On the number of integers represented by systems of Abelian norm forms

by
Valentin Blomer (Toronto) and Jan-Christoph Schlage-Puchta (Freiburg)

1. Introduction and statement of results. In [11], Odoni gave (among other things) an asymptotic formula for the number $U_{F}(x)$ of positive integers not exceeding x that can be represented by a given norm form F. The error term, however, depends on the number field involved, and for applications often uniform results are required (see e.g. [1, 2]). In this paper we derive uniform estimates for $U_{F}(x)$ in the case of Abelian number fields. In fact, we consider the following more general situation:

Let K_{1}, \ldots, K_{m} be finite Abelian extensions of \mathbb{Q} of degrees d_{1}, \ldots, d_{m} with pairwise coprime discriminants. For $j=1, \ldots, m$ let $\mathcal{O}_{j} \subseteq K_{j}$ be the ring of integers. Choose an integral basis $\left\{\omega_{j, \nu} \mid 1 \leq \nu \leq d_{j}\right\}$ of \mathcal{O}_{j} and let

$$
F_{j}(\mathbf{x})=N\left(\sum_{\nu} \omega_{j, \nu} x_{\nu}\right), \quad \mathbf{x}=\left(x_{\nu}\right) \in \mathbb{Z}^{d_{j}}
$$

be the corresponding norm form. A change of base in \mathcal{O}_{j} yields a new form $F_{j}^{\prime}=F_{j} \circ M$ with some $M \in \mathrm{GL}_{d_{j}}(\mathbb{Z})$. Thus F_{j} and F_{j}^{\prime} represent the same integers. Let $U_{\mathbf{F}}(x)$ be the number of integers $n \leq x$ such that the system of the m diophantine equations $\left|F_{j}\left(\mathbf{x}_{j}\right)\right|=n(j=1, \ldots, m)$ is solvable. In other words, $U_{\mathbf{F}}(x)$ is the number of integers $n \leq x$ such that each field K_{j} contains an K_{j}-integer whose norm (in absolute value) is n.

The coprimality of the discriminants implies $K_{i} \cap K_{j}=\mathbb{Q}$ for $i \neq j$ (see e.g. [16, p. 322]). Let $L=K_{1} \cdots K_{m}$. Then $\operatorname{Gal}(L / \mathbb{Q}) \cong \prod_{j=1}^{m} \operatorname{Gal}\left(K_{j} / \mathbb{Q}\right)$ acts on $\mathfrak{C}:=\prod_{j=1}^{m} \mathfrak{C}_{j}$, the direct product of the class groups of the fields K_{j}. We write $h(k)$ for the class number of a number field k and define

$$
\mathbf{h}:=\prod_{j=1}^{m} h\left(K_{j}\right), \quad \Delta:=\left|D_{L / \mathbb{Q}}\right|, \quad G:=\operatorname{Gal}(L / \mathbb{Q}), \quad d_{L}:=[L: \mathbb{Q}]
$$

2000 Mathematics Subject Classification: 11D57, 11N25.
Key words and phrases: norm form equations, uniform asymptotic results.

Several times we shall use the bound $d_{L} \ll \log \Delta$. Here and henceforth all implicit and explicit constants do not depend on the fields involved, and they are also independent of m. Odoni's result implies (in the case $m=1$)

$$
\begin{equation*}
U_{\mathbf{F}}(x) \sim c(\mathbf{F}) x(\log x)^{1 / d_{L}-1} \tag{1.1}
\end{equation*}
$$

for fixed K_{1}, \ldots, K_{m} and $x \rightarrow \infty$ where the constant $c(\mathbf{F})$ is neither very big nor very small. However, as we shall see below, in general this asymptotics becomes incorrect if Δ can increase (even moderately) with x.

In order to state the main result, we write, for $\alpha \in[0,1]$ and each subgroup $H \leq G$,

$$
\begin{aligned}
E(\alpha, H) & :=-1+\alpha(1-\log (\alpha|H|)), \\
\text { Fix } H & :=\left\{\mathbf{C} \in \underline{\mathfrak{C}} \mid \mathbf{C}^{\sigma}=\mathbf{C} \text { for all } \sigma \in H\right\} .
\end{aligned}
$$

We shall prove:
Theorem 1. Let $M>0$ and $\varepsilon>0$ be given. Let $x \geq x_{0}(M, \varepsilon)$, and assume $\Delta \leq(\log x)^{M}$. Then

$$
\begin{equation*}
U_{\mathbf{F}}(x) \ggg>_{M, \varepsilon} \max _{0 \leq \alpha \leq 1} \min _{H \leq G} \frac{x(\log x)^{E(\alpha, H)-\varepsilon}}{|\operatorname{Fix} H|} \tag{1.2}
\end{equation*}
$$

If in addition $d_{L}=o(\log \log x)$, then

$$
\begin{equation*}
U_{\mathbf{F}}(x)<_{M, \varepsilon} \max _{0 \leq \alpha \leq 1} \min _{H \leq G} \frac{x(\log x)^{E(\alpha, H)+\varepsilon}}{|\operatorname{Fix} H|} \tag{1.3}
\end{equation*}
$$

Theorem 1 follows directly from the following theorem. For $n \in \mathbb{N}$ and $\mathbf{C}=\left(C_{1}, \ldots, C_{m}\right) \in \underline{\mathfrak{C}}$ we write $n \in \mathcal{R}(\mathbf{C})$ and say that n is a norm in \mathbf{C} if for each $j=1, \ldots, m$ there is an ideal \mathfrak{a}_{j} in the class C_{j} with norm n.

Theorem 2. Let $M>0, \varepsilon>0$, and $\mathbf{C}_{0} \in \underline{\mathfrak{C}}$ be given. Let $U_{\mathbf{C}_{0}}(x)$ be the number of integers $n \leq x$ such that n is the norm of some ideal in \mathbf{C}_{0}. Then for $x \geq x_{0}(M, \varepsilon)$ and $\Delta \leq(\log x)^{M}$ we have

$$
U_{\mathbf{C}_{0}}(x)>_{M, \varepsilon} \max _{0 \leq \alpha \leq 1} \min _{H \leq G} \frac{x(\log x)^{E(\alpha, H)-\varepsilon}}{|\operatorname{Fix} H|}
$$

If in addition $d_{L}=o(\log \log x)$, then

$$
U_{\mathbf{C}_{0}}(x) \ll_{M, \varepsilon} \max _{0 \leq \alpha \leq 1} \min _{H \leq G} \frac{x\left(\log x x^{E(\alpha, H)+\varepsilon}\right.}{|\operatorname{Fix} H|}
$$

If we take $H=\{e\}$ and $H=G$, this contains the two upper bounds

$$
U_{\mathbf{C}_{0}}(x) \ll \frac{x(\log x)^{\varepsilon}}{\mathbf{h}}
$$

which can be obtained by counting norms of ideals with multiplicity of their occurrence (see e.g. [14]), and

$$
\begin{equation*}
U_{\mathbf{C}_{0}}(x) \ll x(\log x)^{1 / d_{L}-1+\varepsilon} . \tag{1.4}
\end{equation*}
$$

The bound (1.4), uniformly in $\Delta \leq(\log x)^{M}$, can be obtained by applying a Landau-type argument to $\zeta_{L}(s)^{1 / d_{L}} H(s)$ where $H(s) \ll \prod_{p \mid \Delta}\left(1+p^{-s}\right)$ in $\Re s \geq 2 / 3$. In general it might be hard to estimate Fix H for all subgroups H of G, but for example the following bound holds.

