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Introduction. Let Q be the rational number field and let p be a fixed
prime integer. Let vp be the p-adic valuation on Q and let Qp be the p-adic
number field, i.e. the completion of Q with respect to vp. Let Qp be a fixed

algebraic closure of Qp and let Q be the algebraic closure of Q in Qp. Let

vp be the unique extension of vp to Qp and let v be the restriction of vp

to Q. Let G = Gal(Q/Q) and Gp = Gal(Qp/Qp). Set Kp = Q ∩ Qp and

G′
p = Gal(Q/Kp). Since the restriction map from Gp to G′

p is injective and

surjective (Q is dense in Qp) we can view Gp as a subgroup of G. Here we

used the fact that v(σ(x)) = v(x) for every x in Q and for every σ ∈ Gp (Qp

is a Henselian field).

For any subfield L of Q we denote by L̃ the completion of L with respect
to the p-adic spectral norm

‖x‖p = max{|σ(x)|p | σ ∈ G}

where | · |p is the corresponding absolute value of v (see also [P1], [PN],
[PPV], [PPZ1]–[PPZ5]).

Denote by Q̃p the completion of (Q, ‖ · ‖p); we shall continue to use the

same notation ‖ · ‖p for the unique extension of ‖ · ‖p to Q̃p. This last com-
pletion is a regular commutative ring (a von Neumann regular ring). It has

many other interesting properties (see [PPV]). An element in Q̃p is a class x̂

of Cauchy sequences, where x = {xn}n, xn ∈ Q, n = 1, 2, . . . , is a represen-
tative of x̂. It is easy to see that if x = {xn}n, xn ∈ Q, is a Cauchy sequence
relative to the p-adic spectral norm, then {xn}n is a Cauchy sequence with
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respect to the absolute value | · |v◦σ, σ ∈ G, i.e. the sequence {σ(xn)}n has
a limit in Cp, the complex p-adic field (the completion of Qp relative to vp).
Denote this limit by

x(σ) = lim
n→∞

σ(xn).

We call x(σ) the σ-component of x. Let C(x) denote the set of all σ-compo-
nents of x and call it the pseudo-orbit of x.

Since {σ(xn)}n is also a Cauchy sequence relative to the p-adic spec-

tral norm, we denote by σ(x) its limit in Q̃p for any σ in G. The sub-

set O(x) = {σ(x) | σ ∈ G} of Q̃p is said to be the orbit of x in Q̃p.

By (σ, x) 7→ σ(x), G acts continuously on Q̃p if we consider the Krull
topology on G (see [PPV]). The same is true for the mapping (σ, z) 7→

z(σ) defined on G × Q̃p with values in Cp. In general we have a homeo-
morphism σ(x) 7→ x(σ) from the orbit of x onto the pseudo-orbit of the
same x.

Three main results are proved relative to these completions:

1) Any compact subset M of Cp which is invariant under the group Gp

(= Galcont(Cp/Qp)) is of the form M = C(x), where x ∈ Q̃p and C(x) is the
pseudo-orbit of x (Theorem 2.2).

2) The completion L̃ of a finite or infinite algebraic number field L,
relative to the p-adic spectral norm, is a Qp-Banach algebra isomorphic
to the Qp-Banach algebra of all the Gp-equivariant continuous functions
f : G/HL → Cp, where HL = FixL. Here f is said to be Gp-equivariant if
f(σ̂µ) = σ(f(µ̂)) for all µ ∈ G and σ ∈ Gp (Theorem 2.4).

3) Any algebraic number field (finite or infinite) has a topological generic

element x in Q̃p with respect to the p-adic spectral norm, i.e. L̃ = Q̃[x]
(Theorem 3.1). This result is a version of the “Primitive Element Theorem”
for infinite algebraic number fields.

There is a nice connection between the topological generic elements x ∈

Q̃p of an algebraic number field L and the so-called Cantor compact subsets
of Cp (Remark 2.1, Proposition 2.3, Theorem 3.3 and Theorem 3.4). At the
end of the paper we give an explicit computation of a Galois action of G on
the compact set Zp, the p-adic integers, and we associate to it an algebraic
number field, unique up to Qp-isomorphism (Section 4).

