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1. Introduction and statement of results. In [11], Odoni gave
(among other things) an asymptotic formula for the number Ur(z) of pos-
itive integers not exceeding = that can be represented by a given norm
form F. The error term, however, depends on the number field involved,
and for applications often uniform results are required (see e.g. [1, 2]). In
this paper we derive uniform estimates for Up(x) in the case of Abelian
number fields. In fact, we consider the following more general situation:

Let Ki,..., K,, be finite Abelian extensions of Q of degrees dy,...,d,
with pairwise coprime discriminants. For j = 1,...,m let O; C K; be the
ring of integers. Choose an integral basis {w;, | 1 <v < d;} of O; and let

Fix) = N(Ywn), x=(n)ezt,

be the corresponding norm form. A change of base in O; yields a new form
F} = Fjo M with some M € GLg,(Z). Thus F; and F] represent the same
integers. Let Ug(z) be the number of integers n < z such that the system
of the m diophantine equations |Fj(x;)| =n (j = 1,...,m) is solvable. In
other words, Ug(z) is the number of integers n < z such that each field K;
contains an K j-integer whose norm (in absolute value) is n.

The coprimality of the discriminants implies K; N K; = Q for ¢ # j (see
e.g. [16, p. 322]). Let L = Ky -+ Kpp,. Then Gal(L/ Q) = [, Gal(K;/ Q)
actson € := H;nzl ¢;, the direct product of the class groups of the fields K.
We write h(k) for the class number of a number field £ and define

h:=[[r(E;), A:=|Dyqgl, G:=Gal(L/Q), d:=I[L:Q)
j=1
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Several times we shall use the bound d; < log A. Here and henceforth all
implicit and explicit constants do not depend on the fields involved, and
they are also independent of m. Odoni’s result implies (in the case m = 1)

(1.1) Up () ~ c(F)z(logz)/4~1
for fixed K7, ..., K, and x — oo where the constant ¢(F) is neither very big
nor very small. However, as we shall see below, in general this asymptotics
becomes incorrect if A can increase (even moderately) with x.

In order to state the main result, we write, for a € [0, 1] and each sub-
group H < G,

E(a,H) := -1+ a(1 —log(o|H])),
FixH:={Ce€|C’=Cforallc € H}.

We shall prove:

THEOREM 1. Let M > 0 and € > 0 be given. Let © > xo(M,¢), and
assume A < (logx)M. Then

) (log x)E(a,H)—a
2 Ur(e) e (08 B T [P
If in addition dr, = o (loglog x), then
(log z)E(a,H)—l—s
(13) Ur(w) Sare o, min ——m o

Theorem 1 follows directly from the following theorem. For n € N and
C=(Cy,...,Cp) € € we write n € R(C) and say that n is a norm in C if
for each j = 1,...,m there is an ideal a; in the class C; with norm n.

THEOREM 2. Let M > 0, ¢ > 0, and Cy € € be given. Let Ug,(x) be
the number of integers n < x such that n is the norm of some ideal in Cy.
Then for x > xo(M, ) and A < (logz)™ we have

) (log :L,)E(oz,H)—s
Ueo(@) >are Jax, i == ric]
If in addition d, = o (loglog :c), then
(log x)E(a,H)—&—s
Voo o) <ate 025, 15~ [Fixc]
If we take H = {e} and H = G, this contains the two upper bounds
log x)®
Uc,(7) < w

which can be obtained by counting norms of ideals with multiplicity of their
occurrence (see e.g. [14]), and

(1.4) Uc,(z) < z(logz)t/de—1+e,
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The bound (1.4), uniformly in A < (logz)™, can be obtained by applying
a Landau-type argument to ¢, (s)"/% H(s) where H(s) < [Tja(l+p7%) in
Rs > 2/3. In general it might be hard to estimate Fix H for all subgroups
H of G, but for example the following bound holds.

PROPOSITION 3. Assume that G; := Gal(K;/ Q) is cyclic, and let H <
G = [1G; be any subgroup. Let pr; : G — Gj be the canonical projection,

define H; := pr;(H) and let K C K, be the fixed field of H;. Then
J j j J J

m
. H;
Fix H| < A° ][ h(K;7).
j=1
A typical application of Theorem 2 is the following uniform version of
(1.1):
COROLLARY 4. With the above notation we have
(1.5) Uc,(z) = z(log )/ de—1+e()
providing x> exp(A®) 4 exp(he+2/1082) 4 exp(exp(dy, logdy)).

