u≤X, u : prime
u≡δc mod Q

∣∣∣∣
∑

ν<p≤hX

χδu(p)

ps

∣∣∣∣
2

≪
ν1−2σ1

2σ1 − 1

1

ϕ(Q)

X

log X
.(4.16)
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Note that the right-hand side of (4.16) is independent of [c]Q ∈ Rγ . Com-
bining (4.16), (4.10), (4.3), (4.8) and (1.2), we conclude that

∑

q∈Pγ
X,ν

(m,a)

∣∣∣∣
∑

ν<p≤hX

χq(p)

ps

∣∣∣∣
2

≪ #Rγ ν1−2σ1

2σ1 − 1

1

ϕ(Q)

X

log X

≪ #Rγ ν1−2σ1

2σ1 − 1

ϕ(m)

ϕ(Q)
#Pγ

X(m, a) ≪
ν1−2σ1

2σ1 − 1
Cν(m)#Pγ

X(m, a).

This completes the proof.

To obtain (4.14) we have used the Siegel–Walfisz theorem. We remark
that actually, instead of the Siegel–Walfisz theorem, a weaker result (e.g.
[Da, p. 123]) is sufficient since p1p2Q ≪ν h2

X = (log log X)4.

Proposition 4.3. Let σ1 > 1/2 and K be a compact subset of C such

that K ⊂ {s ∈ C | Re s > σ1}. Let ε > 0. Then there exists a large real

number ν0 = ν0(σ1, K, ε, m) depending only on σ1, K, ε and m, and satisfy-

ing π(ν0) > π(m) and the following. Fix any real number ν > ν0. Let ap ∈
{1,−1} for each prime p satisfying p ≤ ν and p ∤ m. Let Pγ

X,ν(m, a), Cν(m)

and hX be as in Lemma 4.2 for large X. Define Bγ
X,ν(m, a) = Bγ

X,ν(m, a, ε,

σ1, K, {ap}) by

Bγ
X,ν(m, a) :=

{
q ∈ Pγ

X,ν(m, a)

∣∣∣∣ max
s∈K

∣∣∣∣
∑

ν<p≤hX

χq(p)

ps

∣∣∣∣ < ε

}
.

Then for all sufficiently large X we have

#Bγ
X,ν(m, a)

#Pγ
X(m, a)

>
1

2
Cν(m).

Proof. Set σ2 = 1 + sup{Re s | s ∈ K} and A = 1 + sup{|Im s| | s ∈ K}.
Let U be the open rectangle {s ∈ C | σ1 < Re s < σ2, |Im s| < A} in C,
and then U ⊃ K. Take a large real number ν0 = ν0(σ1, K, ε, m) satisfying
π(ν0) > π(m) and

(4.17)
( \

U

1 dσ dt
)
c

ν1−2σ1

0

2σ1 − 1
<

ε2

4b(U, K)2
,

where c is the absolute constant implied by the symbol ≪ in (4.9), and
b(U, K) is the constant in Lemma 2.2. Note that ν0 depends only on σ1, K, ε
and m.

In the following we fix any ν > ν0. For large X we define

(4.18) B̃γ
X,ν(m, a)

:=

{
q ∈ Pγ

X,ν(m, a)

∣∣∣∣
\
U

∣∣∣∣
∑

ν<p≤hX

χq(p)

ps

∣∣∣∣
2

dσ dt <
ε2

b(U, K)2

}
.
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By Lemma 2.2,

(4.19) B̃γ
X,ν(m, a) ⊂ Bγ

X,ν(m, a).

By Lemma 4.2 and (4.17), we have, for all large X,

(4.20)
∑

q∈Pγ
X,ν

(m,a)

\
U

∣∣∣∣
∑

ν<p≤hX

χq(p)

ps

∣∣∣∣
2

dσ dt

≤
( \

U

1 dσ dt
)
c

ν1−2σ1

2σ1 − 1
Cν(m) #Pγ

X(m, a)

<
ε2

4b(U, K)2
Cν(m) #Pγ

X(m, a).

Now we assume that there exists a large number X such that

#(Pγ
X,ν(m, a) − B̃γ

X,ν(m, a)) ≥
1

4
Cν(m) #Pγ

X(m, a).

Then for this X we have, using (4.18),

∑

q∈Pγ
X,ν

(m,a)

\
U

∣∣∣∣
∑

ν<p≤hX

χq(p)

ps

∣∣∣∣
2

dσ dt

≥
∑

q∈Pγ
X,ν

(m,a)−B̃γ
X,ν

(m,a)

\
U

∣∣∣∣
∑

ν<p≤hX

χq(p)

ps

∣∣∣∣
2

dσ dt

≥
1

4
Cν(m) #Pγ

X(m, a)
ε2

b(U, K)2
.