Proposition 3. Assume that $G_{j}:=\operatorname{Gal}\left(K_{j} / \mathbb{Q}\right)$ is cyclic, and let $H \leq$ $G=\prod G_{j}$ be any subgroup. Let $\mathrm{pr}_{j}: G \rightarrow G_{j}$ be the canonical projection, define $H_{j}:=\operatorname{pr}_{j}(H)$ and let $K_{j}^{H_{j}} \subseteq K_{j}$ be the fixed field of H_{j}. Then

$$
|\operatorname{Fix} H| \ll \Delta^{\varepsilon} \prod_{j=1}^{m} h\left(K_{j}^{H_{j}}\right)
$$

A typical application of Theorem 2 is the following uniform version of (1.1):

Corollary 4. With the above notation we have

$$
\begin{equation*}
U_{\mathbf{C}_{0}}(x)=x(\log x)^{1 / d_{L}-1+o(1)} \tag{1.5}
\end{equation*}
$$

providing $x \gg \exp \left(\Delta^{\varepsilon}\right)+\exp \left(\mathbf{h}^{\varepsilon+d_{L} / \log 2}\right)+\exp \left(\exp \left(d_{L} \log d_{L}\right)\right)$.
In general, (1.5) becomes incorrect for smaller x as can already be seen by taking imaginary quadratic fields [2]. The proof of Theorem 2 is a variant of the method in $[1,2]$, but we need some additional ideas to obtain uniformity in all parameters. Loosely speaking, if $\alpha_{0} \in[0,1]$ is the number at which the maximum in (1.2), (1.3) is taken, then $\alpha_{0} \log \log x$ is approximately the number of prime factors of a "generic" integer n counted by $U_{\mathbf{F}}(x)$. It is clear that we cannot drop the condition $\left(D_{K_{i} / \mathbb{Q}}, D_{K_{j} / \mathbb{Q}}\right)=1$ for $i \neq j$ as one can already see for two quadratic extensions. The condition $d_{L}=o(\log \log x)$, however, is only for technical reasons and can perhaps be removed.

The first author would like to thank Dr. M. Spitzweck and Prof. U. Stuhler for helpful discussions.
2. Some lemmata. For a group G and subsets A_{1}, \ldots, A_{k} define the product set

$$
\begin{equation*}
\prod_{j=1}^{k} A_{j}:=\left\{a_{1} \cdots a_{k} \mid a_{1} \in A_{1}, \ldots, a_{k} \in A_{k}\right\} . \tag{2.1}
\end{equation*}
$$

Then we have:
Lemma 2.1. A prime p is a norm in some $\mathbf{C} \in \underline{\mathfrak{C}}$ if and only if p is divisible by a prime ideal in L of degree 1 . In this case $p^{e_{p}}$ is a norm in all the classes in the product set $\left\{\mathbf{C}^{\sigma} \mid \sigma \in G\right\}^{e_{p}}$ and no others.

Let $n=\prod_{p} p^{e_{p}}$ be the canonical prime factorization of n, and assume that $p^{e_{p}}$ is a norm exactly in the set of classes $\emptyset \subseteq \mathcal{C}_{p} \subseteq \underline{\mathfrak{C}}$. Then n is a norm exactly in all the classes in the product set $\prod_{p} \mathcal{C}_{p}$ and no others.

Let $\mathfrak{C}(L)$ be the class group of L, and for any finite Abelian group G let $\widehat{G}:=\left\{\chi: G \rightarrow \mathbb{C}^{*}\right\}$ be the dual group.

Lemma 2.2. We have an injective homomorphism of groups

$$
\widehat{\underline{\mathfrak{C}}} \hookrightarrow \widehat{\mathfrak{C}(L)}, \quad\left(\chi_{1}, \ldots, \chi_{m}\right) \mapsto \chi:=\prod_{j=1}^{m} \chi_{j} \circ N_{L / K_{j}} .
$$

Proof. It is clear that the map is a homomorphism from $\widehat{\mathfrak{C}}$ to $\widehat{\mathfrak{C}(L)}$. We have to show that the kernel is trivial. To this end let χ_{1}, say, be nonprincipal, so that $\chi_{1}(C) \neq 1$ for some $C \in \mathfrak{C}_{1}$. For any number field k / \mathbb{Q} let \widetilde{k} be the class field. Since $\left(D_{K_{i} / \mathbb{Q}}, D_{K_{j} / \mathbb{Q}}\right)=1$ for $i \neq j$, we have by properties of the Artin map (see [16, p. 400]) a commutative diagram

where the isomorphisms are given by the Artin map; the map on the righthand side is given by

$$
\operatorname{Gal}(\widetilde{L} / L) \xrightarrow{\text { restr. }} \operatorname{Gal}\left(\prod \widetilde{K_{j}} / L\right) \cong \prod \operatorname{Gal}\left(\widetilde{K_{j}} L / L\right) \cong \prod \operatorname{Gal}\left(\widetilde{K_{j}} / K_{j}\right)
$$

and therefore obviously surjective. Thus also the norm is surjective and we have a preimage $\mathcal{C} \in \mathfrak{C}(L)$ of $(C, 1, \ldots, 1)$ with $\chi(\mathcal{C}) \neq 1$, i.e. χ is nonprincipal.

For any Galois number field k / \mathbb{Q} with discriminant D we know from results of Siegel [12] (upper bound), and Siegel-Brauer-Stark [13] (lower bound)

$$
\begin{equation*}
|D|^{-\varepsilon} \ll \varepsilon \operatorname{res}_{s=1} \zeta_{k}(s) \ll\left(\frac{c_{1} \log |D|}{d_{L}}\right)^{d_{L}} \ll|D|^{c_{2}} \tag{2.2}
\end{equation*}
$$

for any $\varepsilon>0$ and some absolute constants c_{1}, c_{2}, so that by the class number formula

$$
\begin{equation*}
h(k) \ll|D|^{c_{3}} . \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
Q=Q_{\varepsilon}:=\exp \left(\Delta^{\varepsilon}\right) \tag{2.4}
\end{equation*}
$$

for some sufficiently small given $\varepsilon>0$, and define

$$
\begin{align*}
\mathbb{P}_{Q} & :=\{p>Q \mid p \text { totally split in } L\} \tag{2.5}\\
\mathcal{R}_{Q}(\mathbf{C}) & :=\mathcal{R}(\mathbf{C}) \cap\left\{n \in \mathbb{N}: p \mid n \Rightarrow p \in \mathbb{P}_{Q}\right\}
\end{align*}
$$

For $\chi \in \widehat{\mathfrak{C}(L)}$ let $L(s, \chi)$ be the Hecke L-function, and let

$$
\widetilde{L}(s, Q, \chi):=\prod_{p \in \mathbb{P}_{Q}} \prod_{\mathfrak{P} \mid(p)} \exp \left(\frac{\chi(\mathfrak{P})}{p^{s}}\right)
$$

where \mathfrak{P} denotes a prime ideal in L.
Lemma 2.3. For any $\varepsilon>0$ there are absolute positive constants c_{4}, $c_{5}(\varepsilon)$ such that for $\chi \in \widehat{\widehat{\mathfrak{C}}}$ the functions $L(s, \chi), \widetilde{L}(s, Q, \chi)$ are analytic and zero-free in the region

$$
\begin{array}{r}
R:=\left\{s=\sigma+i t \in \mathbb{C} \left\lvert\, \sigma \geq 1-\frac{c_{4}}{d_{L} \log (\Delta(1+|t|))}\right.\right\} \tag{2.6}\\
\backslash\left(-\infty, 1-c_{5}(\varepsilon) \Delta^{-\varepsilon}\right]
\end{array}
$$

except for a simple pole at $s=1$ if $\chi=\chi_{0}$. For $s \in R,|\sigma-1| \leq$ $\min \left((\log Q)^{-1}, \frac{1}{3} \log ^{-1}(\Delta(1+|t|))\right)$, we have

$$
\left.\begin{array}{rl}
\log \widetilde{L}(s, Q, \chi) \tag{2.7}\\
\log L(s, \chi)
\end{array}\right\}-\delta_{\chi} \log ^{+}\left(\frac{1}{|s-1|}\right)
$$

where $\log ^{+}(x)=\log (\max (1, x))$ and $\delta_{\chi}=1$ if $\chi=\chi_{0}$ and zero otherwise. All constants are absolute (but c_{5} and the constant implied in (2.7) are ineffective).