In general, (1.5) becomes incorrect for smaller x as can already be seen by
taking imaginary quadratic fields [2]. The proof of Theorem 2 is a variant of
the method in [1, 2], but we need some additional ideas to obtain uniformity
in all parameters. Loosely speaking, if oy € [0,1] is the number at which
the maximum in (1.2), (1.3) is taken, then «gloglogx is approximately the
number of prime factors of a “generic” integer n counted by Ug(x). It is clear
that we cannot drop the condition (Dg,/q, Dk, q) = 1 for i # j as one can
already see for two quadratic extensions. The condition d;, = o(loglog x),
however, is only for technical reasons and can perhaps be removed.

The first author would like to thank Dr. M. Spitzweck and Prof. U. Stuh-
ler for helpful discussions.

2. Some lemmata. For a group GG and subsets Ay, ..., Ay define the
product set

k
(2.1) HAjZZ{Cll'--CLk‘a1€A1,...,ak€Ak}.
j=1

Then we have:

LEMMA 2.1. A prime p is a norm in some C € € if and only if p is
divisible by a prime ideal in L of degree 1. In this case p is a norm in all
the classes in the product set {C? | o € G}° and no others.

Let n = prep be the canonical prime factorization of n, and assume
that p° is a norm exactly in the set of classes ) C C, C €. Then n is a
norm ezactly in all the classes in the product set Hp Cp and no others.
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Let €(L) be the class group of L, and for any finite Abelian group G let
G :={x : G — C*} be the dual group.

LEMMA 2.2. We have an injective homomorphism of groups

EHC(L), (Xl,---,Xm)’—)X::HXJ'ONL/KJ"
j=1

Proof. 1t is clear that the map is a homomorphism from i to ¢/(L\) We
have to show that the kernel is trivial. To this end let x1, say, be nonprinci-
pal, so that x1(C) # 1 for some C € €;. For any number field £/ Q let k be
the class field. Since (D, /q, DKj/Q) =1 for i # j, we have by properties of
the Artin map (see [16, p. 400]) a commutative diagram

¢r)y —— Gal(L/L)

e=1lL ¢ — L Gal(—f(j/Kj)

where the isomorphisms are given by the Artin map; the map on the right-
hand side is given by

Gal(L/L) 2=, Gal(H K; /L) ~ [[ Gal(K;L/L) = [] Gal(K;/K;)

and therefore obviously surjective. Thus also the norm is surjective and we
have a preimage C € €(L) of (C,1,...,1) with x(C) # 1, i.e. x is nonprin-
cipal.

For any Galois number field k/Q with discriminant D we know from
results of Siegel [12] (upper bound), and Siegel-Brauer—Stark [13] (lower
bound)

c1log | D|
dr,

for any € > 0 and some absolute constants c1, c2, so that by the class number
formula

dr,
(2.2) |D|™° < ress=1 (x(s) < < > < |D|*

(2.3) h(k) < |D|%.
Let
(2.4) Q = Q- = exp(47)

for some sufficiently small given € > 0, and define

Pg := {p > Q | p totally split in L},

(2.5) Ro(C) :=R(C)N{neN:p|n=pecPy).
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For x € Q?(E) let L(s, x) be the Hecke L-function, and let

fe= T en( )

pePq B(p)
LEMMA 2.3. For any € > 0 there are absolute positive constants cy,
cs5(e) such that for x € € the functions L(s,x), L(s,Q,x) are analytic and
zero-free in the region

where 3 denotes a prime ideal in L.

(2.6) R::{s:a—i-itE(C

C4
72 i Tos(A ¥ |t|>>}
\(=00,1— c5() A9,

except for a simple pole at s = 1 if x = xo. For s € R, |0 — 1] <
min((log @)1, 2log ™ (A(1 + [t]))), we have

log L(s,Q,x) | _ +< 1 >
2.7) log L(s, x) } Oxlos |s — 1

< dploglog(A(1 + |t])) + log A®

where log® (z) = log(max(1,z)) and d,, = 1 if x = xo0 and zero otherwise.
All constants are absolute (but cs and the constant implied in (2.7) are in-
effective).