In a forthcoming paper we shall completely describe the structure of
all compact subsets of Cp in connection with algebraic number fields and
spectral norms.
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1. Some general results. In this section we use the notations and
definitions from the introduction. Now we recall a classical result in valuation
theory (see for instance [Neu, pp. 161–167]):

Theorem 1.1. Let L/K be an algebraic extension of fields and let v be

a fixed valuation on K. Let Kv be the completion of K with respect to v and

let Kv be an algebraic closure of Kv which contains L. Let v be the unique

extension of v to Kv. Let K be the algebraic closure of K in Kv. Then:

(i) Any extension w of v to L is of the form w = v ◦ τ, where τ is a

K-embedding of L into Kv.
(ii) If τ and τ ′ are two K-embeddings of L into Kv, then v ◦ τ = v ◦ τ ′

if and only if τ and τ ′ are conjugate by a Kv-automorphism of Kv,
i.e. τ ′ = σ ◦ τ for some σ ∈ Gal(Kv/Kv). In particular , if L/K is a

Galois extension and if H = Gal(L/K), then any extension w′ of v
to L is of the form w′ = w ◦ µ, where w is a fixed extension of v to

L and µ ∈ H. Moreover , w ◦ µ = w ◦ µ′ for µ, µ′ ∈ H if and only if

µ′ = ̺ ◦ µ for some ̺ ∈ Gal(Kv/Kv) = Gal(K/K ∩Kv).

We give here an elementary result which will be useful in the following
(see [PPV]).

Proposition 1.2. Let v be the restriction of vp to Q and let σ be an

automorphism of G. Then the following assertions are equivalent :

(i) v and v ◦ σ are equivalent (they induce the same topology on Q).
(ii) σ ∈ Gp.

(iii) σ is a continuous mapping with respect to v.

We need the following result, which partially appears in [PL].

Proposition 1.3. There exists a maximal extension L(p) of Q in Q

such that vp has only one extension w to L(p) (for any finite extension K of

L(p), w has at least two distinct extensions to K). This L(p) is dense in Cp.
Moreover , any automorphism µ of G can be uniquely written in the form

µ = στ, where σ ∈ Gp and τ ∈ Gal(Q/L(p)).

Proof. According to [PL] we only have to prove the last statement.
Since L(p) is dense in Qp one can use Krasner’s lemma [Neu] to prove that

L(p)Qp = Qp. Hence any embedding λ of L(p) in Q gives rise to a unique

automorphism λ of Gp = Gal(Qp/Qp). If we start with a µ ∈ G, then µ|L(p)

is such a λ. Hence λ−1µ ∈ Gal(Q/L(p)). In the end we get µ = λτ with
λ ∈ Gp and τ = λ−1µ ∈ Gal(Q/L(p)). The unicity follows from the equality
L(p)Qp = Qp.

Remark 1.1. For any natural number n, it is not difficult to construct
an algebraic extension T of L(p) of degree n such that the valuation w
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from the above proposition has exactly n extensions to T. Namely, take an
extension R of Q of degree n such that the valuation vp splits completely
into n valuations on R (see the theorem of Hasse [R]). Then we can consider
the compositum T = L(p)R, which is an extension of degree n over L(p) and
w splits exactly into n distinct valuations on T.

2. Gp-equivariant compact subsets of Cp. Let Gp = Galcont(Cp/Qp)
denote the group of continuous automorphisms of the p-adic complex num-
ber field Cp over Qp. A compact subset M of Cp is said to be Gp-equivariant

if σ(x) ∈M for any σ ∈ Gp and x ∈M .

Proposition 2.1. For any x ∈ Q̃p, the pseudo-orbit C(x) of x is a

Gp-equivariant compact subset of Cp. Moreover , Gp acts continuously on

C(x) by σ(x(µ)) = x(σµ).

Let M be a Gp-equivariant compact subset of Cp. For any ̺ > 0 we
consider the covering of M with n(̺) disjoint closed balls of radius ̺:

S(̺) = {B[x̺1, ̺], . . . , B[x̺n(̺)
, ̺]}

where B[x, ̺] = {y ∈ Cp | |x − y|p ≤ ̺} and such that x̺j ∈ M for any
j = 1, . . . , n(̺). For any fixed ̺ the balls of S(̺) are uniquely determined.
Since the mapping ̺ 7→ n(̺) has discrete values, the real interval (0,∞) can
be written as a union

(0,∞) = (∞, ε1] ∪ (ε1, ε2] ∪ · · · ∪ (εn−1, εn] ∪ · · ·

where {εn}n is a decreasing sequence and εn → 0. We briefly write Sn instead
of S(εn) and nk for nεk

. The two sequences {εk}k and {nk}k are called the
configuration numbers (sequences) of M. They are invariants for M. The set
M is said to be a Cantor compact subset if all the balls from Sk contain the
same number of balls from Sk+1.

Let now M be a Gp-equivariant compact of Cp. We shall construct a new
compact subset N of M and we shall call it a p-reduction of M. It will be
the projective limit of the following projective system of balls. Set S ′1 = S1.
Assume we have constructed S ′k. We now define S ′k+1 to be a least subset of
balls of Sk+1 which are contained in S ′k and such that for any two balls of
S ′k+1 no σ in Gp carries one ball into the other. Take now N = lim←−S

′
k. This

N can be obtained as the intersection of a tower of balls B′
1i1
⊃ B′

2i2
⊃ · · · ,

all of them from the initial configuration of M. Briefly we say that N is a
reduction of M.

