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1. Introduction and statement of results. In [11], Odoni gave
(among other things) an asymptotic formula for the number UF (x) of pos-
itive integers not exceeding x that can be represented by a given norm
form F . The error term, however, depends on the number field involved,
and for applications often uniform results are required (see e.g. [1, 2]). In
this paper we derive uniform estimates for UF (x) in the case of Abelian
number fields. In fact, we consider the following more general situation:

Let K1, . . . , Km be finite Abelian extensions of Q of degrees d1, . . . , dm

with pairwise coprime discriminants. For j = 1, . . . , m let Oj ⊆ Kj be the
ring of integers. Choose an integral basis {ωj,ν | 1 ≤ ν ≤ dj} of Oj and let

Fj(x) = N
(∑

ν

ωj,νxν

)
, x = (xν) ∈ Zdj ,

be the corresponding norm form. A change of base in Oj yields a new form
F ′

j = Fj ◦M with some M ∈ GLdj
(Z). Thus Fj and F ′

j represent the same
integers. Let UF(x) be the number of integers n ≤ x such that the system
of the m diophantine equations |Fj(xj)| = n (j = 1, . . . , m) is solvable. In
other words, UF(x) is the number of integers n ≤ x such that each field Kj

contains an Kj-integer whose norm (in absolute value) is n.
The coprimality of the discriminants implies Ki ∩Kj = Q for i 6= j (see

e.g. [16, p. 322]). Let L = K1 · · ·Km. Then Gal(L/ Q) ∼=
∏m

j=1 Gal(Kj/ Q)

acts on C :=
∏m

j=1 Cj , the direct product of the class groups of the fields Kj .
We write h(k) for the class number of a number field k and define

h :=

m∏

j=1

h(Kj), ∆ := |DL/ Q|, G := Gal(L/ Q), dL := [L : Q].
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Several times we shall use the bound dL ≪ log ∆. Here and henceforth all
implicit and explicit constants do not depend on the fields involved, and
they are also independent of m. Odoni’s result implies (in the case m = 1)

(1.1) UF(x) ∼ c(F)x(log x)1/dL−1

for fixed K1, . . . , Km and x→∞ where the constant c(F) is neither very big
nor very small. However, as we shall see below, in general this asymptotics
becomes incorrect if ∆ can increase (even moderately) with x.

In order to state the main result, we write, for α ∈ [0, 1] and each sub-
group H ≤ G,

E(α, H) := −1 + α(1− log(α|H|)),
FixH := {C ∈ C | Cσ = C for all σ ∈ H}.

We shall prove:

Theorem 1. Let M > 0 and ε > 0 be given. Let x ≥ x0(M, ε), and

assume ∆ ≤ (log x)M . Then

(1.2) UF(x)≫M,ε max
0≤α≤1

min
H≤G

x(log x)E(α,H)−ε

|FixH| .

If in addition dL = o (log log x), then

(1.3) UF(x)≪M,ε max
0≤α≤1

min
H≤G

x(log x)E(α,H)+ε

|FixH| .

Theorem 1 follows directly from the following theorem. For n ∈ N and
C = (C1, . . . , Cm) ∈ C we write n ∈ R(C) and say that n is a norm in C if
for each j = 1, . . . , m there is an ideal aj in the class Cj with norm n.

Theorem 2. Let M > 0, ε > 0, and C0 ∈ C be given. Let UC0
(x) be

the number of integers n ≤ x such that n is the norm of some ideal in C0.

Then for x ≥ x0(M, ε) and ∆ ≤ (log x)M we have

UC0
(x)≫M,ε max

0≤α≤1
min
H≤G

x(log x)E(α,H)−ε

|FixH| .

If in addition dL = o (log log x), then

UC0
(x)≪M,ε max

0≤α≤1
min
H≤G

x(log x)E(α,H)+ε

|FixH| .

If we take H = {e} and H = G, this contains the two upper bounds

UC0
(x)≪ x(log x)ε

h

which can be obtained by counting norms of ideals with multiplicity of their
occurrence (see e.g. [14]), and

(1.4) UC0
(x)≪ x(log x)1/dL−1+ε.
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The bound (1.4), uniformly in ∆ ≤ (log x)M , can be obtained by applying
a Landau-type argument to ζL(s)1/dLH(s) where H(s)≪∏

p|∆(1 + p−s) in

ℜs ≥ 2/3. In general it might be hard to estimate FixH for all subgroups
H of G, but for example the following bound holds.

Proposition 3. Assume that Gj := Gal(Kj/ Q) is cyclic, and let H ≤
G =

∏
Gj be any subgroup. Let prj : G → Gj be the canonical projection,

define Hj := prj(H) and let K
Hj

j ⊆ Kj be the fixed field of Hj. Then

|FixH| ≪ ∆ε
m∏

j=1

h(K
Hj

j ).

