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1. Introduction. Let ¢ = ( + iy denote the non-trivial zeros of the
Riemann zeta function ((s). For t # =,

1 1
(1) S(t) :—argC< +zt>——\slogg< —Ht)
where the argument is obtained by continuous variation along the horizontal
line o + it starting with value zero at oo + it. For ¢t = vy, we define
t t—
S(t) = lim 2T+ S =)

e—0 2

Selberg [10] proved that

f T

VIs)?at = 53 loglog T+ O(T (loglog T)'/?).

0
He also proved the same asymptotic formula with a better error term O(T)
under Riemann Hypothesis (RH). Later, Goldston [8] proved that, un-
der RH,

T [ee)
2 \IS)Pdt = —loglogz—i-;;“%da—i-(?g
0
1
-2 ()] o

where Cy is Euler’s constant and
T 7\ ! T\ @O
Fla,T) = — log — — —
(o, T) (27T og %) > (%) w(y —7"),
0<y,y'<T

with w(u) = 4/(4 + u?), is Montgomery’s pair correlation function. Here
and throughout the paper, p will denote a prime, and sums or products over
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p are over all primes. Note that the integral involving F' equals 1 + o(1) if
Montgomery’s strong pair correlation conjecture is true. Under RH and a

strong quantitative form of the Twin Prime Conjecture, the author proved
n [4] that

T
T I
2 _ —
(S) |S(t)|° dt = 5.2 loglog o

tam | 0= 23 (5 - ) ]

m=2 p
T (TloglogT)
212 log? (T /27) log® T

where (' is some constant. This does not quite give the next lower order
term T'/log?(T/27) as things are hidden in the integral involving F. In this
article, we derive lower order terms for the second moment using a strong
asymptotic formula on pair correlation of zeros of the Riemann zeta function
by Bogomolny and Keating [3] using random matrix method (see [2] for more
details):

(3) > =9

0<y,y'<T
1 T " T . ¢
~ (2n)? §] (%f(o) log o— + _STf(T) <log2 5 +2 (( C> (1 +ir)

+ (%) _irg(1 —ir)¢(1 + ir)A(ir) — B(m«))) dr) dt + O(T"/*+e)

for every continuous real, even function f(x) with f(z) < 1/(1 + 22). Here
the integral is to be regarded as a principal value near r = 0, and

11— 2-)(1 -2+ L
o At =[] ()1(_1)2” 3
lo 2
g B =3 (et )

We shall prove

THEOREM 1.1. Assume RH and (3). Then
T

(6) §|S(t)|2dt=2%10glog2T [“C‘]‘ZZ(g—W) 1]

0 m=2 p
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1 Li(%) + % § {gu _ e+ v)A@) + = | 2= v v
0

+ O(Te—c(logm)o‘)
where A is defined in (4), 0 < a < 1, 0 < ¢ < 1 may depend on «, and
x = TP with free parameter 0 < 3 < 1/2.

Although it is not immediately clear why the integral above gives the
lower order terms, equation (30) in the proof gives some indications. The
last section shows very good numerical evidence for the above theorem.

One can modify the proof to get a short interval result (left to the reader):

THEOREM 1.2. Assume RH and

(7) Yoo fr=7)

rer e
- (2;)2 T5H<27rf(0) log% + if( )<1og —+ 2((%) (1+ir)
+ (o) "t ing +inaGn - B ) ) ar) a0 o),
Then
T Isra
T: 2—71TQTJ§;H<10glog— + {1 +Co —mzzszg - W)pl D dt

X (- ()
+;§][g(1—v)g(1+v)A(v)+ﬂ 2 1_U2 vdv

+ O(He—c(logT)"‘)

forT¢ < H <T with e > 0. Again 0 < a < 1, and 0 < ¢ < 1 may depend
on a.
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2. Explicit formulas. We need some notations for inverse Mellin trans-
form. For real f(x), its Mellin transform is

T dx
F(s):= S x® f(x) -
0
We define
_ c+i00
F(z):= 37 C_SiOOF(s):U ds

for some ¢ such that the integral converges. Here F is called the inverse
Mellin transform of F, and F(z) = f(z) if f(z) is a nice function.