Proof. We first observe that $\widetilde{L}(s, Q, \chi)=L(s, \chi) G(s, Q, \chi)$ where the Euler product G is entire and zero-free in $\Re s>1 / 2$ and $\log G(s, Q, \chi) \ll$ $\log \log Q=\log \Delta^{\varepsilon}$ if $\Re s \geq 1-(\log Q)^{-1}$. For complex χ or $|t| \geq 1$ the existence of a $c_{4}>0$ for the zero-free region for $L(s, \chi)$ is well known (see e.g. [9, Lemma 2.3]). For real $\chi \neq \chi_{0}$ we note that $L(s, \chi)=\zeta_{L^{\prime}}(s) / \zeta_{L}(s)$ for some quadratic extension $L^{\prime} \supseteq L$ (see [5]) with $D_{L^{\prime} / \mathbb{Q}} \leq \Delta^{2}$. Thus it follows from the theorems of Siegel-Brauer and Stark [13] that there is no zero

$$
\beta \geq 1-\max \left(c_{6}(\varepsilon)^{-d_{L}} \Delta^{-\varepsilon}, c_{7} d_{L}^{-1} \Delta^{-2 / d_{L}}\right)
$$

which gives (2.6). To obtain (2.7), we choose $\delta=\log ^{-1}(\Delta(1+|t|))$ in Lemma 4 of [4] getting

$$
\frac{s-1}{s-2} \zeta_{L}(s), L(s, \chi) \ll \log ^{d_{L}}\left(c_{8} \Delta(1+|t|)\right)
$$

uniformly in $1-\delta \leq \sigma \leq 1+\delta$ where χ denotes any nonprincipal character. By Carathéodory's inequality (see e.g. [10, $\S \S 73,80]$) and (2.4) we find

$$
\begin{aligned}
\log L(s, \chi)-\delta_{\chi} & \log ^{+} \frac{1}{|s-1|} \\
& \ll d_{L} \log \log (\Delta(1+|t|))+\left|\log L\left(1+\frac{\delta}{3}+i t, \chi\right)\right| \\
& \ll d_{L} \log \log (\Delta(1+|t|))+\log \frac{1}{\delta}+\log \left(\operatorname{res}_{s=1} \zeta_{L}(s)\right) \\
& \ll d_{L} \log \log (\Delta(1+|t|))+\log \Delta^{\varepsilon}
\end{aligned}
$$

for $s \in R, 1-\delta / 3 \leq \sigma \leq 1+\delta$ and any $\chi \in \underline{\widehat{\mathfrak{C}}}$. After possibly reducing c_{4}, c_{5} in (2.6), we obtain (2.7). By the remark at the beginning of the proof it also holds for $\widetilde{L}(s, Q, \chi)$.

Lemma 2.4. Let \mathfrak{C} be any finite Abelian group of order $h, G \leq \operatorname{Aut}(\mathfrak{C})$ finite, $k \in \mathbb{N}$. For $\mathbf{C}=\left(C_{1}, \ldots, C_{k}\right) \in \mathfrak{C}^{k}$ define

$$
S_{k}(\mathbf{C}):=\# \prod_{\nu=1}^{k}\left\{C_{\nu}^{\sigma} \mid \sigma \in G\right\}
$$

in the sense of (2.1). Then

$$
\begin{aligned}
\sum_{\mathbf{C} \in \mathfrak{C}^{k}} S_{k}(\mathbf{C}) & \geq \frac{h^{k}}{\sum_{H \leq G} 1} \min _{H \leq G}\left(\frac{h}{\mid \text { Fix } H \mid}\left(\frac{|G|}{|H|}\right)^{k}\right) \\
\max _{\mathbf{C} \in \mathfrak{C}^{k}} S_{k}(\mathbf{C}) & \leq \min _{H \leq G}\left(\frac{h}{|\operatorname{Fix} H|}\left(\frac{|G|}{|H|}\right)^{k}\right)
\end{aligned}
$$

Proof. To obtain the upper bound, we fix a subgroup $H \leq G$. Let T be a transversal for H in G, so that, for any $\sigma_{1}, \ldots, \sigma_{k} \in G, C_{1}, \ldots, C_{k} \in \mathfrak{C}$,

$$
\prod_{\nu=1}^{k} C_{\nu}^{\sigma_{\nu}}=\prod_{\nu=1}^{k} C_{\nu} \prod_{\nu=1}^{k} C_{\nu}^{t_{\nu}} \prod_{\nu=1}^{k} C_{\nu}^{\tau_{\nu}-1}
$$

for suitable $t_{\nu} \in T, \tau_{\nu} \in H$. (Note that $\sigma-1$ is an endomorphism of \mathfrak{C} for all $\sigma \in G$ since \mathfrak{C} is Abelian.) Let $V=\langle\tau-1 \mid \tau \in H\rangle \leq \operatorname{End}(\mathfrak{C})$. Since $\bigcap_{v \in V} \operatorname{ker}(v)=\bigcap_{\tau \in H} \operatorname{ker}(\tau-1)=$ Fix H, we have

$$
\#\left\{\prod_{\nu=1}^{k} C_{\nu}^{\tau_{\nu}-1} \mid \tau_{\nu} \in H\right\} \leq \frac{h}{|\operatorname{Fix} H|}
$$

This shows

$$
S_{k}(\mathbf{C}) \leq \frac{h|T|^{k}}{|\operatorname{Fix} H|}=\frac{h}{|\operatorname{Fix} H|}\left(\frac{|G|}{|H|}\right)^{k}
$$

for any subgroup $H \leq G$ and any $\mathbf{C} \in \mathfrak{C}^{k}$.

For the lower bound we define

$$
N_{\mathbf{C}}(C)=N_{C_{1}, \ldots, C_{k}}(C):=\#\left\{\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in G^{k} \mid \prod_{\nu=1}^{k} C_{\nu}^{\sigma_{\nu}}=C\right\}
$$

for $C \in \mathfrak{C}$ and $\mathbf{C} \in \mathfrak{C}^{k}$. By Cauchy's inequality,

$$
\begin{equation*}
\sum_{\mathbf{C} \in \mathfrak{C}} S_{k}(\mathbf{C})=\sum_{\mathbf{C} \in \mathfrak{C}^{k}} \sum_{\substack{C \in \mathfrak{C} \\ N_{\mathbf{C}}(C) \geq 1}} 1 \geq \frac{\left(\sum_{\mathbf{C} \in \mathfrak{C}^{k}} \sum_{C \in \mathfrak{C}} N_{\mathbf{C}}(C)\right)^{2}}{\sum_{\mathbf{C} \in \mathfrak{C}^{k}} \sum_{C \in \mathfrak{C}} N_{\mathbf{C}}(C)^{2}} \tag{2.8}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\sum_{\mathbf{C} \in \mathfrak{C}^{k}} \sum_{C \in \mathfrak{C}} N_{\mathbf{C}}(C)=|\mathfrak{C}|^{k}|G|^{k} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{\mathbf{C} \in \mathfrak{C}^{k}} \sum_{C \in \mathfrak{C}} N_{\mathbf{C}}(C)^{2}=\sum_{\mathbf{C} \in \mathfrak{C}^{k}} \sum_{\substack{\left(\sigma_{1}, \sigma_{1}^{\prime}, \ldots, \sigma_{k}, \sigma_{k}^{\prime}\right) \in G^{2 k} \\
C_{1}^{\sigma_{1} \ldots C_{k}^{\sigma_{k}}=C_{1}^{\sigma_{1}^{\prime}} \ldots C_{k}^{\sigma_{k}^{\prime}}}}} 1 \tag{2.10}\\
& =\sum_{\left(\sigma_{1}, \sigma_{1}^{\prime}, \ldots, \sigma_{k}, \sigma_{k}^{\prime}\right) \in G^{2 k}} \#\left\{\mathbf{C} \in \mathfrak{C}^{k} \mid C_{1}^{\sigma_{1}} \cdots C_{k}^{\sigma_{k}}=C_{1}^{\sigma_{1}^{\prime}} \cdots C_{k}^{\sigma_{k}^{\prime}}\right\} \\
& =|G|^{k} \sum_{\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in G^{k}} \#\left\{\mathbf{C} \in \mathfrak{C}^{k} \mid C_{1}^{\sigma_{1}-1} \cdots C_{k}^{\sigma_{k}-1}=1\right\} .
\end{align*}
$$

For $H \leq G$ let

$$
\Sigma_{H}:=\sum_{\substack{\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in G^{k} \\\left\langle\sigma_{1}, \ldots, \sigma_{k}\right\rangle=H}} \#\left\{\mathbf{C} \in \mathfrak{C}^{k} \mid C_{1}^{\sigma_{1}-1} \cdots C_{k}^{\sigma_{k}-1}=1\right\}
$$