A typical application of Theorem 2 is the following uniform version of
(1.1):

Corollary 4. With the above notation we have

(1.5) UC0
(x) = x(log x)1/dL−1+o(1)

providing x≫ exp(∆ε) + exp(hε+dL/log 2) + exp(exp(dL log dL)).

In general, (1.5) becomes incorrect for smaller x as can already be seen by
taking imaginary quadratic fields [2]. The proof of Theorem 2 is a variant of
the method in [1, 2], but we need some additional ideas to obtain uniformity
in all parameters. Loosely speaking, if α0 ∈ [0, 1] is the number at which
the maximum in (1.2), (1.3) is taken, then α0 log log x is approximately the
number of prime factors of a “generic” integer n counted by UF(x). It is clear
that we cannot drop the condition (DKi/ Q, DKj/ Q) = 1 for i 6= j as one can
already see for two quadratic extensions. The condition dL = o(log log x),
however, is only for technical reasons and can perhaps be removed.

The first author would like to thank Dr. M. Spitzweck and Prof. U. Stuh-
ler for helpful discussions.

2. Some lemmata. For a group G and subsets A1, . . . , Ak define the
product set

(2.1)
k∏

j=1

Aj := {a1 · · · ak | a1 ∈ A1, . . . , ak ∈ Ak}.

Then we have:

Lemma 2.1. A prime p is a norm in some C ∈ C if and only if p is

divisible by a prime ideal in L of degree 1. In this case pep is a norm in all

the classes in the product set {Cσ | σ ∈ G}ep and no others.

Let n =
∏

p pep be the canonical prime factorization of n, and assume

that pep is a norm exactly in the set of classes ∅ ⊆ Cp ⊆ C. Then n is a

norm exactly in all the classes in the product set
∏

p Cp and no others.
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Let C(L) be the class group of L, and for any finite Abelian group G let

Ĝ := {χ : G→ C∗} be the dual group.

Lemma 2.2. We have an injective homomorphism of groups

Ĉ →֒ Ĉ(L), (χ1, . . . , χm) 7→ χ :=

m∏

j=1

χj ◦NL/Kj
.

Proof. It is clear that the map is a homomorphism from Ĉ to Ĉ(L). We
have to show that the kernel is trivial. To this end let χ1, say, be nonprinci-
pal, so that χ1(C) 6= 1 for some C ∈ C1. For any number field k/ Q let k̃ be
the class field. Since (DKi/Q, DKj/Q) = 1 for i 6= j, we have by properties of
the Artin map (see [16, p. 400]) a commutative diagram

C(L)
∼=−−−−→ Gal(L̃/L)

norm

y
y

C =
∏m

j=1 Cj
∼=−−−−→ ∏m

j=1 Gal(K̃j/Kj)

where the isomorphisms are given by the Artin map; the map on the right-
hand side is given by

Gal(L̃/L)
restr.−−−−→ Gal

(∏
K̃j/L

)
∼=
∏

Gal(K̃jL/L) ∼=
∏

Gal(K̃j/Kj)

and therefore obviously surjective. Thus also the norm is surjective and we
have a preimage C ∈ C(L) of (C, 1, . . . , 1) with χ(C) 6= 1, i.e. χ is nonprin-
cipal.

For any Galois number field k/Q with discriminant D we know from
results of Siegel [12] (upper bound), and Siegel–Brauer–Stark [13] (lower
bound)

(2.2) |D|−ε ≪ε ress=1 ζk(s)≪
(

c1 log |D|
dL

)dL

≪ |D|c2

for any ε > 0 and some absolute constants c1, c2, so that by the class number
formula

(2.3) h(k)≪ |D|c3.
Let

(2.4) Q = Qε := exp(∆ε)

for some sufficiently small given ε > 0, and define

PQ := {p > Q | p totally split in L},
RQ(C) := R(C) ∩ {n ∈ N : p |n⇒ p ∈ PQ}.

(2.5)
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For χ ∈ Ĉ(L) let L(s, χ) be the Hecke L-function, and let

L̃(s, Q, χ) :=
∏

p∈PQ

∏

P|(p)

exp

(
χ(P)

ps

)

where P denotes a prime ideal in L.