We need a certain nice entire function g(z). From Gelfand and Shilov
[7, Chap. IV, Sect. 8], there is an entire function f(z) # 0 satisfying

o+ iy)| < elAlel

for some 0 < o < 1, and f(2) is real for real z (i.e. f(z) = f(Z)). Without loss
of generality, we can assume f(0) = 1. Define g(z) := 1e*/2(f(iz) + f(—iz)).

One can easily check that g(z) is real for real z, and
z—|y|* if x>0
_ e if z >0,

(8) l9(z +iy)| < { .
e/All™ if 1 < 0.

In summary, ¢g(z) is an entire function of order 1 with good decay in the
negative x direction and y directions, and g(0) = 1.

LEMMA 2.1. Forx >4 and s # 1,0, —2n,

elogx +
s 90 1—s 5 0—S

)= =3 Al gl ol olloge) 5 olo—s)lon)
n=1

g(—(2n+ s)logz)
+Z 2n+s

where go(z) = g(z)/z and g(z) is the entire function constructed above.

Proof. Consider the integral

c+1i00
1 ¢ g(wlogx)
=g | glorm) T

where ¢ > 1 — Rs. On the one hand, by Cauchy’s residue theorem after
shifting the line of integration to the left allowed by (8), and ¢(0) = 1, we
have
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s g((1 = s)logz) g((0o—s)logx)
© 1= - ST L e )

al

g(—(2n — s)log z)
+Z —(2n+ s)

due to the pole of 1/w at w = 0, the pole of (¢'/{)(s+w) at w =1 — s,

and the poles of the zeros of ((s +w) at w = p— s and w = —2n — s
respectively. Note that the sums over ¢ and n converge because of the nice
decay (8) of g. On the other hand, using (¢'/¢)(s) = —>_,, A(n)/n®, we
get
oo g(wlog )

1 1= == In"d
(10) Z ns 2mi S w " v

n=1 C—100

c+i00 00
g(v) —leen A(n) losn
Z W oo SR a = - Y S G e,
n=1 c—100 n=1

Here the interchange of summation and integration and the convergence
of the last sum are justified by the good decay of g even when Rs < 1.
Combining (9) and (10), we have the lemma.

LEMMA 2.2. Assume RH. Fort > 1,t # ~, x > 4, we have

) sin(tlogn) logn
St)= -~ Z 1/2 log 1 go(ers7)

21/2 N e—Itlogz|®
+Zh t— 10g$)+0< n f|tlogz\ >+O<W>

where
0 . .
1 glu—iv) g(u+iv)

11 = — — .
(11) h(v) 211 _S ( U — v U+ v du

Proof. By Lemma 2.1 with s =0 4+ it, 0 > 0,

! = A _ | logn 1—o—it)l

<C( +it) = 21 753) sin(t log n)go (e ) + ST 1 igz_)ﬁOgm)

(\Zg (0—o—it)logx) Ozg 2n+a+it)log:c).

—o—it 2n+o + it
By (8),
oo [e.e] _ e}
Z g 2” to+ Zt) log SL‘) < Z e—(n/2+cr/4) logm6—|tlogm\a < € [tlog |
2n+o + it pl/2+0/4

n=1 n=1
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ol

1/2

(12)  SE)=—- (o +it) do

) sin(tlogn) logn g((0— o —it)logx)
_ — — log z —
Z n1/2 log 1 go(elos= ) + 1§2 R ZQ: Sp— do

1/2 —|tlog x|
xT ey (&

L o ltloga] -
+O( e )—l—O( i ),

because by (8),

o9 . 1
S g((l_U_Zt).Ing) do < 1|: S 6(1—U)logme—\tlogx|°‘ do
l—-0—1t t

1/2 1/2

1/2
n S 6_(aflilogze_|tlogx‘a do‘ <<[[‘ / e_ltlogx‘a'
1
Now, using RH, Sz = £ (2 —E) and g(z) = g(%), the integral in (12) equals
((1/2—0) —i(t — 1

1/2—0)—z(t—'y)

1/2 ¥

((o —i(t — log x o—+i(t— log x
_Z%S( 4o ogs) _ gl it )loga)

. o—i(t—r) o+ i(t—r)
B u—i(t—v)logz) glu+i(t—~)logz) "
222 S ( u—1i(t—~)logz u+i(t—y)logz )d

Again, the mterchange of summation and integration and the convergence of
the final sum are justified by the good decay of g. Hence, the lemma follows
from (12) and (13).