Definition 2.1. A Gp-equivariant Cantor compact subset of Cp is said
to be (p-) strong compact if it has a Cantor compact reduction N ⊂M.

Theorem 2.2. Let M be a Gp-equivariant compact subset of Cp. Then

there exists an x in Q̃p whose pseudo-orbit is exactly M.



Compact subsets of Cp 257

Proof. Let {Sk}k and {S ′k}k be the projective systems constructed above
for M and for one of its reductions N respectively.

Let n′
1, n

′
2, . . . , be the corresponding numbers of distinct balls which

cover only the subset N. Fix a k = 1, 2, . . . . If every ball B′[xkj, εk] ∈ S
′
k,

j = 1, . . . , n′
k, where n′

1 = 1, contains the same number of balls of radius
εk+1, namely n′

k+1/n′
k, we put n′′

k+1 = n′
k+1. If this last fraction is not a

natural number, we denote by p(k, j) the number of balls of radius εk+1

which are contained in B′[xkj , εk] and put mk = l.c.m.{p(k, j)}j. Finally,
we change n′

k+1 to n′′
k+1 = n′′

kmk. In this way we must count some of the
true balls of radius εk+1 which are contained in B′[xkj , εk] many times,
i.e. we must consider them “with multiplicities”. We obtain inductively a
new sequence of natural numbers, n′′

1, n
′′
2, . . . , such that n′′

k divides n′′
k+1 for

any k = 1, 2, . . . . For every k = 1, 2, . . . , denote by S∗k the set of all n′′
k

balls B′[xkj, εk] in N (for convenience we assume that only the first one,
B′[xk1, εk], may appear many times). It is now clear that the sets {S∗k}k can
be organized as a projective system of balls and its projective limit is exactly
N = lim←−S

∗
k , i.e. every element of N can be realized as the intersection of a

tower of balls, one from every S∗k , k = 1, 2, . . . .
We now want to associate to this projective system of balls in N a tower

of algebraic fields:
L(p) = L1 ⊂ L2 ⊂ · · · ⊂ Q

where L(p) is the subfield considered in Proposition 1.3. For S∗1 ={B′[x1, ε1]},
x1 ∈ N, we take simply L1 = L(p). Consider now an extension L2 of L1 of
degree n′′

2 such that the unique extension of the p-adic valuation vp to L1

decomposes exactly into n′′
2 distinct valuations v21, v22, . . . , v2n′′

2
on L2 (this

can be done as in Remark 1.1). Since L2 is dense in Cp (in fact L(p) is
dense in Cp as we saw in Proposition 1.3) we can take z2j ∈ B′[x2j, ε2] such
that σ−1

2j (z2j) ∈ L2 for every B′[x2j, ε2] ∈ S
∗
2 , where {σ2j}j are all the L(p)-

embeddings of L2 into Q and v2j = v ◦ σ2j. We now use the Approximation
Theorem to find an element w2 in L2 such that |w2 − σ−1

2j (z2j)|v2j
≤ ε2 for

every j = 1, . . . , n′′
2. This means that in every ball B′[x2j, ε2] from S∗2 we have

exactly one conjugate of w2 over L(p). It is easy to see that L2 = L(p)[w2].
Assume that we have constructed the field Lk, n′′

k distinct valuations vkj

= v ◦ σkj on it and a generator wk of it such that σkj(wk) ∈ B′[xkj, εk] for

every j = 1, . . . , n′′
k. Here σkj are all the L(p)-embeddings of Lk into Q.

We now consider an extension Lk+1 of Lk of degree qk = n′′
k+1/n′′

k such
that every valuation vkj decomposes exactly into qk valuations on Lk+1

(Remark 1.1). Then vk+1,j = v ◦ σk+1,j, j = 1, . . . , n′′
k+1, are all the distinct

valuations on Lk+1 which extend vp. Here σk+1,j, j = 1, . . . , n′′
k+1, are all

the L(p)-embeddings of Lk+1 into Q. We must be careful with the notation
of σk+1,j. Namely, the restriction of σk+1,j to Lk must be σk,j′ such that
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σk+1,j(wk+1) is in the ball B′[xk,j′ , εk] which also contains σk,j′(wk). For
any j = 1, . . . , n′′

k+1, take zk+1,j ∈ B′[xk+1,j, εk+1] such that σ−1
k+1,j(zk+1,j) ∈

Lk+1. Using the Approximation Theorem we find wk+1 ∈ Lk+1 whose con-
jugates over L(p) all belong to a ball of the form B′[zk+1,j, εk+1]. Hence

Lk+1 = L(p)[wk+1] = Lk[wk+1].

Let now µ ∈ G. From Proposition 1.3 we can write µ = στ, where σ ∈ Gp

and τ ∈ Gal(Q/L(p)). Therefore, every conjugate µ(wk) of wk belongs to a
ball from Sk, where {Sk}k is the projective system of balls which gives the
whole compact subset M. Moreover, any ball Bkj of Sk contains at least one
such Q-conjugate of wk. We now prove that {wk}k is a Cauchy sequence
relative to the p-adic spectral norm. Indeed,

‖wk+n − wk‖p = max{|µ(wk+n − wk)|p | µ ∈ G}.