Since the $\sigma_{\nu}-1$ are endomorphisms of \mathfrak{C}, we obtain
$\#\left\{\mathbf{C} \in \mathfrak{C}^{k} \mid C_{1}^{\sigma_{1}-1} \cdots C_{k}^{\sigma_{k}-1}=1\right\}$

$$
=\#\left\{\left(C_{1}, \ldots, C_{k}\right) \in \prod_{\nu=1}^{k} \operatorname{im}\left(\sigma_{\nu}-1\right) \mid \prod_{\nu=1}^{k} C_{\nu}=1\right\} \prod_{\nu=1}^{k}\left|\operatorname{ker}\left(\sigma_{\nu}-1\right)\right|
$$

for any k-tuple $\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in G^{k}$. Since \mathfrak{C} is Abelian, the first factor equals

$$
\frac{1}{\left|\left\langle\operatorname{im}\left(\sigma_{1}-1\right), \ldots, \operatorname{im}\left(\sigma_{k}-1\right)\right\rangle\right|} \prod_{\nu=1}^{k}\left|\operatorname{im}\left(\sigma_{\nu}-1\right)\right|
$$

If we substitute the last two displays in the definition of Σ_{H}, we obtain

$$
\Sigma_{H}=\sum_{\substack{\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in G^{k} \\\left\langle\sigma_{1}, \ldots, \sigma_{k}\right\rangle=H}} \frac{|\mathfrak{C}|^{k}}{\left|\left\langle\operatorname{im}\left(\sigma_{1}-1\right), \ldots, \operatorname{im}\left(\sigma_{k}-1\right)\right\rangle\right|} \leq|\mathfrak{C}|^{k} \frac{|H|^{k}|\operatorname{Fix} H|}{|\mathfrak{C}|}
$$

Finally, we sum over all $H \leq G$ and use (2.8)-(2.10) to get the lower bound.

Next we restate Lemma 4.1 in [1].
LEMMA 2.5. Let $z_{\nu}, \nu=1, \ldots, k$, be k complex numbers with $\Im\left(z_{\nu}\right)<$ $0<\Re\left(z_{\nu}\right)$ and let $z=\prod_{\nu=1}^{k} z_{\nu}$. Then $-\Im(z)$ is positive and increasing in all $\Re\left(z_{\nu}\right)$ as long as $k \Im\left(z_{\nu}\right) / \Re\left(z_{\nu}\right)>-\pi$ for all ν.

Lemma 2.6. Let $\alpha \in[0,1], \beta \in[1 / 2,1], \gamma>0, r:=\alpha \log \log x, J=$ $\left[1-(\log x)^{-\beta}, 1\right]$. If $\beta>\alpha$, then

$$
\frac{1}{\Gamma(r+1)} \int_{J}\left(\gamma \log \frac{1}{1-s}\right)^{r} d s \ll(\log x)^{-\beta+\alpha(1+\log (\gamma \beta / \alpha))+\varepsilon}
$$

uniformly in α, β, γ.
Proof. By a change of variables $\widetilde{s}:=(\log \log x)^{2} / \log \left(\frac{1}{1-s}\right)$ the left hand side equals

$$
\frac{\gamma^{r}(\log \log x)^{2}}{\Gamma(r+1)} \int_{0}^{(\log \log x) / \beta}\left(\frac{(\log \log x)^{2}}{\widetilde{s}}\right)^{r} \exp \left(-\frac{(\log \log x)^{2}}{\widetilde{s}}\right) \frac{d \widetilde{s}}{\widetilde{s}^{2}}
$$

The integrand is increasing for $\widetilde{s} \leq(\log \log x)^{2} /(r+2)$, and so is

$$
\ll(\beta \log \log x)^{r}(\log x)^{-\beta}
$$

since $\beta>\alpha$. The lemma follows now easily using Stirling's formula.
Finally, we need a general Siegel-Walfisz theorem for Galois number fields. For $\mathbf{C} \in \underline{\mathfrak{C}}$ let

$$
\begin{equation*}
\epsilon(\mathbf{C}):=\frac{1}{|G|} \#\left\{\sigma \in G \mid \mathbf{C}^{\sigma}=\mathbf{C}\right\} \tag{2.11}
\end{equation*}
$$

be the normalized stabilizer of \mathbf{C}.
Lemma 2.7. For any $\mathbf{C} \in \underline{\mathfrak{C}}$ we have

$$
\begin{equation*}
\epsilon(\mathbf{C}) \sum_{\substack{p \leq \xi \\ p \in \mathcal{R}(\mathbf{C}) \\ p \text { totally split in } L}} 1=\frac{1}{d_{L} \mathbf{h}} \int_{2}^{\xi} \frac{d t}{\log t}+O\left(\xi \exp \left(-c_{B}(\log \xi)^{1 / 3}\right)\right) \tag{2.12}
\end{equation*}
$$

uniformly in $\Delta \leq(\log \xi)^{B}$ for any constant $B>0$. In particular,

$$
\begin{equation*}
U_{\mathbf{F}}(x) \gg \frac{x}{(\log x)^{1+\varepsilon} \mathbf{h}} \gg \frac{x}{(\log x)^{B c_{3}+1+\varepsilon}} \tag{2.13}
\end{equation*}
$$

uniformly in $\Delta \leq(\log x)^{B}(c f$. (2.3)).

Proof. This is standard by applying Perron's formula to

$$
\begin{align*}
\Psi_{\mathbf{C}}(s) & :=-\frac{1}{d_{L} \mathbf{h}} \sum_{\left(\chi_{1}, \ldots, \chi_{m}\right) \in \widehat{\mathfrak{C}}}\left(\prod_{j=1}^{m} \bar{\chi}_{j}\left(C_{j}\right)\right) \frac{L^{\prime}(s, \chi)}{L(s, \chi)} \tag{2.14}\\
& =\frac{1}{d_{L}} \sum_{p} \sum_{n \geq 1} \frac{f_{p} \log p}{p^{f_{p} n s}} \sum_{\mathfrak{P} \mid(p)} 1 .
\end{align*}
$$

Here \mathfrak{P} is a prime ideal in L, f_{p} is the ramification index of p in L, and χ is as in Lemma 2.2. We can absorb the contribution of the $p^{n}, n>1$, and the contribution of the nonsplit primes in the error term. We integrate over a suitable rectangle so that the main term comes from the residue of $\Psi_{\mathbf{C}}(s)$ at $s=1$, which is $\left(d_{L} \mathbf{h}\right)^{-1}$ by Lemma 2.2. Note that we have $d_{L}^{-1} \#\left\{\mathfrak{P} \mid(p): N_{L / K_{j}} \mathfrak{P}^{n} \in \mathfrak{C}_{j}\right\}=\epsilon(\mathbf{C})$ for a totally split prime p. For further details see [6], where the integration is carried out in detail, and note that we can use Stark's result [13] to obtain a larger zero-free region as in [6] if d_{L} is large $\left(d_{L} \geq \sqrt{\log \log x}\right.$, say $)$.
3. Suitable Dirichlet series. The proof of the main theorem uses ideas from $[1,2]$, so we refer to these papers for some more details. We use a Dirichlet series to count numbers which are norms in a given class. We begin with a Dirichlet series that counts primes that are norms in a given class $\mathbf{C}=\left(C_{1}, \ldots, C_{m}\right)$. By orthogonality we have (cf. (2.14))

$$
\begin{array}{r}
\frac{1}{d_{L} \mathbf{h}} \sum_{\left(\chi_{1}, \ldots, \chi_{m}\right) \in \widehat{\widehat{\mathfrak{c}}}}\left(\prod_{j=1}^{m} \bar{\chi}_{j}\left(C_{j}\right)\right) \log \widetilde{L}(s, Q, \chi)=\epsilon(\mathbf{C}) \sum_{p \in \mathcal{R}_{Q}(\mathbf{C})} \frac{1}{p^{s}} \tag{3.1}\\
=: P_{\mathbf{C}, Q}(s)=: \frac{1}{d_{L} \mathbf{h}} \log \zeta(s)+T(s, \mathbf{C}, Q)
\end{array}
$$

where χ is given by Lemma 2.2 and $\mathcal{R}_{Q}(\mathbf{C})$ by (2.5). From the definition we see that $T(s, \mathbf{C}, Q)$ is a Dirichlet series with real coefficients, hence $T(s, \mathbf{C}, Q)=\bar{T}(\bar{s}, \mathbf{C}, Q)$ on $(1, \infty]$. This identity holds wherever T is holomorphic; in particular T is real on $[2 / 3,1] \cap R$ by Lemma 2.3. For $\mathbf{C} \in \mathfrak{C}$, $k \in \mathbb{N}$ let

$$
M_{k}(\mathbf{C}):=\left\{\left(\mathbf{C}_{1}, \ldots, \mathbf{C}_{k}\right) \in \underline{\mathfrak{C}}^{k} \mid \mathbf{C} \in \prod_{\nu=1}^{k}\left\{\mathbf{C}_{\nu}^{\sigma} \mid \sigma \in G\right\}\right\}
$$

and

$$
\begin{equation*}
A_{\mathbf{C}, k}(s)=\frac{1}{k!} \sum_{\left(\mathbf{C}_{1}, \ldots, \mathbf{C}_{k}\right) \in M_{k}(\mathbf{C})} \prod_{\nu=1}^{k} P_{\mathbf{C}_{\nu}, Q}(s)=\sum_{n=1}^{\infty} \frac{a_{\mathbf{C}, k}(n)}{n^{s}} \quad \text { (say). } \tag{3.2}
\end{equation*}
$$