However, this contradicts (4.20). Hence for all large X we have

#(Pγ
X,ν(m, a) − B̃γ

X,ν(m, a)) <
1

4
Cν(m) #Pγ

X(m, a),

so

(4.21)
#B̃γ

X,ν(m, a)

#Pγ
X(m, a)

>
#Pγ

X,ν(m, a)

#Pγ
X(m, a)

−
1

4
Cν(m).

Further, Lemma 4.1 implies that

(4.22)
#Pγ

X,ν(m, a)

#Pγ
X(m, a)

>
3

4
Cν(m) if X is large enough.

Combining (4.19), (4.21) and (4.22), we conclude that if X is large enough
then

#Bγ
X,ν(m, a)

#Pγ
X(m, a)

≥
#B̃γ

X,ν(m, a)

#Pγ
X(m, a)

>
3

4
Cν(m) −

1

4
Cν(m) =

1

2
Cν(m).
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5. Proofs of Theorem 1.1 and its corollaries

Proof of Theorem 1.1. Let ε > 0 be an arbitrary small number. Take
a real number σ1 > 1/2 such that K ⊂ {s ∈ C | Re s > σ1}. Fix a large

positive number ν1 satisfying ν1 > ν0(σ1, K, ε, m) and ν1−2σ1

1 /(2σ1−1) < ε,
where ν0(σ1, K, ε, m) is the constant in Proposition 4.3. We set a2 to be 1
if a ≡ 1 or 7 mod 8, and −1 if a ≡ 3 or 5 mod 8. Further, we set ap =

(
δa
p

)

for each odd prime p with p |m, where δ is as in (4.1).
As is shown in [MN1], there exists a holomorphic function g(s) on Ω

such that g(x) ∈ R for any x ∈ Ω ∩ R and

(5.1) h(s) = eg(s).

Now Proposition 2.3 implies that there exist ν > ν1 and ap ∈ {1,−1}, for
each prime p with p ≤ ν and p ∤ m, such that

max
s∈K

∣∣∣∣g(s) − log
∏

p≤ν

(
1 −

ap

ps

)−1∣∣∣∣ < ε.(5.2)

For those ap’s, where p ≤ ν and p ∤ m, we apply Proposition 4.3. Then
for the above number ν and all large X, we have

(5.3)
#Bγ

X,ν(m, a)

#Pγ
X(m, a)

>
1

2
Cν(m).

Since 8 |m, we have q ≡ δa mod 8 and q ≡ δa mod p for q ∈ Pγ(m, a) and
a prime p with p |m. This and the definition of Kronecker’s symbol yield
χq(2) = a2 and χq(p) =

( q
p

)
=

(
δa
p

)
= ap for q ∈ Pγ(m, a) and an odd prime

p with p |m. Hence, from the definition of Bγ
X,ν(m, a) we find that for every

q ∈ Bγ
X,ν(m, a) and all large X,

(5.4) max
s∈K

∣∣∣∣log
∏

p≤ν

(
1 −

ap

ps

)−1

− log
∏

p≤hX

(
1 −

χq(p)

ps

)−1∣∣∣∣

= max
s∈K

∣∣∣∣
∑

ν<p≤hX

χq(p)

ps
+

∑

ν<p≤hX

∞∑

n=2

χq(p)n

npns

∣∣∣∣

≤ max
s∈K

∣∣∣∣
∑

ν<p≤hX

χq(p)

ps

∣∣∣∣ + max
s∈K

∣∣∣∣
∑

ν<p≤hX

∞∑

n=2

χq(p)n

npns

∣∣∣∣

≤ ε + O(ε) ≪ ε,

since
∣∣∣∣

∑

ν<p≤hX

∞∑

n=2

1

npns

∣∣∣∣ ≪
∑

ν<p≤hX

1

p2σ1
≪

ν1−2σ1

2σ1 − 1
<

ν1−2σ1

1

2σ1 − 1
< ε.
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From (5.4) and (5.2) we deduce, for every q ∈ Bγ
X,ν(m, a),

max
s∈K

∣∣∣∣g(s) − log
∏

p≤hX

(
1 −

χq(p)

ps

)−1∣∣∣∣ ≪ ε

and therefore

(5.5) max
s∈K

∣∣∣∣
∏

p≤hX

(
1 −

χq(p)

ps

)−1

− h(s)

∣∣∣∣

= max
s∈K

∣∣∣∣h(s)

(∏
p≤hX

(1 − χq(p)/ps)−1

h(s)
− 1

)∣∣∣∣

≤ max
s∈K

|h(s)|max
s∈K

|e
log

∏
p≤hX

(1−χq(p)/ps)−1−g(s)
− 1|

≪K, h(s) ε,

using (5.1) and the fact that ez − 1 ≪ |z| if |z| is small.
Let ε1 be a small positive number such that

ε1 < min

{
ε,

Cν(m)

2

}
.