But |µ(wk+n − wk)|p = |τ(wk+n − wk)|p, where τ ∈ Gal(Q/L(p)). Since
wk, wk+n ∈ Lk+n, τ is one of the L(p)-embeddings σk+n,j of Lk+n in Q

considered above. Because of the special choice of σk+1,j , . . . , σk+n,j , we see
that σk+n,j(wk+n) and σk+n,j(wk) are in the same ball B′[xkj, εk], i.e.

|µ(wk+n − wk)|p ≤ εk

for every n = 1, 2, . . . and µ ∈ G. This means that

‖wk+n − wk‖p ≤ εk

for every n = 1, 2, . . . and so {wk}k is a Cauchy sequence with respect to
the p-adic spectral norm. Let

x
‖·‖p
= lim

n→∞
wn in Q̃p.

It is not difficult to see that any element y of M is the intersection of a
tower of balls of the form B[x1, ε1] ⊃ B[x2j2 , ε2] ⊃ · · · ⊃ B[xkjk

, εk] ⊃ · · ·
and each such ball contains an element of the form µ(wk) ∈ B[xxkjk

, εk] for
the same µ ∈ G (see the construction of σk+1,j from σk,j). Hence

x(µ)
|·|p
= lim

n→∞
µ(wk),

i.e. M = C(x) and the proof of the theorem is finished.

Remark 2.1. In the proof of Theorem 2.2 we have constructed an ele-
ment x ∈ L̃, the p-adic completion of L =

⋃∞
k=1 Lk, such that M = C(x).

Let M be a p-strong compact subset of Cp. Let σ, µ ∈ G with σ(x) 6= µ(x)

(in Q̃p), i.e. x(τσ) 6= x(τµ) for at least one τ ∈ G (two elements in Q̃p are
equal if and only if their components are equal). If τ ∈ Gp then x(τσ) =
τ(x(σ)) 6= τ(x(µ)) = x(τµ) if and only if x(σ) 6= x(µ). If τ /∈ Gp, then we can

consider τ, σ, µ to be L(p)- embeddings of L into Q (see Proposition 1.3). In
this last case, since N is a Cantor compact subset of Cp, x(τσ) 6= x(τµ) means
that the two towers of balls which define x(σ) and x(µ) respectively do not
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coincide, i.e. x(σ) 6= x(µ). So we have proved that the continuous mapping
σ(x) 7→ x(σ) from O(x) to C(x) is a homeomorphism.

Proposition 2.3. Let M be a p-strong compact subset of Cp. Then M
is homeomorphic to a factor set of left cosets of the form G/H, where H is

a closed subgroup of the absolute Galois group of Q.

Proof. Let M = C(x) for x ∈ Q̃p (Theorem 2.2). Let Hx = {µ ∈ G |

µ(x) = x in Q̃p}. It is easy to see that Hx is a closed subgroup of G. The
orbit O(x) is homeomorphic to G/Hx through the mapping σ 7→ σ(x). Take
H = Hx and the proof is finished.

Let K be a subfield of Q and let HK = {σ ∈ G | σ(x) = x for all x in
K} be the closed subgroup of G which fixes K. Let G/HK be the compact
space of all left cosets of HK in G. A continuous function f : G/HK → Cp is
said to be Gp-equivariant if f(µσHK) = µ(f(σHK)) for every µ ∈ Gp and
for all cosets σHK in G/HK . We denote by CGp

(G/HK , Cp) the Qp-Banach
algebra of all continuous Gp-equivariant functions f : G/HK → Cp.

Theorem 2.4. With the notations and the hypotheses above, let K̃ be the

completion of K relative to the p-adic spectral norm. Then the continuous

mapping ϕ : K → CGp
(G/HK , Cp), defined by ϕ(x) = ϕx, where ϕx(σHK) =

σ(x) (= x(σ)), can be uniquely extended to an isometric homomorphism of

Qp-algebras, denoted also by ϕ: K̃ → CGp
(G/HK , Cp), ϕ(z) = ϕz, where

ϕz(σHK) = z(σ).

Proof. Since ‖z‖p = supσ∈G |z(σ)|p, the isometric property is clear (for
f ∈ CGp

(G/HK , Cp), ‖f‖ = supσ∈G |f(σHK)|p, the usual sup-norm in a
Banach algebra of continuous functions defined on a compact space). The
continuity of ϕ comes from the continuity of the mapping σ 7→ x(σ) (see also
[PPV]). It remains to prove the surjectivity of ϕ. Let f ∈ CGp

(G/HK , Cp)
and let M be the Gp-equivariant compact subset f(G/HK). Let “∼” be the
following equivalence relation on G/HK :

µ1HK ∼ µ2HK if µ2HK = σµ1HK for some σ in Gp.