By Lemma 2.1 the coefficients $a_{\mathbf{C}, k}$ satisfy

- $0 \leq a_{\mathbf{C}, k}(n) \leq 1$ for all $n \in \mathbb{N}$,
- $a_{\mathbf{C}, k}(n)>0$ only if $n \in \mathcal{R}_{Q}(\mathbf{C})$ and $\Omega(n)=k$,
- $a_{\mathbf{C}, k}(n)=1$ if $n \in \mathcal{R}_{Q}(\mathbf{C}), \Omega(n)=k$ and $\mu^{2}(n)=1$.

In fact, it is clear that $A_{\mathbf{C}, k}(s)$ counts only $n \in \mathcal{R}_{Q}(\mathbf{C})$ with $\Omega(n)=k$. Furthermore, choose a fixed set of representatives of the quotient $G \backslash \underline{\mathfrak{C}}$, and for each $\mathbf{C} \in \underline{\mathfrak{C}}$ let $\widetilde{\mathbf{C}}$ be this representative. For k not necessarily distinct objects X_{1}, \ldots, X_{k} let $\varrho\left(X_{1}, \ldots, X_{k}\right)$ be the number of rearrangements of the k-tuple $\left(X_{1}, \ldots, X_{k}\right)$. Then we observe that an $n=\prod_{\nu=1}^{k} p_{\nu}$ with not necessarily distinct $p_{\nu} \in \mathcal{R}_{Q}\left(\mathbf{D}_{\nu}\right)$, say, occurs as a denominator of a Dirichlet series $\prod_{\nu=1}^{k} P_{\mathbf{C}_{\nu}, Q}(s)$ for exactly $\varrho\left(\widetilde{\mathbf{D}}_{1}, \ldots, \widetilde{\mathbf{D}}_{k}\right) \prod_{\nu=1}^{k} \epsilon\left(\mathbf{D}_{\nu}\right)^{-1} k$-tuples from $M_{k}(\mathbf{C})$. Therefore, $a_{\mathbf{C}, k}(n) \leq 1$ with equality if $n \in \mathcal{R}_{Q}(\mathbf{C})$ is squarefree.

The preceding discussion gives

$$
\begin{equation*}
\sum_{n \leq x} a_{\mathbf{C}_{0}, k}(n) \leq U_{\mathbf{C}_{0}}(x) \tag{3.3}
\end{equation*}
$$

for all $k \in \mathbb{N}$ and $\mathbf{C}_{0} \in \underline{\mathfrak{C}}$. To obtain an upper bound, we have to include some more numbers in our Dirichlet series. To this end, let

$$
Z_{\mathbf{C}, Q}(s)=\epsilon(\mathbf{C}) \sum_{\substack{p \leq Q \\ p \in \overline{\mathcal{R}}(\mathbf{C})}} \frac{1}{p^{s}}
$$

For $k, l \in \mathbb{N}_{0}$ let

$$
\begin{aligned}
A_{\mathbf{C}, k, l}(s) & :=\frac{1}{k!} \frac{1}{l!} \sum_{\substack{\left(\mathbf{C}_{1}, \ldots, \mathbf{C}_{k}\right) \in \mathfrak{C}^{k} \\
\left(\mathbf{D}_{1}, \ldots, \mathbf{D}_{l}\right) \in \mathfrak{C}^{l}}} \prod_{\nu=1}^{k} P_{\mathbf{C}_{\nu}, Q}(s) \prod_{\mu=1}^{l} Z_{\mathbf{D}_{\mu}, Q}(s) \\
& \left.=\sum_{n=1}^{\infty} \frac{\left.\mathbf{C}_{1}, \ldots, \mathbf{D}_{l}\right) \in M_{k+l}(\mathbf{C})}{} \frac{a_{\mathbf{C}, k, l}(n)}{n^{s}} \quad \text { (say }\right) .
\end{aligned}
$$

Then we see as before that $a_{\mathbf{C}, k, l}(n)=1$ if $n \in \mathcal{R}(\mathbf{C}), \mu^{2}(n)=1$, and n has exactly l prime factors $\leq Q$ and k greater than Q.

Now we observe that by Lemma 2.1, if $n=n_{1} n_{2} \in \mathcal{R}(\mathbf{C})$ and $\left(n_{1}, n_{2}\right)$ $=1$, then $n_{1} \in \mathcal{R}\left(\mathbf{C}_{1}\right)$ and $n_{2} \in \mathcal{R}\left(\mathbf{C}_{2}\right)$ for some $\mathbf{C}_{1} \mathbf{C}_{2}=\mathbf{C}$. This also holds if $\left(n_{1}, n_{2}\right)$ consists only of totally split primes. Finally, let

$$
B_{\mathbf{C}}(s)=\delta_{\mathbf{C}}+\sum_{\substack{n \in \mathcal{R}(\mathbf{C}) \\ n \text { powerfull }}} \frac{1}{n^{s}}
$$

where $\delta_{\mathbf{C}}=1$ if $\mathbf{C}=1 \in \underline{\mathfrak{C}}$ and else it vanishes. Then by the above discussion the coefficients of

$$
\begin{equation*}
\sum_{\mathbf{C} \in \underline{\mathfrak{c}}} \sum_{r \leq R} \sum_{k+l=r} A_{\mathbf{C}, k, l}(s) B_{\mathbf{C}^{-1} \mathbf{C}_{0}}(s)=\sum_{n=1}^{\infty} \frac{a_{\mathbf{C}_{0}}^{(R)}(n)}{n^{s}} \quad \text { (say) } \tag{3.4}
\end{equation*}
$$

satisfy

$$
\begin{equation*}
\sum_{n \leq x} a_{\mathbf{C}_{0}}^{(R)}(n) \geq U_{\mathbf{C}_{0}}^{(R)}(x) \tag{3.5}
\end{equation*}
$$

where $U_{\mathbf{C}_{0}}^{(R)}(x)$ denotes those numbers $n \leq x, n \in \mathcal{R}\left(\mathbf{C}_{0}\right)$ with $\Omega(n) \leq R$. For $k=0$ we count numbers with multiplicity at most \mathbf{h} that consist only of primes $p \leq Q$, and by Corollary 1.3 of [8] there are, for sufficiently small ε in (2.4), at most $x \exp \left(-(\log x)^{3 / 4}\right)$ numbers of this kind up to x. Thus we may assume $k>0$.