3. Some properties of h(v). Recall his given by (11). Clearly, h(0) =0
and h(v) is an odd, real-valued function. Concerning the decay of h, we
have

LEMMA 3.1. h(v) < e VI,
Proof. Since g(z) is entire and g(0) = 1, it follows that g(z) = 1+ O(z)
when |z| < e for some small fixed € > 0. Now, if |v| > ¢, we have

0 , . 0
h(v) = L S (g(u — ) _glu +'zv)> du < é S e~ WA gy < eIV

27 u — v u + v

—00
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If 0 < |v|] < g, it suffices to consider 0 < v < € as h is odd. Observe that
h(v) consists of two horizontal line integrals of g(z)/z, one at height —iv
and the other at height iv. So, if we join the two lines by a semi-circle C, =
{z =we" . —1/2 < 6 < 1/2}, we can apply Cauchy’s residue theorem to get

/2
1 g(z 1 1+0() .,
1 =g¢(0) = h(v) %S%dz:h(v)—i—% S Te()meecw
Cv -7
1 /2
= h(v) + o _§/2(1 + O(v)) df

Hence h(v) = 1/2 + O(v) and we have the lemma.

LEMMA 3.2. Let f(a) = (©_ fv)e ™ dy be the Fourier transform

of f. Then, for large M, N >0 O;nd small enough € > 0,
1 M (u—iv) (u+iv)
h(a) = -— S S [g g — e 2™ dy du
2mi U — 1 U+ v

+O(Me™M*) + 0(e™N*) 4+ 0(e).

Proof. By the definition of A and Lemma 3.1, lAl(a) is clearly well defined

and
M

(14) hia)= | h(v)e ™™ dv + O(Me™M").
-M
Putting in the definition of h(v) and using (8), we have

M .
(15) S h(v)e™ 2™ dy
-M
M 0 . .
= L S S |:g(’LL —»Z’U) i g(u +'Z’U):| du e~ 2™ 1,
21 B U — U U+ v
M 0 . .
1 — )
= S S |:g(u 'ZU) . g(u +.ZU):| du e~ 2w g, 4 O(B*N/4)
27i B U — u + v
M —&2 .
1 )
S S |:g( _ g(u +.ZU):| du e—27rzav dv
2m U+ v
—M —N

AS/[ [S) [gu—zv ~ glu+iv)

. ] du e dy + O(e=N/*)
U — 1 U =+

= Il + IQ + O(e_N/4).
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I> can be broken down further into

1 M 0 - 0 e 0 1
%H S+X S+S S}:%[J1+J2+J3].
€ —62 —M —52 —€ —62
By (8),
0 M , .
U= U+ v
_52 I3
0 | M 0,
< S - S e /e " dv du < S e W du < e.
< €
_e2 € e
Similarly,

Jo K €.

Now, as g is entire and ¢g(0) = 1, we have g(u + iv) = 1 4+ O(Ju + iv|) for
—e2<u<0and — < v < ¢ provided ¢ is small enough. Thus, by oddness
of the inner integral in v,

Jy = —i § (S) {g(“_w) - g(u—i—iv)} sin(2rav) du dv

U — v U+ v
—& _g2
e 0 1 1
= —i S S { — — — + O(l)] sin(2rav) du dv
e o U — U+ v

_i§ (S) 2usin(2mwav)

212 dudv + O(e3) < &3,

—& _g2

as the integrand is bounded. Therefore, Iy < . Combining this with (14)
and (15), we have the lemma.

LEMMA 3.3.
~ 7 1
h = —— ) > —,
(@)= 53— iflal> 5

Proof. Since his odd, we may assume a > 1/27. From Lemma 3.2, with
E=Me M 4y NA g

1 -2 M .
/ﬁ(a) = — S S %e_%m” dv du

1 Sg? AS/[ g(u +iv)
U+ v

e~ 2™ dy du + O(E)
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M
1 — .
— S e~ 2mau S g(u .“)) e27ra(ufw) dv du
u — 1

- 1Y glutiv) |
B S e2mau — S 9 : 6—27Ta(u+w) dv du + O(E)
27 u+ v
—N -M
=1 — I+ O(E).