Choose a representative µtHK in each equivalence class of this relation.
Denote this set of representatives by {µtHK}t∈T . It is clear that the {µt}t
give rise to a set of inequivalent independent absolute values on K: |z|µt =
|µt(z)|p, t ∈ T. Let now

Q = K1 ⊂ K2 ⊂ · · · ⊂ K,
∞⋃

n=1

Kn = K,

be a tower of (finite) algebraic number fields which cover the whole K.
Let ε1 > ε2 > · · · > 0 be a sequence of real numbers convergent to

zero and let nk be the least number of balls B[xkj, εk], j = 1, . . . , nk, which
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cover N, a reduction of M (see definition before Definition 2.1). We suppose
that n1 = 1 and n1 < n2 < · · · . Consider now the next n2 > 1 balls of
radius ε2 which cover N , and take an element f(µ2jHK), j = 1, . . . , n2, of
N in every such ball, where µ2j is one of the above chosen {µt}t∈T . Since
| · |µ2j

, j = 1, . . . , n2, are independent absolute values on K, they are also
independent on at least one field Kk2 from the above tower. Choose the
smallest Kk2 .

Now assume that we have already constructed Kk2 ⊂ · · · ⊂ Kkn
such

that for any i = 2, . . . , n and any set of elements {f(µijHK)}, j = 1, . . . , ni,
in N and, at the same time, in a ball B[xij , εi], the corresponding absolute
values {| · |µij

}, j = 1, . . . , ni, are independent on the subfield Kki
. If the

set N is finite, the above construction must stop at a subfield Kkm
, for an

m ∈ N. If N is infinite, we consider the set {B[xn+1,j, εn]}j of balls which
cover N, some elements f(µn+1,jHK) from N, each in one of these balls, and
take a subfield Kh with sufficiently large h ∈ N such that Kkn

⊂ Kh and
the absolute values {| · |µn+1,j}j are independent on Kh. Then we restrict
the absolute values {| · |µn+1,j

}j to Kkn
. Let kn+1 be the least h with this

property. Now we apply the Approximation Theorem on any Kkn
and find

an element wn ∈ Kkn
such that

|µnj(wn)− f(µnjHK)|p < εn

for any j = 1, . . . , nkn
and n = 2, 3, . . . . Since f is Gp-equivariant we can

extend these inequalities to the whole M = f(G/HK) and to the whole
G/HK .

Now it is easy to see that {wn}n is a Cauchy sequence in K relative to

the p-adic spectral norm. Let w = limn→∞ wn be its limit in K̃. From the
last inequality and from the way we have chosen the set {µt}t one finds that
w(τ) = f(τHK), i.e. f = ϕw and the proof is finished.

3. Topological generic elements in the p-adic case

Theorem 3.1. Any algebraic number field L (finite or infinite) has a

topological generic element x ∈ Q̃p, relative to the p-adic spectral norm, i.e.

L̃ = Q̃[x]. Moreover , this x is such that ϕx : G/HL → Cp is a topological

embedding , where HL is the subgroup of G which corresponds to L (in the

Galois correspondence).

Proof. From Theorem 2.4 we can work in CGp
(G/HL, Cp) ∼= L̃, where

HL = FixL = {σ ∈ G | σ(z) = z for any z ∈ L}. In order to find an

element x ∈ L̃ with L̃ = Q̃[x] it is enough to find f ∈ CGp
(G/HL, Cp)

which separates the elements of G/HL, i.e. σHL 6= µHL implies f(σHL) 6=
f(µHL). Indeed, using the p-adic version of the Stone–Weierstrass theorem

(see [Sch, Appendix]) for the Qp-subalgebra Q̃[f ] of CGp
(G/HL, Cp) we will
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then obtain Q̃[f ] = CGp
(G/HL, Cp). Then the generic topological element

of L̃ will be the x ∈ L̃ with ϕx = f.

Let us construct such an embedding f : G/HL → Cp. Since f must be
a Gp-equivariant continuous function on G/HL, first of all we take a subset
N of representatives {τi}i∈I in G/HL such that for any i 6= j, i, j ∈ I,
there is no σ ∈ Gp with στi = τj . We construct N exactly as in the case
of a Gp-equivariant compact subset M of Cp. Namely, first of all let us
organize G/HL as a profinite Cantor compact set, considering a tower of
finite algebraic number fields:

Q = L1 ⊂ L2 ⊂ · · · ⊂ L

where L =
⋃∞

i=1 Li and taking the corresponding tower of subgroups:

HL ⊂ · · · ⊂ H2 ⊂ H1 = G

where
⋂∞

i=1 Hi = HL and Hn = HLn
= FixLn. Now G/HL = lim←−G/Hn

and we construct the compact subset N of G/HL as follows. Consider the
partition G = µ21H2 ∪ · · · ∪µ2n2H2. If µ22H2 = σµ21H2 for some σ ∈ Gp we
remove µ22H2 from this partition. We proceed in this way in order to obtain
a “reduced” subset of {µ2iH2}i, i = 1, . . . , n2, with respect to Gp. Denote
by

S∗2 = {µ∗
21H2, µ

∗
2i2

H2, . . . , µ
∗
2ik2

H2}

this “reduced” subset. Consider now the partition H2 = τ31H3∪· · ·∪τ3m3H3.
Take µ∗

21H2 ∈ S
∗
2 and find a corresponding partition:

µ∗
21H2 = µ∗

21τ31H3 ∪ µ∗
21τ32H3 ∪ · · · ∪ µ∗

21τ3m3H3.

We now consider the “reduction” of the set {µ∗
21τ3jH3}j relative to Gp.

We do the same with all µ∗
2ij

H2 of S∗2 and finally obtain S∗3 = {µ∗
31H3, . . . ,

µ∗
3k3

H3}. We continue in this way and obtain S∗4 ,S∗5 , . . . . Since any set in
S∗n+1 is a subset of a set in S∗n we can organize {S∗n}n into a projective
system of finite sets. Let N be its projective limit. It is clear that N is a
compact subset of G/HL and

⋃
σ∈Gp

σ(N) = G/HL. The compact subset N
has a “configuration”

k1 = 1 < k2 < k3 < · · ·

where kj = |S∗j | for any j = 1, 2, . . . . Let ε1 > ε2 > · · · > 0 be a se-
quence of positive real numbers which tends to zero. Let Z be the following
compact subset of Cp with the configuration ({εn}n, {kn}n). Take a col-
lection Un = {Bn1, . . . , Bnkn

} of disjoint balls such that any ball Bn+1,i

of Un+1 is contained in one ball Bn,j of Un. Moreover we assume that
for any n = 1, 2, . . . and i 6= j, i, j ∈ {1, . . . , kn} there is no σ ∈ Gp,
σ 6= e, such that Bnj = σ(Bni). We also suppose that any two distinct
towers of balls B11 ⊃ B2i2 ⊃ B3i3 ⊃ · · · and B11 ⊃ B2j2 ⊃ B3j3 ⊃ · · ·
have distinct intersection points. We consider the mapping fn : S∗n → Un,



262 A. D. R. Choudary et al.

fn(µ∗
njHn) = znj, where znj is a fixed point of Bnj , j = 1, . . . , kn. If σ ∈ Gp

we put fn(σµ∗
njHn) = σ(znj).

In this way we have obtained a continuous function from G/Hn to Cp

which separates the elements of G/Hn. The projective limit of {fn}n gives
rise to a continuous function f ∈ CGp

(G/HL, Cp), with Im f = Z, which
separates the elements of G/HL, and the proof of the theorem is finished.

In the course of the above proof we obtained in fact another important
result.

Corollary 3.2. The element x ∈ Q̃p is a generic element for L if and

only if ϕx : G → Cp induces a continuous embedding ϕx: G/HL → Cp, i.e.

µ−1σ ∈ HL if and only if x(σ) = x(µ).

Remark 3.1. An alternative proof for Theorem 3.1 can be given exactly
as in the archimedian case (see [PPZ1]).

Theorem 3.3. Let L be a subfield of Q. Assume that there exists a

topological generic element x for L, i.e. L̃ = Q̃[x]. Then the pseudo-orbit

C(x) of x is a Cantor compact subset of Cp.

Proof. We prove that the continuous surjection σ(x) 7→ x(σ) from O(x)

to C(x) is a bijection, i.e. C(x)
top
∼= G/Hx, where Hx = {µ ∈ G | µ(x) = x}.

Let σ, µ ∈ G be such that x(σ) = x(µ), let z ∈ L and let ε > 0 be a small

real number. Then z
‖·‖
= limn→∞ Pn(x), where Pn(x) ∈ Q[x]. Let {xm}m be

a Cauchy sequence in L which defines x. Then, for fixed n,

lim
m→∞

Pn(σ(xm)) = Pn(x(σ)) = Pn(x(µ)) = lim
m→∞

Pn(µ(xm)).

Choose n such that ‖z − Pn(x)‖p < ε/6. Then

‖σ(z)− Pn(σ(x))‖p < ε/6, ‖µ(z)− Pn(µ(x))‖p < ε/6.

For this n we choose m such that

‖Pn(σ(x))− Pn(σ(xm))‖p < ε/6, ‖Pn(µ(x))− Pn(µ(xm))‖p < ε/6.

It follows that

‖σ(z)− Pn(σ(xm))‖p < ε/3, ‖µ(z)− Pn(µ(xm))‖p < ε/3.

Possibly increasing m we have

‖Pn(σ(xm))− Pn(µ(xm))‖p < ε/3.