In preparation for Perron's formula let $S=\exp \left((\log x)^{1 / 2}\right)$ and

$$
\begin{aligned}
\Gamma_{1,1} & :=\left[1-(\log x)^{-1+\varepsilon}+i S, 1+(\log x)^{-1}+i S\right] \\
\Gamma_{2,1} & :=\left[1-(\log x)^{-1+\varepsilon}, 1-(\log x)^{-1+\varepsilon}+i S\right], \\
\Gamma_{3,1} & :=\left[1-\exp \left(-(\log \log x)^{4}\right), 1-(\log x)^{-1+\varepsilon}\right], \\
\Gamma_{4} & :=\left\{s \in \mathbb{C}| | s-1 \mid=\exp \left(-(\log \log x)^{4}\right)\right\}
\end{aligned}
$$

Let $\Gamma_{\nu, 2}(1 \leq \nu \leq 3)$ be the image of $\Gamma_{\nu, 1}$ under reflection on the real axis, oriented such that

$$
\Gamma:=\Gamma_{1,2} \Gamma_{2,2} \Gamma_{3,2} \Gamma_{4} \Gamma_{3,1} \Gamma_{2,1} \Gamma_{1,1}
$$

is homotopic to $\left[1+(\log x)^{-1}-i S, 1+(\log x)^{-1}+i S\right]$. By (2.4), (2.6), (2.7) the functions $P_{\mathbf{C}, Q}$ extend for sufficiently large x holomorphically to a neighbourhood of Γ, and we have $P_{\mathbf{C}, Q}(s) \ll(\log \log x)^{2}$ on $\Gamma_{1,2} \Gamma_{2,2} \cup \Gamma_{2,1} \Gamma_{1,1}$ and $P_{\mathbf{C}, Q}(s) \ll(\log \log x)^{4}$ on Γ_{4}, so that

$$
\begin{equation*}
A_{\mathbf{C}, k}(s) \ll\left(\mathbf{h}(\log \log x)^{4}\right)^{k} \ll \exp \left((\log \log x)^{3}\right) \tag{3.6}
\end{equation*}
$$

on $\widetilde{\Gamma}:=\Gamma_{1,2} \Gamma_{2,2} \cup \Gamma_{4} \cup \Gamma_{2,1} \Gamma_{1,1}$ for $k \ll \log \log x$ and $x>x_{0}(A)$. Likewise, since

$$
Z_{\mathbf{C}, Q}(s) \ll \sum_{p \leq Q} \frac{1}{p^{1-(\log x)^{-1+\varepsilon}}} \ll \log \log Q \ll \log \log x
$$

on Γ, we see that

$$
\begin{equation*}
A_{\mathbf{C}, k, l}(s) \ll \exp \left((\log \log x)^{3}\right) \tag{3.7}
\end{equation*}
$$

on $\widetilde{\Gamma}$ for $k+l \ll \log \log x$. For future reference we define

$$
\begin{equation*}
J=-\Gamma_{3,1}=\left[1-(\log x)^{-1+\varepsilon}, 1-\exp \left(-(\log \log x)^{4}\right)\right] \tag{3.8}
\end{equation*}
$$

Lemma 3.1. For $\mathbf{C} \in \underline{\mathfrak{C}},|\sigma-1| \leq(\log x)^{-2 / 3}$ and $\varepsilon>0$ we have

$$
|T(\sigma, \mathbf{C}, Q)| \leq \frac{\varepsilon \log \Delta+O(1)}{d_{L} \mathbf{h}}
$$

where T was defined in (3.1).

Proof (see Lemma 4.3 in [2] for details). For fixed $\mu \geq 0$ we have, by (3.1),

$$
\begin{aligned}
& \left.\frac{d^{\mu}}{d s^{\mu}} T(s, \mathbf{C}, Q)\right|_{s=1} \\
& \quad=\lim _{\xi \rightarrow \infty}\left(\epsilon(\mathbf{C}) \sum_{p \in \mathcal{R}_{Q}(\mathbf{C}), p \leq \xi} \frac{(-\log p)^{\mu}}{p}-\frac{1}{d_{L} \mathbf{h}} \sum_{p \leq \xi} \frac{(-\log p)^{\mu}}{p}\right) .
\end{aligned}
$$

For $\xi \geq Q$ this can be evaluated by partial summation and (2.12), and we obtain

$$
|T(1, \mathbf{C}, Q)| \leq \frac{\varepsilon \log \Delta+O_{\varepsilon}(1)}{d_{L} \mathbf{h}} \quad \text { and } \quad\left|T^{(\mu)}(1, \mathbf{C}, Q)\right| \leq \frac{\Delta^{\varepsilon}+O_{\varepsilon}(1)}{d_{L} \mathbf{h}}
$$

for $\mu \geq 1$. The lemma follows now from Taylor's formula up to degree $\mu_{0}:=\left\lceil 2 c_{3} M+1\right\rceil$, say, where we use the trivial estimation

$$
T^{\left(\mu_{0}\right)}(s, \mathbf{C}, Q) \ll \max _{\chi \neq \chi_{0}}\left|\frac{d^{\mu_{0}}}{d s^{\mu_{0}}} \log \widetilde{L}(s, Q, \chi)\right| \ll(\log x)^{\varepsilon}
$$

together with (2.6) for $|s-1| \leq(\log x)^{-2 / 3}$.
4. The lower bound. We start with the lower bound. By Perron's formula, (3.2) and (3.3) we obtain

$$
U_{\mathbf{C}_{0}}(x) \geq \max _{k \leq(1-2 \varepsilon) \log \log x} \frac{1}{2 \pi i} \int_{\Gamma} A_{\mathbf{C}_{0}, k}(s) \frac{x^{s}}{s} d s+O\left(\frac{x \log x}{S}\right)
$$

so that by (3.6),

$$
U_{\mathbf{C}_{0}}(x) \geq \max _{k \leq(1-2 \varepsilon) \log \log x}\left(-\frac{1}{\pi} \Im \int_{J} A_{\mathbf{C}_{0}, k}(s) \frac{x^{s}}{s} d s\right)+O\left(\frac{x}{\exp \left((\log \log x)^{3}\right)}\right)
$$

with J as in (3.8). Note that the integrand in $\Gamma_{3,1}$ is the complex conjugate of the integrand in $\Gamma_{3,2}$. We use Lemma 2.5 with $z_{\nu}=P_{\mathbf{C}_{\nu}, Q}(s)$. Note that by (3.1) and Lemma 3.1 the assumptions are satisfied for $x>x_{0}(M, \varepsilon)$. Therefore,

$$
\begin{aligned}
U_{\mathbf{C}_{0}}(x) \geq & \max _{k \leq(1-2 \varepsilon) \log \log x}\left(-\frac{1}{\pi} \Im \int_{1-2 / \log x}^{1-1 / \log x} \frac{1}{k!}\left(\frac{\log \frac{1}{1-s}-\varepsilon \log \Delta-c_{9}-i \pi}{d_{L} \mathbf{h}}\right)^{k}\right. \\
& \left.\times \# M_{k}\left(\mathbf{C}_{0}\right) \frac{x^{s}}{s} d s\right)+O\left(\frac{x}{\exp \left((\log \log x)^{3}\right)}\right)
\end{aligned}
$$

for some positive constant c_{9}. To estimate $\# M_{k}\left(\mathbf{C}_{0}\right)$, we divide the sum over $\underline{\mathfrak{C}}^{k}$ into two sums over $\underline{\mathfrak{C}} \times \underline{\mathfrak{C}}^{k-1}$, obtaining

$$
\# M_{k}\left(\mathbf{C}_{0}\right) \geq \sum_{\mathbf{C} \in \underline{\mathfrak{C}}} \# M_{k-1}\left(\mathbf{C}_{0} \mathbf{C}^{-1}\right)=\sum_{\mathbf{C} \in \underline{\mathfrak{C}}} \# M_{k-1}(\mathbf{C})=\sum_{\mathbf{C} \in \underline{\mathfrak{c}}^{k-1}} S_{k-1}(\mathbf{C})
$$

so that by Lemma 2.4,

$$
\begin{aligned}
U_{\mathbf{C}_{0}}(x) \gg & \max _{M, \varepsilon} \frac{x}{\log x} \max _{k \leq(1-2 \varepsilon) \log \log x} \frac{1}{k!}((1-\varepsilon) \log \log x)^{k} \sin \left(\frac{\pi k(1+o(1))}{\log \log x}\right) \\
& \times \frac{1}{d_{L} \sum_{H \leq G} 1} \min _{H \leq G}\left(\frac{1}{|H|^{k}|\mathrm{Fix} H|}\right) \\
\gg & \frac{x}{(\log x)^{1+\varepsilon}} \max _{k \leq(1-2 \varepsilon) \log \log x} \frac{1}{k!}(\log \log x)^{k} \min _{H \leq G}\left(\frac{1}{|H|^{k}|\mathrm{Fix} H|}\right)
\end{aligned}
$$

up to an error of $O\left(x / \exp \left((\log \log x)^{3}\right)\right)$. In order to obtain a (crude) bound for $\sum_{H<G} 1$, we can observe that there are $\ll|G|$ nonisomorphic Abelian groups \bar{H} of order $\leq G$, and each H has at most $\Omega(|H|)$ generators and so can occur in at most $\Omega(|H|) \ll \log |G|$ ways in G. Thus $\sum_{H \leq G} 1 \ll$ $|G|^{O(\log |G|)} \ll(\log x)^{\varepsilon}$.