Lemma 2.3. For any ε > 0 there are absolute positive constants c4,

c5(ε) such that for χ ∈ Ĉ the functions L(s, χ), L̃(s, Q, χ) are analytic and

zero-free in the region

(2.6) R :=

{
s = σ + it ∈ C

∣∣∣∣ σ ≥ 1− c4

dL log(∆(1 + |t|))

}

\(−∞, 1− c5(ε)∆
−ε],

except for a simple pole at s = 1 if χ = χ0. For s ∈ R, |σ − 1| ≤
min

(
(log Q)−1, 1

3 log−1(∆(1 + |t|))
)
, we have

(2.7)
log L̃(s, Q, χ)

log L(s, χ)

}
− δχ log+

(
1

|s− 1|

)

≪ε dL log log(∆(1 + |t|)) + log ∆ε

where log+(x) = log(max(1, x)) and δχ = 1 if χ = χ0 and zero otherwise.

All constants are absolute (but c5 and the constant implied in (2.7) are in-

effective).

Proof. We first observe that L̃(s, Q, χ) = L(s, χ)G(s, Q, χ) where the
Euler product G is entire and zero-free in ℜs > 1/2 and log G(s, Q, χ) ≪
log log Q = log ∆ε if ℜs ≥ 1 − (log Q)−1. For complex χ or |t| ≥ 1 the
existence of a c4 > 0 for the zero-free region for L(s, χ) is well known (see
e.g. [9, Lemma 2.3]). For real χ 6= χ0 we note that L(s, χ) = ζL′(s)/ζL(s) for
some quadratic extension L′ ⊇ L (see [5]) with DL′/ Q ≤ ∆2. Thus it follows
from the theorems of Siegel–Brauer and Stark [13] that there is no zero

β ≥ 1−max(c6(ε)
−dL∆−ε, c7d

−1
L ∆−2/dL),

which gives (2.6). To obtain (2.7), we choose δ = log−1(∆(1 + |t|)) in
Lemma 4 of [4] getting

s− 1

s− 2
ζL(s), L(s, χ)≪ logdL(c8∆(1 + |t|))

uniformly in 1− δ ≤ σ ≤ 1 + δ where χ denotes any nonprincipal character.
By Carathéodory’s inequality (see e.g. [10, §§73, 80]) and (2.4) we find
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log L(s, χ)− δχ log+ 1

|s− 1|

≪ dL log log(∆(1 + |t|)) +

∣∣∣∣log L

(
1 +

δ

3
+ it, χ

)∣∣∣∣

≪ dL log log(∆(1 + |t|)) + log
1

δ
+ log(ress=1 ζL(s))

≪ dL log log(∆(1 + |t|)) + log ∆ε

for s ∈ R, 1− δ/3 ≤ σ ≤ 1 + δ and any χ ∈ Ĉ. After possibly reducing c4, c5

in (2.6), we obtain (2.7). By the remark at the beginning of the proof it also

holds for L̃(s, Q, χ).

Lemma 2.4. Let C be any finite Abelian group of order h, G ≤ Aut(C)
finite, k ∈ N. For C = (C1, . . . , Ck) ∈ Ck define

Sk(C) := #

k∏

ν=1

{Cσ
ν | σ ∈ G}

in the sense of (2.1). Then

∑

C∈Ck

Sk(C) ≥ hk

∑
H≤G 1

min
H≤G

(
h

|FixH|

( |G|
|H|

)k)
,

max
C∈Ck

Sk(C) ≤ min
H≤G

(
h

|FixH|

( |G|
|H|

)k)
.

Proof. To obtain the upper bound, we fix a subgroup H ≤ G. Let T be
a transversal for H in G, so that, for any σ1, . . . , σk ∈ G, C1, . . . , Ck ∈ C,

k∏

ν=1

Cσν
ν =

k∏

ν=1

Cν

k∏

ν=1

Ctν
ν

k∏

ν=1

Cτν−1
ν

for suitable tν ∈ T , τν ∈ H. (Note that σ − 1 is an endomorphism of C for
all σ ∈ G since C is Abelian.) Let V = 〈τ − 1 | τ ∈ H〉 ≤ End(C). Since⋂

v∈V ker(v) =
⋂

τ∈H ker(τ − 1) = FixH, we have

#
{ k∏

ν=1

Cτν−1
ν

∣∣∣ τν ∈ H
}
≤ h

|FixH| .

This shows

Sk(C) ≤ h|T |k
|FixH| =

h

|FixH|

( |G|
|H|

)k

for any subgroup H ≤ G and any C ∈ Ck.
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For the lower bound we define

NC(C) = NC1,...,Ck
(C) := #

{
(σ1, . . . , σk) ∈ Gk

∣∣∣
k∏

ν=1

Cσν
ν = C

}

for C ∈ C and C ∈ Ck. By Cauchy’s inequality,

(2.8)
∑

C∈C

Sk(C) =
∑

C∈Ck

∑

C∈C
NC(C)≥1

1 ≥ (
∑

C∈Ck

∑
C∈C NC(C))2∑

C∈Ck

∑
C∈C NC(C)2

.