Proof. We first observe that E(S,Q,X) = L(s,x)G(s,Q, x) where the
Euler product G is entire and zero-free in fts > 1/2 and log G(s,Q, x) <
loglog Q@ = log A° if ®s > 1 — (log@Q)~!. For complex x or |[t| > 1 the
existence of a ¢4 > 0 for the zero-free region for L(s, x) is well known (see
e.g. [9, Lemma 2.3]). For real x # xo we note that L(s, x) = (z/(s)/Cr(s) for
some quadratic extension L' D L (see [5]) with Dy, /o < A2, Thus it follows
from the theorems of Siegel-Brauer and Stark [13] that there is no zero

g>1-— max(c6(5)_dLA_5,C7d21A_2/dL),

which gives (2.6). To obtain (2.7), we choose § = log ' (A(1 + |t|)) in
Lemma 4 of [4] getting

s—1

5 CL(s), L(s,x) < log™ (esA1+|t]))

uniformly in 1 — § < ¢ < 1+ where x denotes any nonprincipal character.
By Carathéodory’s inequality (see e.g. [10, §§73, 80]) and (2.4) we find
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log L(s, x) — 6y log™ Py

< dploglog(A(1 + [t])) +

0
logL(l—i— §+it,x>’

1
< drloglog(A(1 + [t])) + log 5 + log(ress=1 CL(s))
< dr loglog(A(1 + |t])) + log A®

forse R,1-§/3<o0<1+¢andany x € @ After possibly reducing cy, c5
n (2.6), we obtain (2.7). By the remark at the beginning of the proof it also
holds for L(s, @, x)-

LEMMA 2.4. Let € be any finite Abelian group of order h, G < Aut(€)
finite, k € N. For C = (C4,...,Cy) € ¢ define

k
=#][{C]|oeG}
v=1

in the sense of (2.1). Then

Z Sie( h* h @ *
K —ZH<G1H<G FixH|\|H|) )’

Ceck

h (1G]
S(C) < mi — .
ma 54(0) < i <|H|> )
Proof. To obtain the upper bound, we fix a subgroup H < G. Let T be
a transversal for H in G, so that, for any o1,...,0, € G, C4,...,C € €,

k k k k
[Ler=11elexTIer
v=1 v=1 v=1 v=1

for suitable t, € T, 7, € H. (Note that o — 1 is an endomorphism of € for
all 0 € G since € is Abelian.) Let V = (r — 1 | 7 € H) < End(¢). Since
MNyey ker(v) = (,cp ker(r — 1) = Fix H, we have

k 1 "
#{ 1L or ‘T”EH} Fix H|

v=1
This shows

h|T[* h (1G]
<
S(C) = FixH|  |FixH| <|H|

for any subgroup H < G and any C € ¢*.
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For the lower bound we define
k
No(C) = Ney,...c,(€) = #{(o1,...,n) e &* | [[ cor = ¢}

for C € ¢ and C e ¢*. By Cauchy’s inequality,

28 Y s©=> Y 1> X ceer ZCech(C);Q_

Cee Cecek Ceg Z:CEQ’“ > cee Nc(O)
Nc(C)>1
Clearly,
(2.9) > ) Ne(0) = leff|GlF
Cecgh Cel
and
(210) > > Ne(C) =}, > 1
Ceek Cel cece* (o1,01,...,0%,0,)EG?*
o=
_ 3 #oeek | Oy .o =T O
(01,07 50,0k,0 ) EG2F
=lGF > #ced|optop =11
(01,...,0,)EGF
For H < G let
Tyi= Y #{Cedt|cptopi =11
(0.1"“7016)6611@
<Ul7"'70k>:H

Since the o, — 1 are endomorphisms of €, we obtain
#{Ceck|opt..ont =1y

k k k
=#{(1,....c) e [im(o, - 1) ‘ [I ¢ =1} ] Ikex(o, - 1)
v=1 v=1 v=1

for any k-tuple (o1,...,0%) € G¥. Since € is Abelian, the first factor equals

1
im(o
|(im(oq — 1),...,im(of — 1)) H :
If we substitute the last two displays in the deﬁmtlon of X, we obtain

G [ H|¥|Fix H|
Sy — . , <1 g
(o1 --%)eck |<1m(01 - 1)7 s ,HIl(O'k - 1)>‘ |€’

(01,0 )=H
Finally, we sum over all H < G and use (2.8)—(2.10) to get the lower bound.
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Next we restate Lemma 4.1 in [1].