At the cost of an additional factor $(\log x)^{-\varepsilon}$ we may extend the maximum over all real $k \in[0, \log \log x]$. Writing $k=\alpha \log \log x$, we obtain after a short calculation using Stirling's formula

$$
U_{\mathbf{C}_{0}}(x) \gg \max _{0 \leq \alpha \leq 1} \min _{H \leq G} \frac{x(\log x)^{E(\alpha, H)-\varepsilon}}{|\operatorname{Fix} H|}
$$

This gives the lower bound.
5. The upper bound. Let us first note that by our assumption $d_{L}=$ $o(\log \log x)$ we have

$$
\sum_{\mathbf{C} \in \underline{\mathfrak{C}}} B_{\mathbf{C}}(s) \ll \sum_{\mathbf{C} \in \underline{\mathfrak{c}}} B_{\mathbf{C}}\left(1-\frac{1}{(\log x)^{1-\varepsilon}}\right) \leq c_{10}^{d_{L}} \ll(\log x)^{\varepsilon}
$$

for $s \in \Gamma$. This is the only place where the additional assumption is needed. By Perron's formula, (3.4), (3.5) and (3.7), we therefore have as above

$$
\begin{align*}
U_{\mathbf{C}_{0}}^{(R)}(x) \leq & \sum_{r \leq R} \sum_{\substack{k+l=r \\
k \neq 0}} \frac{-1}{\pi} \Im\left(\int_{J} \sum_{\mathbf{C} \in \underline{C}} A_{\mathbf{C}, k, l}(s) B_{\mathbf{C}^{-1} \mathbf{C}_{0}}(s) \frac{x^{s}}{s} d s\right) \tag{5.1}\\
& +O\left(\frac{x}{\exp \left((\log \log x)^{3}\right)}\right) \\
\ll & x(\log x)^{\varepsilon} \sum_{r \leq R} \sum_{\substack{k+l=r \\
k \neq 0}} \int_{J} \max _{\mathbf{C} \in \mathbb{C}}\left|A_{\mathbf{C}, k, l}(s)\right| d s+\frac{x}{\exp \left((\log \log x)^{3}\right)}
\end{align*}
$$

Writing $\underline{\mathfrak{C}}^{k}=\underline{\mathfrak{C}} \times \underline{\mathfrak{C}}^{k-1}$, we see that

$$
\begin{aligned}
\left|A_{\mathbf{C}, k, l}(s)\right| \leq & \frac{1}{k!} \frac{1}{l!} \sum_{\sigma \in G} \sum_{\mathbf{C}_{1} \in \underline{\mathfrak{C}}}\left|P_{\mathbf{C}_{1}, Q}(s)\right| \\
& \times \sum_{\substack{\left(\mathbf{C}_{2}, \ldots, \mathbf{C}_{k}\right) \in \mathfrak{C}^{k-1} \\
\left(\mathbf{D}_{1}, \ldots, \mathbf{D}_{l}\right) \in \mathfrak{c}^{l} \\
\left(\mathbf{C}_{2}, \ldots, \mathbf{D}_{l}\right) \in M_{k-1+l}}} \prod_{\nu=2}^{k}\left|P_{\mathbf{C}_{\nu}, Q}(s)\right| \prod_{\mu=1}^{l}\left|Z_{\mathbf{D}_{\mu}, Q}(s)\right| .
\end{aligned}
$$

We relabel the summation variable $\mathbf{C}_{1} \leftarrow \mathbf{C C}_{1}^{\sigma}$. By Lemma 3.1 we have

$$
\left|P_{\mathbf{C}, Q}(s)\right| \leq \frac{1+\varepsilon}{d_{L} \mathbf{h}} \log \frac{1}{1-s} \quad \text { on } J
$$

Changing the order of summation, we see that

$$
\begin{align*}
\left|A_{\mathbf{C}, k, l}(s)\right| \ll & \frac{(\log \log x)^{4}}{\mathbf{h} k!l!}\left(\sum_{\mathbf{C} \in \mathfrak{C}}\left|P_{\mathbf{C}, Q}(s)\right|\right)^{k-1}\left(\sum_{\mathbf{D} \in \mathfrak{C}} Z_{\mathbf{D}, Q}(s)\right)^{l} \tag{5.2}\\
& \times \max _{\left(\mathbf{C}_{2}, \ldots, \mathbf{D}_{l}\right) \in \underline{\mathfrak{C}}^{k-1+l}} S_{k-1+l}\left(\left(\mathbf{C}_{2}, \ldots, \mathbf{D}_{l}\right)\right)
\end{align*}
$$

on J (note that $Z_{\mathbf{D}, Q}(s)>0$ there), so that by Lemma 2.4, (5.1) and (5.2),

$$
\begin{align*}
U_{\mathbf{C}_{0}}^{(R)}(x) \ll & x(\log x)^{\varepsilon} \max _{r \leq R} \min _{H \leq G}\left(\frac{d_{L}^{r-1}}{|H|^{r-1}|\mathrm{Fix} H|}\right) \frac{1}{r!} \tag{5.3}\\
& \times \int_{J}\left(\sum_{\mathbf{C} \in \mathfrak{C}}\left|P_{\mathbf{C}, Q}(s)\right|+Z_{\mathbf{C}, Q}(s)\right)^{r} d s+\frac{x}{\exp \left((\log \log x)^{3}\right)}
\end{align*}
$$

By (3.1) we have $\sum_{\mathbf{C} \in \mathbb{C}}\left(\left|P_{\mathbf{C}, Q}(s)\right|-P_{\mathbf{C}, Q}(s)\right)=\pi / d_{L}$. Using orthogonality, the same calculation as in (3.1) shows

$$
\begin{aligned}
\frac{1}{d_{L}} \log \zeta_{L}(s) & =\sum_{\mathbf{C} \in \underline{\mathfrak{C}}} \frac{1}{\mathbf{h}} \sum_{\left(\chi_{1}, \ldots, \chi_{m}\right) \in \widehat{\mathfrak{C}}}\left(\prod_{j=1}^{m} \bar{\chi}_{j}\left(C_{j}\right)\right) \log L(s, \chi) \\
& =\sum_{\mathbf{C} \in \mathfrak{C} p \in \mathcal{R}(\mathbf{C})} \sum_{p} \frac{1}{p^{s}}+O\left(1+\sum_{p \mid \Delta} \frac{1}{p^{s}}\right)
\end{aligned}
$$

on J. From (2.7) we thus infer

$$
\begin{equation*}
\left|\sum_{\mathbf{C} \in \underline{\mathfrak{C}}}\left(\left|P_{\mathbf{C}, Q}(s)\right|+Z_{\mathbf{C}, Q}(s)\right)\right| \leq \frac{1+\varepsilon}{d_{L}} \log \frac{1}{1-s}+\log \log \Delta \tag{5.4}
\end{equation*}
$$

on $J\left(x \geq x_{0}(\varepsilon)\right)$. Let us first assume $d_{L} \leq \sqrt{\log \log x}$. Then

$$
\left|\sum_{\mathbf{C} \in \underline{\mathfrak{C}}}\left(\left|P_{\mathbf{C}, Q}(s)\right|+Z_{\mathbf{C}, Q}(s)\right)\right| \leq \frac{1+\varepsilon}{d_{L}} \log \frac{1}{1-s}
$$

so that by (5.3),

$$
\begin{align*}
& U_{\mathbf{C}_{0}}^{(R)}(x) \tag{5.5}\\
& \ll x(\log x)^{\varepsilon} \max _{r \leq \log \log x} \min _{H \leq G}\left(\frac{1}{|H|^{r}|\mathrm{Fix} H|}\right) \frac{1}{r!} \int_{J}\left(\log \frac{1}{1-s}\right)^{r} d s \\
& \ll x \max _{\alpha \in[0,1]} \min _{H \leq G} \frac{(\log x)^{E(\alpha, H)+\varepsilon}}{|\operatorname{Fix} H|}
\end{align*}
$$