According to Proposition 3.2, if we put

(5.6) Aγ
X(m, a)

:=

{
q ∈ Pγ

X(m, a)

∣∣∣∣ max
s∈K

∣∣∣∣L(s, χq) −
∏

p≤hX

(
1 −

χq(p)

ps

)−1∣∣∣∣ < ε1

}
,

then for all large X,

(5.7)
#Aγ

X(m, a)

#Pγ
X(m, a)

> 1 − ε1.

By (5.6) and (5.5), every q ∈ Aγ
X(m, a) ∩ Bγ

X,ν(m, a) satisfies

max
s∈K

|L(s, χq) − h(s)| ≪K, h(s) ε.(5.8)

Furthermore, from (5.3) and (5.7) it follows that for the above number ν
and all large X,

(5.9) #(Aγ
X(m, a) ∩ Bγ

X,ν(m, a))

≥ #Aγ
X(m, a) + #Bγ

X,ν(m, a) − #Pγ
X(m, a)

≥

(
Cν(m)

2
− ε1

)
#Pγ

X(m, a).

Since Cν(m)/2 − ε1 > 0, (5.8) and (5.9) yield (1.3). This completes the
proof.
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From Theorem 1.1 we can prove Corollaries 1.2–1.4 by the same argu-
ments as in the proofs of Corollaries 1.2–1.4 in [MN1], respectively.

6. On the line Re s = 1. In this section we prove Theorem 1.5. The
next lemma is proved in [MN1].

Lemma 6.1. Let t ∈ R+ and y ∈ R+ be fixed. Then for any z0 ∈ C and

ε > 0, there exist ν ≥ y and cp ∈ {1,−1}, for each prime p with y ≤ p ≤ ν,
such that ∣∣∣∣z0 −

∑

y≤p≤ν

cp

p1+it

∣∣∣∣ < ε.

Proposition 6.2. Let t ∈ R+ be fixed. Let z ∈ C and ν1 ∈ R+ with

ν1 > m + 1. Let ap ∈ {1,−1} for each prime p with p |m. Then for any

ε > 0 there exist ν > ν1 and ap ∈ {1,−1}, for each prime p with p ≤ ν and

p ∤ m, such that
∣∣∣∣z − log

∏

p≤ν

(
1 −

ap

p1+it

)−1∣∣∣∣ < ε,

where

log
∏

p≤ν

(
1 −

ap

p1+it

)−1

= −
∑

p≤ν

log

(
1 −

ap

p1+it

)

=
∑

p≤ν

∞∑

n=1

an
p

npn(1+it)
.

Proof. The proof is similar to that of Proposition 2.3. Let ε > 0 be
arbitrary. Take a large number y > ν1 such that 1/y < ε. Then

(6.1)
∑

p≥y

∞∑

n=2

1

npn
≪

∑

p≥y

1

p2
≪

1

y
< ε.

Set ap = 1 for each prime p with p < y and p ∤ m.
From Lemma 6.1 it follows that there exist ν ≥ y and cp ∈ {1,−1}, for

each prime p with y ≤ p ≤ ν, such that

(6.2)

∣∣∣∣
(

z −
∑

p<y

∞∑

n=1

an
p

npn(1+it)

)
−

∑

y≤p≤ν

cp

p1+it

∣∣∣∣ < ε.

For each prime p with y ≤ p ≤ ν we set ap = cp. Then we obtain, by (6.1)
and (6.2),
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∣∣∣∣z − log
∏

p≤ν

(
1 −

ap

p1+it

)−1∣∣∣∣

=

∣∣∣∣z −
∑

p<y

∞∑

n=1

an
p

npn(1+it)
−

∑

y≤p≤ν

cp

p1+it
−

∑

y≤p≤ν

∞∑

n=2

cn
p

npn(1+it)

∣∣∣∣

≤

∣∣∣∣z −
∑

p<y

∞∑

n=1

an
p

npn(1+it)
−

∑

y≤p≤ν

cp

p1+it

∣∣∣∣ +

∣∣∣∣
∑

y≤p≤ν

∞∑

n=2

cn
p

npn(1+it)

∣∣∣∣

< ε +
∑

p≥y

∞∑

n=2

1

npn
≪ ε,

which completes the proof.