LEMMA 2.5. Let z,, v = 1,...,k, be k complex numbers with I(z,) <
0 < R(zy) and let z = H’;Zl zy. Then —(z) is positive and increasing in
all R(z) as long as kS(z,)/R(z,) > —m for all v.

LEMMA 2.6. Let a € [0,1], 8 € [1/2,1], v > 0, r := aloglogz, J =
[1— (logz)™P,1]. If B > «, then

1 1 "
1 1 —B+a(l+log(vB/a))+e
Tt D 1)§<’y 08 7 s) ds < (logx)

uniformly in o, 3, .

Proof. By a change of variables s := (loglog x)z/log(%_s) the left hand
side equals

(loglog x)/B

7" (loglog x)? S (loglog x)? TeX _ (loglogz)*\ d5
I(r+1) ) 3 P 5 2

The integrand is increasing for 5 < (loglogx)?/(r + 2), and so is
< (Bloglogz)" (logx) ="
since 8 > «. The lemma follows now easily using Stirling’s formula.

Finally, we need a general Siegel-Walfisz theorem for Galois number
fields. For C € € let
1
(2.11) €(C) = @l #{o e G| C? =C}

be the normalized stabilizer of C.

LEMMA 2.7. For any C € € we have

:
(2.12)  €(C) 3 1= d%hﬁ k% + O(¢ exp(—cp(log €)'/?))
p<¢ 2

PER(C)
p totally split in L

uniformly in A < (log€)? for any constant B > 0. In particular,

T x
(]Og :L.)H-eh > (log :L»)Bcg—l-l-i-e

uniformly in A < (logz)? (cf. (2.3)).

(2.13) Up(z) >
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Proof. This is standard by applying Perron’s formula to

]_ " _ L/(S)X)
(2.14) Ve(s) == “d.h Z A<H X](OJ)) L(s,x)
(X15xm)€C T=1
fplogp
ZZ pfpns Z 1.
p n>1 Bl (p)
Npjk,;Breg;

Here B is a prime ideal in L, f}, is the ramification index of p in L, and
x is as in Lemma 2.2. We can absorb the contribution of the p™, n > 1,
and the contribution of the nonsplit primes in the error term. We integrate
over a suitable rectangle so that the main term comes from the residue
of Uc(s) at s = 1, which is (dh)™! by Lemma 2.2. Note that we have
dzl#{m | (p) © Nk, B" € ¢} = €(C) for a totally split prime p. For
further details see [6], where the integration is carried out in detail, and
note that we can use Stark’s result [13] to obtain a larger zero-free region

as in [6] if dy, is large (dr, > v/loglog x, say).

3. Suitable Dirichlet series. The proof of the main theorem uses
ideas from [1, 2], so we refer to these papers for some more details. We use
a Dirichlet series to count numbers which are norms in a given class. We
begin with a Dirichlet series that counts primes that are norms in a given
class C = (C1,...,Cy,). By orthogonality we have (cf. (2.14))

m

1) o= > (T[u@)esise0=do) Y
t (X1yesxm)EC T=1 PERG(C)
=: Pcg(s) = d_hlogg( s)+T(s,C,Q)

where x is given by Lemma 2.2 and Rg(C) by (2.5). From the defini-
tion we see that T'(s,C, Q) is a Dirichlet series with real coefficients, hence
T(s,C,Q) = T(5,C,Q) on (1,00]. This identity holds wherever T is holo-
morphic; in particular T is real on [2/3,1] N R by Lemma 2.3. For C € ¢,
k € N let

M;,(C) = {(Cl,...,ck) c ¢k ( Ce ﬁ{cg EX G}},
v=1
and

(32) Ack()=1 HPCV,Q

(C1,...,Cr)EM(C) v= n=1

8

(say).

By Lemma 2.1 the coefficients ac j satisfy
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e 0 <acy(n) <1forallneN,
e aci(n) > 0only if n € Rg(C) and £2(n) = k,
e aci(n) =1ifn € Ro(C), 2(n) =k and p?(n) = 1.