Clearly,

(2.9)
∑

C∈Ck

∑

C∈C

NC(C) = |C|k|G|k

and

(2.10)
∑

C∈Ck

∑

C∈C

NC(C)2 =
∑

C∈Ck

∑

(σ1,σ′

1
,...,σk,σ′

k)∈G2k

C
σ1
1

···C
σk
k =C

σ′

1
1

···C
σ′

k
k

1

=
∑

(σ1,σ′

1
,...,σk,σ′

k)∈G2k

#{C ∈ Ck | Cσ1

1 · · ·Cσk
k = C

σ′

1

1 · · ·C
σ′

k
k }

= |G|k
∑

(σ1,...,σk)∈Gk

#{C ∈ Ck | Cσ1−1
1 · · ·Cσk−1

k = 1}.

For H ≤ G let

ΣH :=
∑

(σ1,...,σk)∈Gk

〈σ1,...,σk〉=H

#{C ∈ Ck | Cσ1−1
1 · · ·Cσk−1

k = 1}.

Since the σν − 1 are endomorphisms of C, we obtain

#{C ∈ Ck | Cσ1−1
1 · · ·Cσk−1

k = 1}

= #
{
(C1, . . . , Ck) ∈

k∏

ν=1

im(σν − 1)
∣∣∣

k∏

ν=1

Cν = 1
} k∏

ν=1

|ker(σν − 1)|

for any k-tuple (σ1, . . . , σk) ∈ Gk. Since C is Abelian, the first factor equals

1

|〈im(σ1 − 1), . . . , im(σk − 1)〉|

k∏

ν=1

|im(σν − 1)|.

If we substitute the last two displays in the definition of ΣH , we obtain

ΣH =
∑

(σ1,...,σk)∈Gk

〈σ1,...,σk〉=H

|C|k
|〈im(σ1 − 1), . . . , im(σk − 1)〉| ≤ |C|

k |H|k|FixH|
|C| .

Finally, we sum over all H ≤ G and use (2.8)–(2.10) to get the lower bound.
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Next we restate Lemma 4.1 in [1].

Lemma 2.5. Let zν , ν = 1, . . . , k, be k complex numbers with ℑ(zν) <

0 < ℜ(zν) and let z =
∏k

ν=1 zν. Then −ℑ(z) is positive and increasing in

all ℜ(zν) as long as kℑ(zν)/ℜ(zν) > −π for all ν.

Lemma 2.6. Let α ∈ [0, 1], β ∈ [1/2, 1], γ > 0, r := α log log x, J =
[1− (log x)−β, 1]. If β > α, then

1

Γ (r + 1)

\
J

(
γ log

1

1− s

)r

ds≪ (log x)−β+α(1+log(γβ/α))+ε

uniformly in α, β, γ.

Proof. By a change of variables s̃ := (log log x)2/log
(

1
1−s

)
the left hand

side equals

γr(log log x)2

Γ (r + 1)

(log log x)/β\
0

(
(log log x)2

s̃

)r

exp

(
−(log log x)2

s̃

)
ds̃

s̃2
.

The integrand is increasing for s̃ ≤ (log log x)2/(r + 2), and so is

≪ (β log log x)r(log x)−β

since β > α. The lemma follows now easily using Stirling’s formula.

Finally, we need a general Siegel–Walfisz theorem for Galois number
fields. For C ∈ C let

(2.11) ǫ(C) :=
1

|G| #{σ ∈ G | Cσ = C}

be the normalized stabilizer of C.

Lemma 2.7. For any C ∈ C we have

(2.12) ǫ(C)
∑

p≤ξ
p∈R(C)

p totally split in L

1 =
1

dLh

ξ\
2

dt

log t
+ O(ξ exp(−cB(log ξ)1/3))

uniformly in ∆ ≤ (log ξ)B for any constant B > 0. In particular ,

(2.13) UF(x)≫ x

(log x)1+εh
≫ x

(log x)Bc3+1+ε

uniformly in ∆ ≤ (log x)B (cf. (2.3)).
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Proof. This is standard by applying Perron’s formula to

ΨC(s) := − 1

dLh

∑

(χ1,...,χm)∈Ĉ

( m∏

j=1

χ̄j(Cj)
)L′(s, χ)

L(s, χ)
(2.14)

=
1

dL

∑

p

∑

n≥1

fp log p

pfpns

∑

P|(p)
NL/Kj

Pn∈Cj

1.