by Lemma 2.6.
Now assume $d_{L} \geq \sqrt{\log \log x}$ and let $c_{11}=M c_{3}+2$,

$$
\varrho=\frac{2 c_{11}}{\log \log \log x}
$$

Firstly we show that the contribution of those r in (5.3) with $\varrho \log \log x \leq$ $r \leq R$ is negligible. In fact, if we consider in (5.3) only the case $H=G$, then by (5.4) and Lemma 2.6 their contribution is at most

$$
\begin{aligned}
U_{1}^{(R)}(x) & \ll x(\log x)^{\varepsilon} \max _{r \geq \varrho \log \log x} \frac{1}{r!} \int_{J}\left(\frac{1+\varepsilon}{d_{L}} \log \frac{1}{1-s}+\log \log \Delta\right)^{r} d s \\
& \ll x(\log x)^{\varepsilon} \max _{r \geq \varrho \log \log x} \frac{1}{r!} \int_{J}\left(\frac{c_{12}}{\sqrt{\log \log x}} \log \frac{1}{1-s}\right)^{r} d s \\
& \ll x(\log x)^{-c_{11}+\varepsilon}
\end{aligned}
$$

for sufficiently large x which is admissible by (2.13). On the other hand, those r with $r \leq \varrho \log \log x$ contribute at most

$$
x(\log x)^{\varepsilon} \max _{r \leq \varrho \log \log x} \min _{H \leq G}\left(\frac{1}{|H|^{r}|\operatorname{Fix} H|}\right) \int_{J} \frac{1}{r!}\left(c_{13}(\log \log \Delta) \log \frac{1}{1-s}\right)^{r} d s
$$

Since $\varrho \log \left(c_{13} \log \log \Delta\right)=o(1)$, we find by Lemma 2.6 that

$$
\begin{equation*}
U_{\mathbf{C}_{0}}^{(R)}(x) \ll x \max _{\alpha \leq \varrho} \min _{H \leq G} \frac{(\log x)^{E(\alpha, H)+\varepsilon}}{|\operatorname{Fix} H|} \tag{5.6}
\end{equation*}
$$

Now we choose $R:=c_{14} \log \log x$ with $c_{14}=(\log 2)^{-1}\left(M c_{3}+4\right)$ and bound trivially the number of integers $n \leq x$ with $\Omega(n) \geq c_{12} \log \log x$. By [3, Corollary 1], there are at most $O\left(x(\log x)^{-M c_{3}-2}\right)$ numbers of this kind. By (2.13) this yields an admissible error. By (5.5) and (5.6) the proof is complete.
6. Proof of Proposition 3 and Corollary 4. Since each group $G_{j}=$ $\operatorname{Gal}\left(K_{j} / \mathbb{Q}\right)$ is cyclic, every $\mathbf{C} \in \operatorname{Fix} H$ contains an m-tuple of ideals $\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}\right)$ that remains fixed under the action of H. Indeed, let σ_{j} be a generator of H_{j}. If $\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{m}\right)$ is any m-tuple of ideals in a class $\mathbf{C}=$ $\left(C_{1}, \ldots, C_{m}\right) \in \operatorname{Fix} H$, then C_{j} is fixed by H_{j}, and so $\left(\mathfrak{b}_{1}^{\sigma_{1}}, \ldots, \mathfrak{b}_{m}^{\sigma_{m}}\right)=$
$\left(\left(\lambda_{1}\right) \mathfrak{b}_{1}, \ldots,\left(\lambda_{m}\right) \mathfrak{b}_{m}\right)$ for some principal ideals $\left(\lambda_{j}\right)$. By Hilbert's Theorem 90 we can write $\lambda_{j}=\mu_{j}^{1-\sigma_{j}}$ (e.g. [7, §13]), so that $\mathfrak{a}_{j}:=\left(\mu_{j}\right) \mathfrak{b}_{j}$ gives the desired ideal tuple. But up to a product of powers of ramified prime ideals, the \mathfrak{a}_{j} are lifted ideals from the fixed field $K_{j}^{H_{j}}$, and so (cf. e.g. [15, Theorem 1.6])

$$
|\operatorname{Fix} H| \leq \prod_{j=1}^{m}\left(h\left(K_{j}^{H_{j}}\right) \prod_{\mathfrak{p} \subseteq K_{j}^{H_{j}}} e(\mathfrak{p})\right)
$$

where as usual $e(\mathfrak{p})$ denotes the ramification index of \mathfrak{p} in K_{j}. By Dedekind's discriminant theorem we know

$$
\prod_{\mathfrak{p} \subseteq K_{j}^{H_{j}}} e(\mathfrak{p}) \leq \prod_{p^{e} \| D_{K / \mathbb{Q}}}(e+1) \ll\left(D_{K / \mathbb{Q}}\right)^{\varepsilon} .
$$

This gives the proposition.
The corollary follows immediately from Theorem 2: For each subgroup $H \neq G$ we estimate $E(\alpha, H) \geq-1+\alpha\left(1-\log \left(\alpha d_{L} / 2\right)\right)$ and Fix $H \leq \mathbf{h}$ getting
$U_{\mathbf{C}_{0}}(x)$

$$
\begin{aligned}
& \gg \max _{0 \leq \alpha \leq 1} \min \left(x(\log x)^{-1+\alpha\left(1-\log \left(\alpha d_{L}\right)\right)-\varepsilon}, \frac{x(\log x)^{-1+\alpha\left(1-\log \left(\alpha d_{L} / 2\right)\right)-\varepsilon}}{\mathbf{h}}\right) \\
& \geq x(\log x)^{1 / d_{L}-1-\varepsilon}
\end{aligned}
$$

if $\mathbf{h} \leq(\log x)^{(\log 2) / d_{L}}$ as can be seen by taking $\alpha=1 / d_{L}$. The upper bound in (1.5) follows from (1.4) for $x \gg \exp \left(\Delta^{\varepsilon}\right)$.

References

[1] V. Blomer, Binary quadratic forms with large discriminants and sums of two squarefull numbers, J. Reine Angew. Math. 569 (2004), 213-234.
[2] -, Binary quadratic forms with large discriminants and sums of two squarefull numbers II, J. London Math. Soc. 71 (2005), 69-84.
[3] P. Erdős and A. Sárközy, On the number of prime factors of integers, Acta Sci. Math. (Szeged) 42 (1980), 237-246.
[4] E. Fogels, On the zeros of Hecke's L-functions I, Acta Arith. 7 (1962), 87-106.
[5] -, Über die Ausnahmenullstelle der Heckeschen L-Funktionen, ibid. 8 (1963), 307309.
[6] L. J. Goldstein, A generalization of the Siegel-Walfisz theorem, Trans. Amer. Math. Soc. 149 (1970), 417-429.
[7] H. Hasse, Vorlesungen über Klassenkörpertheorie, Würzburg, 1967.
[8] A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J. Théor. Nombres Bordeaux 5 (1993), 411-484.
[9] J. C. Lagarias, H. L. Montgomery and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), 271-296.
[10] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2. Bd., Leipzig, 1909.
[11] R. W. K. Odoni, On the norms of algebraic integers, Mathematika 22 (1975), 71-80.
[12] C. L. Siegel, Abschätzungen von Einheiten, Nachr. Akad. Wiss. Göttingen Math.Phys. Kl. II 1969, 71-86.
[13] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152.
[14] A. I. Vinogradov, On the extension to the left halfplane of the scalar product of Hecke L-series with magnitude characters, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 485-492 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 82 (1969), 1-9.
[15] C. Walter, The ambiguous class group and the genus class group of certain nonnormal extensions, Mathematika 26 (1979), 113-124.
[16] L. Washington, Introduction to Cyclotomic Fields, Springer, 1997.

Erindale College
University of Toronto
3359 Missisauga Road N
Missisauga, Ontario
Canada L5L 1C6
E-mail: vblomer@math.toronto.edu

Fachbereich Mathematik
Mathematisches Institut
Albert-Ludwigs-Universität
Eckerstr. 1
D-79104 Freiburg, Germany
E-mail: jcp@math.uni-freiburg.de