In fact, it is clear that Acx(s) counts only n € Rgo(C) with 2(n) = k.
Furthermore, choose a fixed set of representatives of the quotient G\ &, and
for each C € € let C be this representative. For k not necessarily distinct
objects X1,..., Xy let o(Xy,...,X) be the number of rearrangements of
the k-tuple (X1,..., Xj). Then we observe that an n = Hl’f 1 Py With not
necessarily distinct p, € Rg(D,), say, OCCurs as a denominator of a Dirichlet
series Hl]le Pc, q(s) for exactly o(Dy,...,Dy) H L €(D,) ! k-tuples from
M;j,(C). Therefore, ac x(n) < 1 with equahty ifne RQ(C) is squarefree.
The preceding discussion gives

(33) Z aCo, < UCo( )

n<x

for all £k € N and Cy € €. To obtain an upper bound, we have to include
some more numbers in our Dirichlet series. To this end, let

Zcg(s) =€(C) > 1

For k,1 € Ny let

Ack(s) = % % Z H Pc,q(s H Zp,,Q(s)

(C1,.,Cpleer V=1
(D1,....Dy)ee!
(Cl,...,Dl)EMk_H(C)

= Z 7@(;72;@) (say).

n=1
Then we see as before that ac x;(n) =1 if n € R(C), p*(n) = 1, and n has
exactly [ prime factors < @ and k greater than Q.

Now we observe that by Lemma 2.1, if n = niny € R(C) and (nq,n2)
=1, then n; € R(C;) and ny € R(Cg) for some C1Cy = C. This also holds
if (n1,n2) consists only of totally split primes. Finally, let

1
Bg(s) =éc + Z o
neR(C
n powerfull

where 0c = 1if C = 1 € € and else it vanishes. Then by the above discussion
the coefficients of
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a(R) n
(3.4) D> Acki(s)Bo-ic,(s) = Z COT() (say)
Celr<Rk+l=r n=1
satisfy
(3.5) Zaco > UG (@)

where ng)(x) denotes those numbers n < z, n € R(Cy) with 2(n) < R.
For k = 0 we count numbers with multiplicity at most h that consist only
of primes p < @, and by Corollary 1.3 of [8] there are, for sufficiently small
£ in (2.4), at most z exp(—(log z)3/4) numbers of this kind up to z. Thus we
may assume k > 0.

In preparation for Perron’s formula let S = exp((log x)'/?) and

Ig:=[1 - (logz) ' +i8,1 + (logz) ! +i9],
Iy :=[1— (logz) ' 1~ (logz) ' +i9],
I3 1 :=[1 — exp(—(loglog )1, 1 — (logz) 1],

Iy:={s€C||s—1| = exp(—(loglog z)")}.
Let I'y2 (1 < v < 3) be the image of I,; under reflection on the real axis,
oriented such that

I':=T19152153214 131151111

is homotopic to [1 + (logz) ™! —iS, 1+ (logz) ™! +iS]. By (2.4), (2.6), (2.7)
the functions Pc g extend for sufficiently large 2 holomorphically to a neigh-
bourhood of I', and we have Pc g(s) < (loglog z)? on [olho Ul I
and Pgcg(s) < (loglogz)? on Iy, so that
(3.6) Aci(s) < (h(loglog z)")* < exp((loglog x)?)

on I = I'olso Uy U Iy I, for k < loglogx and o > xo(A). Likewise,
since

Zc,g(s) < Z logx) ————— < loglog Q < loglog z

p<Q P!
on I', we see that
(3.7) Ac ri(s) < exp((loglogz)?)
on I fork+1< loglog x. For future reference we define
(3.8) J=-T3; =[1— (logz) ' 1 — exp(—(loglogz)*)].

LEMMA 3.1. For C e ¢, |o — 1| < (logz)~%/? and £ > 0 we have
log A+ O(1
T(0.C,q) < 2200
drh

where T was defined in (3.1).
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Proof (see Lemma 4.3 in [2] for details). For fixed ¢ > 0 we have, by
(3.1),

dH
—T(87 07 Q)‘Sil

dst
. (=logp* 1 (—10gp)“)
= lim ( ¢(C E — E .
E—m( © P drh P
PERQ(C),p<E p<E

For £ > @ this can be evaluated by partial summation and (2.12), and we
obtain

elog A+ O.(1) A+ 0O(1)
drh drh

for p > 1. The lemma follows now from Taylor’s formula up to degree

po := [2c3M + 1], say, where we use the trivial estimation

IT(1,C, Q)| < and |[TW(1,C,Q)| <

2]

d
(ko)
T\ (s, C,Q) < )Ig&)é Tan

logf(s,Q,x)‘ < (logz)°
together with (2.6) for |s — 1| < (logz) /3.