Finally, we see that ‖σ(z) − µ(z)‖p < ε for any ε > 0. This means that
σ(z) = µ(z) for any z ∈ L. Hence σ(x) = µ(x), i.e. the mapping σ(x) 7→ x(σ)

is an injection and the proof is finished.

Theorem 3.4. Let x in Q̃p be such that C(x) is a Cantor compact subset

of Cp. Let Hx = {σ ∈ G | σ(x) = x} and L = {y ∈ Q | µ(y) = y for every

µ ∈ Hx}. Then L̃ = Q̃[x], i.e. x is a topological generic element for L̃.
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Proof. Since L̃
top
∼= CGp

(G/Hx, Cp) and x ∈ L̃ (Kerϕx = Hx, where ϕx :
G→ Cp, ϕx(σ) = x(σ)). Since C(x) is a Cantor compact subset, ϕx separates
the elements of G/Hx. Hence we can apply the p-adic version of the Stone–

Weierstrass theorem (see [Sch]) for the subalgebra Q̃[x] of CGp
(G/Hx, Cp)

to conclude that L̃ ∼= Q̃[x].

Remark 3.2. If we start with a Cantor compact subset M of Cp, it
is not difficult to find the least Gp-equivariant Cantor compact subset M ′

which contains M , namely,

M ′ =
⋃

σ∈Gp

σ(M).

This is a consequence of a general observation. If G is a compact group
which acts continuously on a metric space M, that is, (g, m) 7→ g ·m is a
continuous mapping, and if N is a compact subset of M, then {g ·n | g ∈ G,
n ∈ N} is a compact subset of M.

Another remark is that an element x can be a topological generic element

only for one algebraic number field. Indeed, if L̃ = Q̃[x] = L̃′ then, according

to [PPV], L = L̃ ∩Q = L̃′ ∩Q = L′.

If one puts together Theorems 3.1, 3.3, 3.4 and the method used in the
proof of Theorem 3.1, one obtains the following basic result.

Theorem 3.5. Let x ∈ Q̃p, let Hx be its invariant subgroup in G and

L = Inv Hx. Then the following assertions are equivalent :

(i) C(x) is a Cantor compact subset of Q̃p.

(ii) x is a topological generic element for L̃.

(iii) x
‖·‖
= limn→∞ xn, where xn ∈ Q, Q(xn) ⊂ Q(xn+1), any valuation

on Q(xn) which extends vp splits completely in Q(xn+1) for every

n = 1, 2, . . . , and L =
⋃∞

n=1 Q(xn).

4. Unusual Galois actions on compact subsets of Cp. In this sec-
tion we use freely the notations and results of the previous sections.

Let M ⊂ Cp be a p-strong compact subset of Cp and let x ∈ Q̃p be such
that C(x) = M (Theorem 2.2). Since the continuous mapping σ(x) 7→ x(σ)

from O(x) to C(x) is a homeomorphism (Remark 2.1), the map

(σ, x(τ)) 7→ σ ∗ x(τ) := x(στ)

is a continuous group action of the absolute Galois group G = Gal(Q/Q)
on the compact subset M. We call such actions Galois actions on compact

subsets of Cp. It is easy to see that if the above defined function is a group
action of G on M = C(x), then M must be a Cantor compact subset. If M
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is not Gp-equivariant or if M is not a Cantor compact subset, we cannot
define such a Galois action on it.

The usual compact subsets of Cp are the rings of integers of finite exten-
sions of Qp in Qp. The ring Zp of p-adic integers is a p-strong compact subset
of Cp. Let us describe such a Galois action on Zp. Z itself is dense in Zp

(relative to the p-adic valuation). Consider a fixed tower of subfields of Q:

K0 = Q ⊂ K1 ⊂ K2 ⊂ · · · ⊂ K, where K =
⋃

Kn ⊂ Q,

such that [Kn+1 : Kn] = p and the p-adic valuation splits completely in Kn

(see the theorem of Hasse [R]). Let Hn = {µ ∈ G | µ(y) = y for every y ∈
Kn} be the corresponding closed subgroup of G. As in the proof of Theorem
2.2 we shall connect the natural profinite structure of Zp to the profinite
structure of G.

We denote by S1 = {B10, B11, . . . , B1,p−1} the set of “closed” balls in
Zp of radius 1/p, with centres at 0, 1, 2, . . . , p− 1, respectively. For instance

B1i = B[i, 1/p] = {z ∈ Zp | |z−i|p ≤ 1/p}. It is clear that Zp =
⋃p−1

i=0 B1i and
this is a disjoint union. The ball B1i is the disjoint union of the following p

balls of radius 1/p2: B1i =
⋃p−1

j=0 B
(i)
2j , where B

(i)
2j = B[i+jp, 1/p2], 0 ≤ j < p.