Here P is a prime ideal in L, fp is the ramification index of p in L, and
χ is as in Lemma 2.2. We can absorb the contribution of the pn, n > 1,
and the contribution of the nonsplit primes in the error term. We integrate
over a suitable rectangle so that the main term comes from the residue
of ΨC(s) at s = 1, which is (dLh)−1 by Lemma 2.2. Note that we have
d−1

L #{P | (p) : NL/Kj
Pn ∈ Cj} = ǫ(C) for a totally split prime p. For

further details see [6], where the integration is carried out in detail, and
note that we can use Stark’s result [13] to obtain a larger zero-free region
as in [6] if dL is large (dL ≥

√
log log x, say).

3. Suitable Dirichlet series. The proof of the main theorem uses
ideas from [1, 2], so we refer to these papers for some more details. We use
a Dirichlet series to count numbers which are norms in a given class. We
begin with a Dirichlet series that counts primes that are norms in a given
class C = (C1, . . . , Cm). By orthogonality we have (cf. (2.14))

(3.1)
1

dLh

∑

(χ1,...,χm)∈Ĉ

( m∏

j=1

χ̄j(Cj)
)

log L̃(s, Q, χ) = ǫ(C)
∑

p∈RQ(C)

1

ps

=: PC,Q(s) =:
1

dLh
log ζ(s) + T (s,C, Q)

where χ is given by Lemma 2.2 and RQ(C) by (2.5). From the defini-
tion we see that T (s,C, Q) is a Dirichlet series with real coefficients, hence
T (s,C, Q) = T (s̄,C, Q) on (1,∞]. This identity holds wherever T is holo-
morphic; in particular T is real on [2/3, 1] ∩ R by Lemma 2.3. For C ∈ C,
k ∈ N let

Mk(C) :=
{
(C1, . . . ,Ck) ∈ Ck

∣∣∣ C ∈
k∏

ν=1

{Cσ
ν | σ ∈ G}

}
,

and

(3.2) AC,k(s) =
1

k!

∑

(C1,...,Ck)∈Mk(C)

k∏

ν=1

PCν ,Q(s) =
∞∑

n=1

aC,k(n)

ns
(say).

By Lemma 2.1 the coefficients aC,k satisfy
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• 0 ≤ aC,k(n) ≤ 1 for all n ∈ N,
• aC,k(n) > 0 only if n ∈ RQ(C) and Ω(n) = k,
• aC,k(n) = 1 if n ∈ RQ(C), Ω(n) = k and µ2(n) = 1.

In fact, it is clear that AC,k(s) counts only n ∈ RQ(C) with Ω(n) = k.
Furthermore, choose a fixed set of representatives of the quotient G\C, and

for each C ∈ C let C̃ be this representative. For k not necessarily distinct
objects X1, . . . , Xk let ̺(X1, . . . , Xk) be the number of rearrangements of

the k-tuple (X1, . . . , Xk). Then we observe that an n =
∏k

ν=1 pν with not
necessarily distinct pν ∈ RQ(Dν), say, occurs as a denominator of a Dirichlet

series
∏k

ν=1 PCν ,Q(s) for exactly ̺(D̃1, . . . , D̃k)
∏k

ν=1 ǫ(Dν)−1 k-tuples from
Mk(C). Therefore, aC,k(n) ≤ 1 with equality if n ∈ RQ(C) is squarefree.

The preceding discussion gives

(3.3)
∑

n≤x

aC0,k(n) ≤ UC0
(x)

for all k ∈ N and C0 ∈ C. To obtain an upper bound, we have to include
some more numbers in our Dirichlet series. To this end, let

ZC,Q(s) = ǫ(C)
∑

p≤Q
p∈R(C)

1

ps
.

For k, l ∈ N0 let

AC,k,l(s) :=
1

k!

1

l!

∑

(C1,...,Ck)∈Ck

(D1,...,Dl)∈Cl

(C1,...,Dl)∈Mk+l(C)

k∏

ν=1

PCν ,Q(s)
l∏

µ=1

ZDµ,Q(s)

=
∞∑

n=1

aC,k,l(n)

ns
(say).

Then we see as before that aC,k,l(n) = 1 if n ∈ R(C), µ2(n) = 1, and n has
exactly l prime factors ≤ Q and k greater than Q.