4. The lower bound. We start with the lower bound. By Perron’s
formula, (3.2) and (3.3) we obtain
1

x® zlogx
> —\A —d
UCO (%) B kg(l—glsz)%i{)glogm 211 1& Co’k(s) S s+ O< S )7

so that by (3.6),

1 z® z
> R W] =z
Ug,(x) > k<(l—r22?f(()glogac< - J§ Co.k(8) 5 ds) + O(exp((log log $)3)>

with J as in (3.8). Note that the integrand in I is the complex conjugate
of the integrand in I3 5. We use Lemma 2.5 with z, = Pc, o(s). Note that
by (3.1) and Lemma 3.1 the assumptions are satisfied for x > z¢(M,e).
Therefore,

1-1/logx 1 . s k
Uc,(z) > max L ) S E log 15 —elog A —cg —im
0 T k<(1—2¢)loglogx ™ k! drh
1-2/logx

x # My (Co) %sd‘S) + O(exp((loglog :n)3))

for some positive constant cg. To estimate #My(Cy), we divide the sum
over €* into two sums over € x Qk_l, obtaining

#M(Co) = > #M;_1(CoC™) = > #M; 1(C) = Y Si1(C),

Ced Ceg Cegkfl
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so that by Lemma 2.4,

Ucy(x) >ne —— ! —((1 - ¢)loglog x)* sm(

log z k<(1- 26)10g10g$ k!

k(1 4+ 0(1)))
loglog x

1 . 1
QTSP ?§%<|Hyk|FixH|>
X

1
> og 2) % k<(1-35 g logs k:'( oglog )" mm<|H|k|F1xH|>

up to an error of O(x/exp((loglogx)3)). In order to obtain a (crude) bound
for > ;<o 1, we can observe that there are < |G| nonisomorphic Abelian
groups H of order < G, and each H has at most £2(|H|) generators and
so can occur in at most 2(|H|) < log|G| ways in G. Thus Y .1 <
|G|90081G]) <« (log 2)°.

At the cost of an additional factor (log 2) ¢ we may extend the maximum
over all real k € [0,loglog z]. Writing & = a'log log x, we obtain after a short
calculation using Stirling’s formula

) x(logz)E(a,H)—a
Uco(w) > max, min ——m

This gives the lower bound.

5. The upper bound. Let us first note that by our assumption dy =
o(loglog x) we have

d
Ceg Cec

for s € I'. This is the only place where the additional assumption is needed.
By Perron’s formula, (3.4), (3.5) and (3.7), we therefore have as above

(5.1) Uéfi)(x) < Z Z _?1 %(S Z Ac k1(8)Bc-1¢,(5) %sds>

r<R k+l=r J Ceg
k0

o)

x
< z(log x)® Z Z Smax|ACkl( )| ds + e
2 2 e explllog oz )

k#0

Writing ¢k = ¢ x ¢! we see that



196 V. Blomer and J.-Ch. Schlage-Puchta

. D [Peiels)

ceG C1e€

k [
x > I1 1Pc..o() [T 1Zb,.0(s)
pn=1

(Ca,...,Cp)egk1 v=2
(D1,...Dy)ee!
(Co,....D)EMy_141(CCY)

?VIH
=|

|Ac k(s

We relabel the summation variable C; «+— CCY. By Lemma 3.1 we have

1 1
d+h€1 ogT—, on J.