Proof of Theorem 1.5. The proof is similar to that of Theorem 1.1 in
Section 5. Since L(1+it, χq) = L(1 − it, χq), it suffices to verify the assertion
in the case t > 0. Moreover, it suffices to consider the case z0 ∈ C − {0},
since the set C − {0} is dense in C.

Fix z0 ∈ C−{0} and t > 0. Take a complex number z such that z0 = ez.
Let ε > 0 be an arbitrary small number. Take σ1 ∈ R with 1/2 < σ1 < 1,
and set K = {1 + it}. Take ν1 ∈ R+ so large that 1/ν1 < ε and ν1 >
ν0(σ1, K, ε, m), where ν0(σ1, K, ε, m) is the constant in Proposition 4.3. We
set a2 to be 1 if a ≡ 1 or 7 mod 8, and −1 if a ≡ 3 or 5 mod 8. Further, we
set ap =

(
δa
p

)
for each odd prime p with p |m. According to Proposition 6.2,

there exist ν > ν1 and ap ∈ {1,−1}, for each prime p with p ≤ ν and p ∤ m,
such that

∣∣∣∣z − log
∏

p≤ν

(
1 −

ap

p1+it

)−1∣∣∣∣ < ε.(6.3)

For those ap’s, where p ≤ ν and p ∤ m, we apply Proposition 4.3. Then
for the above number ν and all large X, we have

(6.4)
#Bγ

X,ν(m, a)

#Pγ
X(m, a)

>
1

2
Cν(m).

Noting χq(2) = a2 and χq(p) = ap for q ∈ Pγ(m, a) and an odd prime p
with p | m, we have, for every q ∈ Bγ

X,ν(m, a) and all large X,

(6.5)

∣∣∣∣log
∏

p≤ν

(
1 −

ap

p1+it

)−1

− log
∏

p≤hX

(
1 −

χq(p)

p1+it

)−1∣∣∣∣

=

∣∣∣∣
∑

ν<p≤hX

χq(p)

p1+it
+

∑

ν<p≤hX

∞∑

n=2

χq(p)n

npn(1+it)

∣∣∣∣ ≤ ε + O(ε) ≪ ε,
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since
∑

ν<p≤hX

∞∑

n=2

1

npn
≪

∑

ν<p≤hX

1

p2
≪ ν−1 < ν−1

1 < ε.

By (6.3) and (6.5), every q ∈ Bγ
X,ν(m, a) satisfies

∣∣∣∣z − log
∏

p≤hX

(
1 −

χq(p)

p1+it

)−1∣∣∣∣ ≪ ε

and hence
∣∣∣∣

∏

p≤hX

(
1 −

χq(p)

p1+it

)−1

− z0

∣∣∣∣ =

∣∣∣∣z0

(∏
p≤hX

(1 − χq(p)/p1+it)−1

z0
− 1

)∣∣∣∣(6.6)

= |z0| |e
log

∏
p≤hX

(1−χq(p)/p1+it)−1−z
− 1|

≪z0
ε.

Let ε1 be a small positive number such that ε1 < min{ε, Cν(m)/2}.
Proposition 3.2 implies that if we put

(6.7) Aγ
X(m, a)

:=

{
q ∈ Pγ

X(m, a)

∣∣∣∣
∣∣∣∣L(1 + it, χq) −

∏

p≤hX

(
1 −

χq(p)

p1+it

)−1∣∣∣∣ < ε1

}

then

(6.8)
#Aγ

X(m, a)

#Pγ
X(m, a)

> 1 − ε1

for all large X. Hence by (6.6) and (6.7) we conclude that every q ∈
Aγ

X(m, a) ∩ Bγ
X,ν(m, a) satisfies

|L(1 + it, χq) − z0| ≪z0
ε.(6.9)

Furthermore, from (6.4) and (6.8) we see that for the above number ν and
all X sufficiently large,

#(Aγ
X(m, a) ∩ Bγ

X,ν(m, a)) ≥

(
Cν(m)

2
− ε1

)
#Pγ

X(m, a).(6.10)

Since Cν(m)/2 − ε1 > 0, (6.9) and (6.10) complete the proof.

Acknowledgments. The authors would like to thank the referee for
kind comments.
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