Now we observe that by Lemma 2.1, if n = n1n2 ∈ R(C) and (n1, n2)
= 1, then n1 ∈ R(C1) and n2 ∈ R(C2) for some C1C2 = C. This also holds
if (n1, n2) consists only of totally split primes. Finally, let

BC(s) = δC +
∑

n∈R(C)
n powerfull

1

ns

where δC = 1 if C = 1 ∈ C and else it vanishes. Then by the above discussion
the coefficients of
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(3.4)
∑

C∈C

∑

r≤R

∑

k+l=r

AC,k,l(s)BC−1C0
(s) =

∞∑

n=1

a
(R)
C0

(n)

ns
(say)

satisfy

(3.5)
∑

n≤x

a
(R)
C0

(n) ≥ U
(R)
C0

(x)

where U
(R)
C0

(x) denotes those numbers n ≤ x, n ∈ R(C0) with Ω(n) ≤ R.
For k = 0 we count numbers with multiplicity at most h that consist only
of primes p ≤ Q, and by Corollary 1.3 of [8] there are, for sufficiently small
ε in (2.4), at most x exp(−(log x)3/4) numbers of this kind up to x. Thus we
may assume k > 0.

In preparation for Perron’s formula let S = exp((log x)1/2) and

Γ1,1 := [1− (log x)−1+ε + iS, 1 + (log x)−1 + iS],

Γ2,1 := [1− (log x)−1+ε, 1− (log x)−1+ε + iS],

Γ3,1 := [1− exp(−(log log x)4), 1− (log x)−1+ε],

Γ4 := {s ∈ C | |s− 1| = exp(−(log log x)4)}.
Let Γν,2 (1 ≤ ν ≤ 3) be the image of Γν,1 under reflection on the real axis,
oriented such that

Γ := Γ1,2Γ2,2Γ3,2Γ4Γ3,1Γ2,1Γ1,1

is homotopic to [1 + (log x)−1− iS, 1 + (log x)−1 + iS]. By (2.4), (2.6), (2.7)
the functions PC,Q extend for sufficiently large x holomorphically to a neigh-
bourhood of Γ , and we have PC,Q(s) ≪ (log log x)2 on Γ1,2Γ2,2 ∪ Γ2,1Γ1,1

and PC,Q(s)≪ (log log x)4 on Γ4, so that

(3.6) AC,k(s)≪ (h(log log x)4)k ≪ exp((log log x)3)

on Γ̃ := Γ1,2Γ2,2 ∪ Γ4 ∪ Γ2,1Γ1,1 for k ≪ log log x and x > x0(A). Likewise,
since

ZC,Q(s)≪
∑

p≤Q

1

p1−(log x)−1+ε ≪ log log Q≪ log log x

on Γ , we see that

(3.7) AC,k,l(s)≪ exp((log log x)3)

on Γ̃ for k + l ≪ log log x. For future reference we define

(3.8) J = −Γ3,1 = [1− (log x)−1+ε, 1− exp(−(log log x)4)].

Lemma 3.1. For C ∈ C, |σ − 1| ≤ (log x)−2/3 and ε > 0 we have

|T (σ,C, Q)| ≤ ε log ∆ + O(1)

dLh

where T was defined in (3.1).
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Proof (see Lemma 4.3 in [2] for details). For fixed µ ≥ 0 we have, by
(3.1),

dµ

dsµ
T (s,C, Q)|s=1

= lim
ξ→∞

(
ǫ(C)

∑

p∈RQ(C), p≤ξ

(− log p)µ

p
− 1

dLh

∑

p≤ξ

(− log p)µ

p

)
.

For ξ ≥ Q this can be evaluated by partial summation and (2.12), and we
obtain

|T (1,C, Q)| ≤ ε log ∆ + Oε(1)

dLh
and |T (µ)(1,C, Q)| ≤ ∆ε + Oε(1)

dLh

for µ ≥ 1. The lemma follows now from Taylor’s formula up to degree
µ0 := ⌈2c3M + 1⌉, say, where we use the trivial estimation

T (µ0)(s,C, Q)≪ max
χ 6=χ0

∣∣∣∣
dµ0

dsµ0
log L̃(s, Q, χ)

∣∣∣∣≪ (log x)ε

together with (2.6) for |s− 1| ≤ (log x)−2/3.

4. The lower bound. We start with the lower bound. By Perron’s
formula, (3.2) and (3.3) we obtain

UC0
(x) ≥ max

k≤(1−2ε) log log x

1

2πi

\
Γ

AC0,k(s)
xs

s
ds + O

(
x log x

S

)
,

so that by (3.6),

UC0
(x) ≥ max

k≤(1−2ε) log log x

(
− 1

π
ℑ
\
J

AC0,k(s)
xs

s
ds

)
+ O

(
x

exp((log log x)3)

)

with J as in (3.8). Note that the integrand in Γ3,1 is the complex conjugate
of the integrand in Γ3,2. We use Lemma 2.5 with zν = PCν ,Q(s). Note that
by (3.1) and Lemma 3.1 the assumptions are satisfied for x > x0(M, ε).
Therefore,

UC0
(x) ≥ max

k≤(1−2ε) log log x

(
− 1

π
ℑ

1−1/log x\
1−2/log x

1

k!