We put together all these balls of radius 1/p2 for any i = 0, 1, . . . , p− 1 and
obtain S2 = {B20, B21, . . . , B2,p2−1}; the first p balls are contained in B10,
the next p in B11, etc. In this way we can construct Sn from Sn−1 for every
n = 2, 3, . . . and it is clear that Zp = lim←−Sn.

Let | · |10, . . . , | · |1,p−1 be the p-adic absolute values on K1, which extend
the usual p-adic absolute value | · |p on Q.

Let σ10, σ11, . . . , σ1,p−1 be a fixed set of representatives of the left cosets
in G/H1 and we assume (after a suitable permutation of the above p absolute
values) that |y1|1j = |σ1j(y1)|v for any y1 ∈ K1 and j = 0, 1, . . . , p − 1.
Exactly as in the case of S2, we consider a set of representatives σ20, σ21, . . . ,
σ2,p2−1 of cosets in G/H2, the first p of which extend σ10, the next p extend
σ11, etc. At the same time we consider the p2 absolute values: |y2|2j =
|σ2j(y2)|v for any y2 ∈ K2 and j = 0, 1, . . . , p2 − 1.

We continue in this way for every K3, K4, . . . . We obtain three “isomor-
phic” projective systems: of balls, {Sn}n, of automorphisms of G, and of ab-
solute values. Using the Approximation Theorem on Kn we can find xn ∈ Kn

such that |σnj(xn) − j|v ≤ 1/pn for every j = 0, 1, . . . , pn − 1. This means
that xn has exactly pn = [Kn : Q] conjugates (in particular Q(xn) = Kn)
and each of them belongs to a ball from Sn. Since any automorphism σ of
G, when restricted to Kn, is one of the σnj, j = 0, 1, . . . , pn−1, the sequence
{xn}n is a Cauchy sequence relative to the p-adic spectral norm on Q. Let

x
‖·‖p
= limn→∞ xn, x ∈ K̃. In fact we have a representation of the Cantor

compact subset Zp as the pseudo-orbit of this x: Zp = C(x).
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Now, the Galois action σ ∗ x(µ) = x(σµ) of G on C(x) = Zp is easy to
describe. Take a p-adic integer

α = a0 + a1p + · · · , ai ∈ {0, 1, . . . , p− 1} for all i = 0, 1, . . . .

This α corresponds to a tower of balls B1i1 ⊃ B2i2 ⊃ · · · , namely B1i1 =
B[a0, 1/p], B2i2 = B[a0 +a1p, 1/p2], . . . , Bnin = B[a0 +a1p+ · · ·+an−1p

n−1,
1/pn], . . . . Moreover Bnin ∈ Sn for n = 1, 2, . . . and {α} =

⋂
n Bnin . We

associate to this α the unique Q-embedding µ(α) of K =
⋃

n Kn into Q, such
that the restriction of µ(α) to Kn is exactly σnjn,α (where jn,α = a0 + a1p +

· · ·+an−1p
n−1) constructed above. It is easy to see that this assignment α 7→

µ(α) is a one-to-one and onto correspondence between Zp and the topological
space G/H (with its Krull topology), where H = FixK. Moreover, this
last mapping is a homeomorphism between Zp and G/H. The above Galois
action on Zp is exactly σ∗α = β ∈ Zp, where β corresponds to the embedding
σµ(α) of K into Q. This β = b0 + b1p + · · · is the p-adic limit of the integers

kn = b0 + b1p + · · · + bn−1p
n−1, where kn is the index which appears in

σnkn
, the restriction of σµ(α) to Kn, which in addition has the following

property: |σnkn
(xn) − kn|v ≤ 1/pn (see the above construction of {σnj}n,j ,

j = 0, 1, . . . , pn−1). This Galois action can also be described by using the
above homeomorphism between Zp and G/H. Let θ : Zp → G/H be this
homeomorphism. Then

σ ∗ α = θ−1(σ̂θ(α)).

This Galois action depends on the p-tower of fields

K1 ⊂ K2 ⊂ · · · ⊂ K =
⋃

n

Kn

and on x
‖·‖p
= limn→∞ xn.

Remark 4.1. The completion K̃ of the above infinite algebraic number
field K = Inv Hx, with Zp = C(x), is Qp-homeomorphic to CGp

(Zp, Cp)
(Theorem 3.1). But this last Qp-Banach algebra is in fact C(Zp, Qp), the
Qp-Banach algebra of all continuous functions from Zp to Qp. The p-adic
algebra and analysis of C(Zp, Qp) can be sometimes more deeply understood

if one uses the identification C(Zp, Qp) = K̃. For instance, instead of the
well known orthogonal basis of Mahler for C(Zp, Qp) (see [M]), we can use
the image of the orthogonal basis {Mn(x)}, n = 0, 1, . . . , constructed in [A].
This last basis has deep arithmetical roots (see also [APZ1], [APZ2], [P2])
and it will be studied in another paper.
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