Changing the order of summation, we see that

52) o) < LERELS (3 treat @) (X Zoals)

De¢

X max Sk_1+l((027~-7Dl))
(Ca,...,D;)egk—1+!

|Pcq(s)| <

on J (note that Zp g(s) > 0 there), so that by Lemma 2.4, (5.1) and (5.2),
(5.3) v (r) < z(log ) max min L 1
) Co g r<k H<G \ [H|" Y[FixH| | 7!
x
exp((loglogz)3)”

S(Z |Pe.o(s)| + Zeg(s ))Tds—k

J Ceg

By (3.1) we have > e e(|Pc,q(s)| — Pe,q(s)) = m/dr. Using orthogonality,
the same calculation as in (3.1) shows

i log Co(s Z > (J]Tj ) log L(s, x)
ro(+X

CEQ: (x1,-- 7Xm) E
Ceeper(c) P >
on J. From (2.7) we thus infer

1+¢

1
(54) Y (1Pce(®) + Zoa(s)| < —— log = +loglog A
dL 1—s
Ceg
on J (z > xg(e)). Let us first assume dj, < v/loglogz. Then
1+¢ 1

‘CZ:EQUPC,Q(S)’ +Zoole))| <~ log .
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so that by (5.3),
(5:5) UG (@)

1 1 1 "
1 SN S— 1 d
z(loge)” max = min <|H| |F1XH|> 3 (Og 1— 5> i

o,H)+e

- ., log)™
L Imax 1min
a€l0,1] H<G |Fix H|

by Lemma 2.6.
Now assume dy, > v/loglogx and let ¢11 = Mcsg + 2,

o 2611
°= logloglogx”
Firstly we show that the contribution of those r in (5.3) with gloglogz <
r < R is negligible. In fact, if we consider in (5.3) only the case H = G,

then by (5.4) and Lemma 2.6 their contribution is at most

(R) 1/1+¢ 1 "
U (x) < z(logx)® T>£(1)§>1(0gxr|x( 4 log—l_s+loglogA ds

1 C12 1 "
1 — 1 d
< o(logz)” r>££}1{ogx 7! S( log log x Ogl—s) s

< z(logz)~cte

for sufficiently large = which is admissible by (2.13). On the other hand,
those r with r < ploglog x contribute at most
1 T
> ds.
s

1 1
1 in(—————— loglog A) 1
(L‘( ng) r<Qr{4lJZ)l(og:pH<G<‘H’ |F1XH|> S (Cl?)( 08108 ) 8 1-—

Since plog(c13loglog A) = o(1), we find by Lemma 2.6 that

R ~ (logx E(a,H)+e
(5.6) U((jo)(x) < v max min %

Now we choose R := ciyloglogz with c14 = (log2)~}(Mcs + 4) and
bound trivially the number of integers n < x with 2(n) > cj2loglogx. By
[3, Corollary 1], there are at most O(z(logz)~*“~2) numbers of this kind.
By (2.13) this yields an admissible error. By (5.5) and (5.6) the proof is
complete.

6. Proof of Proposition 3 and Corollary 4. Since each group G; =
Gal(K;/Q) is cyclic, every C € FixH contains an m-tuple of ideals
(ai,...,ay) that remains fixed under the action of H. Indeed, let o; be
a generator of Hj. If (by,...,by,,) is any m-tuple of ideals in a class C =
(Ci,...,Cy) € FixH, then Cj is fixed by Hj, and so (b7',...,b7") =
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((A1)b1, ..., (Am)by,) for some principal ideals (A;). By Hilbert’s Theorem
90 we can write \; = ,u;_oj (e.g. [7, §13]), so that a; := (p;)b; gives the
desired ideal tuple. But up to a product of powers of ramified prime ide-

als, the a; are lifted ideals from the fixed field K]Hj, and so (cf. e.g. [15,
Theorem 1.6])

Fix H| < ﬁ( ) IT )
j=1 pCKjHj

where as usual e(p) denotes the ramification index of p in K. By Dedekind’s
discriminant theorem we know

H )< I (e+D) < (Dijo)

Png H; p¢ HDK/Q
This gives the proposition.

The corollary follows immediately from Theorem 2: For each subgroup
H # G we estimate E(a, H) > —1 + a(1 — log(adr/2)) and FixH < h
getting

UCo(x)
> max min $(10g$)—1+a(1—log(adL))—e x(logx)_1+a(1_log(o‘dL/2))_E
0<a<l ’ h

> x(log x)l/dL—l—s

1f h < (log x) (log2)/dL a5 can be seen by taking o = 1/dr,. The upper bound
n (1.5) follows from (1.4) for = > exp(A®).
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