(
log 1

1−s − ε log ∆− c9 − iπ

dLh

)k

×#Mk(C0)
xs

s
ds

)
+ O

(
x

exp((log log x)3)

)

for some positive constant c9. To estimate #Mk(C0), we divide the sum
over Ck into two sums over C× Ck−1, obtaining

#Mk(C0) ≥
∑

C∈C

#Mk−1(C0C
−1) =

∑

C∈C

#Mk−1(C) =
∑

C∈Ck−1

Sk−1(C),
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so that by Lemma 2.4,

UC0
(x)≫M,ε

x

log x
max

k≤(1−2ε)log log x

1

k!
((1− ε) log log x)k sin

(
πk(1 + o(1))

log log x

)

× 1

dL
∑

H≤G 1
min
H≤G

(
1

|H|k|FixH|

)

≫ x

(log x)1+ε
max

k≤(1−2ε) log log x

1

k!
(log log x)k min

H≤G

(
1

|H|k|FixH|

)

up to an error of O(x/exp((log log x)3)). In order to obtain a (crude) bound
for

∑
H≤G 1, we can observe that there are ≪ |G| nonisomorphic Abelian

groups H of order ≤ G, and each H has at most Ω(|H|) generators and
so can occur in at most Ω(|H|) ≪ log |G| ways in G. Thus

∑
H≤G 1 ≪

|G|O(log |G|) ≪ (log x)ε.

At the cost of an additional factor (log x)−ε we may extend the maximum
over all real k ∈ [0, log log x]. Writing k = α log log x, we obtain after a short
calculation using Stirling’s formula

UC0
(x)≫ max

0≤α≤1
min
H≤G

x(log x)E(α,H)−ε

|FixH| .

This gives the lower bound.

5. The upper bound. Let us first note that by our assumption dL =
o(log log x) we have

∑

C∈C

BC(s)≪
∑

C∈C

BC

(
1− 1

(log x)1−ε

)
≤ cdL

10 ≪ (log x)ε

for s ∈ Γ . This is the only place where the additional assumption is needed.
By Perron’s formula, (3.4), (3.5) and (3.7), we therefore have as above

U
(R)
C0

(x) ≤
∑

r≤R

∑

k+l=r
k 6=0

−1

π
ℑ
(\

J

∑

C∈C

AC,k,l(s)BC−1C0
(s)

xs

s
ds

)
(5.1)

+ O

(
x

exp((log log x)3)

)

≪ x(log x)ε
∑

r≤R

∑

k+l=r
k 6=0

\
J

max
C∈C
|AC,k,l(s)| ds +

x

exp((log log x)3)
.

Writing Ck = C× Ck−1, we see that
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|AC,k,l(s)| ≤
1

k!

1

l!

∑

σ∈G

∑

C1∈C

|PC1,Q(s)|

×
∑

(C2,...,Ck)∈Ck−1

(D1,...,Dl)∈Cl

(C2,...,Dl)∈Mk−1+l(CCσ
1
)

k∏

ν=2

|PCν ,Q(s)|
l∏

µ=1

|ZDµ,Q(s)|.

We relabel the summation variable C1 ← CCσ
1 . By Lemma 3.1 we have

|PC,Q(s)| ≤ 1 + ε

dLh
log

1

1− s
on J .

Changing the order of summation, we see that

|AC,k,l(s)| ≪
(log log x)4

hk!l!

(∑

C∈C

|PC,Q(s)|
)k−1(∑

D∈C

ZD,Q(s)
)l

(5.2)

× max
(C2,...,Dl)∈Ck−1+l

Sk−1+l((C2, . . . ,Dl))

on J (note that ZD,Q(s) > 0 there), so that by Lemma 2.4, (5.1) and (5.2),

U
(R)
C0

(x)≪ x(log x)ε max
r≤R

min
H≤G

(
dr−1

L

|H|r−1|FixH|

)
1

r!
(5.3)

×
\
J

(∑

C∈C

|PC,Q(s)|+ ZC,Q(s)
)r

ds +
x

exp((log log x)3)
.

By (3.1) we have
∑

C∈C(|PC,Q(s)| − PC,Q(s)) = π/dL. Using orthogonality,

the same calculation as in (3.1) shows

1

dL
log ζL(s) =

∑

C∈C

1

h

∑

(χ1,...,χm)∈Ĉ

( m∏

j=1

χ̄j(Cj)
)

log L(s, χ)

=
∑

C∈C

∑

p∈R(C)

1

ps
+ O

(
1 +

∑

p|∆

1

ps

)

on J . From (2.7) we thus infer

(5.4)
∣∣∣
∑

C∈C

(|PC,Q(s)|+ ZC,Q(s))
∣∣∣ ≤ 1 + ε

dL
log

1

1− s
+ log log ∆

on J (x ≥ x0(ε)). Let us first assume dL ≤
√

log log x. Then
∣∣∣
∑

C∈C

(|PC,Q(s)|+ ZC,Q(s))
∣∣∣ ≤ 1 + ε

dL
log

1

1− s
,
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so that by (5.3),

(5.5) U
(R)
C0

(x)

≪ x(log x)ε max
r≤log log x

min
H≤G

(
1

|H|r|FixH|

)
1

r!

\
J

(
log

1

1− s

)r

ds

≪ x max
α∈[0,1]

min
H≤G

(log x)E(α,H)+ε

|FixH|
by Lemma 2.6.

Now assume dL ≥
√

log log x and let c11 = Mc3 + 2,

̺ =
2c11

log log log x
.

Firstly we show that the contribution of those r in (5.3) with ̺ log log x ≤
r ≤ R is negligible. In fact, if we consider in (5.3) only the case H = G,
then by (5.4) and Lemma 2.6 their contribution is at most

U
(R)
1 (x)≪ x(log x)ε max

r≥̺ log log x

1

r!

\
J

(
1 + ε

dL
log

1

1− s
+ log log ∆

)r

ds

≪ x(log x)ε max
r≥̺ log log x

1

r!

\
J

(
c12√

log log x
log

1

1− s

)r

ds

≪ x(log x)−c11+ε

for sufficiently large x which is admissible by (2.13). On the other hand,
those r with r ≤ ̺ log log x contribute at most

x(log x)ε max
r≤̺ log log x

min
H≤G

(
1

|H|r|FixH|

)\
J

1

r!

(
c13(log log ∆) log

1

1− s

)r

ds.

Since ̺ log(c13 log log ∆) = o(1), we find by Lemma 2.6 that

(5.6) U
(R)
C0

(x)≪ xmax
α≤̺

min
H≤G

(log x)E(α,H)+ε

|FixH| .

Now we choose R := c14 log log x with c14 = (log 2)−1(Mc3 + 4) and
bound trivially the number of integers n ≤ x with Ω(n) ≥ c12 log log x. By
[3, Corollary 1], there are at most O(x(log x)−Mc3−2) numbers of this kind.
By (2.13) this yields an admissible error. By (5.5) and (5.6) the proof is
complete.

6. Proof of Proposition 3 and Corollary 4. Since each group Gj =
Gal(Kj/ Q) is cyclic, every C ∈ FixH contains an m-tuple of ideals
(a1, . . . , am) that remains fixed under the action of H. Indeed, let σj be
a generator of Hj . If (b1, . . . , bm) is any m-tuple of ideals in a class C =
(C1, . . . , Cm) ∈ FixH, then Cj is fixed by Hj , and so (bσ1

1 , . . . , bσm
m ) =
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((λ1)b1, . . . , (λm)bm) for some principal ideals (λj). By Hilbert’s Theorem

90 we can write λj = µ
1−σj

j (e.g. [7, §13]), so that aj := (µj)bj gives the
desired ideal tuple. But up to a product of powers of ramified prime ide-

als, the aj are lifted ideals from the fixed field K
Hj

j , and so (cf. e.g. [15,
Theorem 1.6])

|FixH| ≤
m∏

j=1

(
h(K

Hj

j )
∏

p⊆K
Hj
j

e(p)
)

where as usual e(p) denotes the ramification index of p in Kj . By Dedekind’s
discriminant theorem we know

∏

p⊆K
Hj
j

e(p) ≤
∏

pe‖DK/Q

(e + 1)≪ (DK/Q)ε.

This gives the proposition.

The corollary follows immediately from Theorem 2: For each subgroup
H 6= G we estimate E(α, H) ≥ −1 + α(1 − log(αdL/2)) and FixH ≤ h

getting

UC0
(x)

≫ max
0≤α≤1

min

(
x(log x)−1+α(1−log(αdL))−ε,

x(log x)−1+α(1−log(αdL/2))−ε

h

)

≥ x(log x)1/dL−1−ε

if h ≤ (log x)(log 2)/dL as can be seen by taking α = 1/dL. The upper bound
in (1.5) follows from (1.4) for x≫ exp(∆ε).
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[5] —, Über die Ausnahmenullstelle der Heckeschen L-Funktionen, ibid. 8 (1963), 307–

309.
[6] L. J. Goldstein, A generalization of the Siegel–Walfisz theorem, Trans. Amer. Math.

Soc. 149 (1970), 417–429.
[7] H. Hasse, Vorlesungen über Klassenkörpertheorie, Würzburg, 1967.
[8] A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J. Théor.
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