The inner integral of I; equals

u+iM

11 g(Z) 2maz 1 1
: .u_SiM P = ¢[0+O<Mﬂ
by shifting the line of integration to the left as a > 0 and using Cauchy’s
residue theorem. The error term comes from estimating the two horizontal
line integrals at heights —iM and ¢M. Similarly, the inner integral of I
equals
u+iM

11 g(z) —2maz 1 1

- AN dz = = |—1 il

- — S b 7= - +0 U
u—iM

by shifting the line of integration to the right and picking up a pole at z = 0.

The shifted line integrals are small provided that 2ma > 1, as g(z) < el

by (8). Consequently, for a > 1/27,

2
N 1 T 2mau 1 4 —2mae? —2malN 1
h(a) = = _SNe du—i—O(M—FE) =—5—le —e J+O( 57+F ).

The lemma follows by taking M, N — oo and € — 0. Note: This property
of h is the same as in equation (3.10) of Goldston [8].

Lastly, we have a crucial identity relating gg and h.

e = (w(22))

Proof. Recalling the definition of gy in Lemma 2.1, it suffices to show

LEMMA 3.4.

(16) - C+§Oo IV v gy — g
- — —Ze v =1iuh| —
2wy Y v 2
CcC—100
for ¢ > 0. Firstly, one can easily check that (16) is true when u = 0 by
Cauchy’s residue theorem and shifting the line of integration. Without loss

of generality, we may assume u > 0 as the other case is similar. Now, by
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Lemma 3.2, it suffices to show, with E = Me M" 4 ¢~ N/4 4 ¢,

1 “fiee g(2) i e M glo —iv) _,
(17) 1=— S —— e Ydz+ — S S —e "dvdo
e 211 vy W

) M )
-2 S S MB_W’ dvdo + O(uFE)
21 o+
_N —
= Il + IQ + 13 =+ O(’LLE)

Imitating the calculation in Lemma 3.3, one has

—2 1 o+iM g(2) 1
_ —ou uz _
IQ—_U S e % S 76 dZdO’—O<M>,
—N o—iM
—€ o+iM
1
I3 =—u S et — S M e “*dzdo.
2wy Y z
—N o—iM

Instead of shifting the line of integration to the right in I3, we just shift it
to the vertical line Rz = —e with an error O(1/M). Thus,

1 —e+iM 9(2’) —e2 1
Is= —u—— S —— e “Pdz S e”“da+0<—>
211 L F N M

—e+iM
- S 9(2) e " dz(1+ O(%u + e V™)) + O(%)

271 ] z
—e—1iM
1) 2 -N 1
=~ 5= S — e “dz(14+0(e*u+e “))—l—O(M)
—E—100
1T 9(z) _.. e~Nu 1
= - — e "dz 40 —
e Il <5“+ c +M)
—E—100
by (8) again. Therefore, the right hand side of (17) is
1 c+i0o g(z) e 1 —&+i00 g(z) eiN" 1
— | L urg, RE) =uz g4 0 = uE
g ) 5 € Tdemgn § S medat <5“+ : tm >
c—100 —E€—100

which equals 1 by Cauchy’s residue theorem and letting ¢ — 0 and
M, N — oo appropriately. Hence, we have the lemma.

As a consequence of Lemmas 3.3 and 3.4, we have

(18) go(e*) =0 when |u| > 1.
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This can also be proved directly by considering (27i)~! Szfzz( g(s)/s)e " ds
and shifting the line of integration to the right.

4. Starting the proof of Theorem 1.1. The method of proof is es-
sentially that of Goldston [8]. By Lemma 2.2 and (18), we have, for ¢t > 1

and t # 7,
1 A(n)sin(tlogn) .  legn

175 0(elogz)
e N /2logn

1/2 —|tlog:c\"‘ ef\tlog:v|o‘

Since h is bounded and the above formula holds except on a countable set
of points, we have, on squaring both sides and integrating from 1 to 7',
T

(19) V1S dt + H(T) + G(T) = R+ O(TY?a1?),
1
where
h A(n) sin(tlogn) logn |2
== - a log
e §7Tnz<; n/2logn Golers=)| dt,

T
2 A(n)sin(tlogn) _ , loan
ey = 2 st 32 Ao
1

T

2

R=| ‘Zh ((t—~ logm)‘ dt.
17

The error term is obtained by the Cauchy—Schwarz inequality since R < T.

The lower limit of integration may be replaced by zero since Sé |S(t)|? dt < 1.
Following the same calculation as in Goldston [8], we have, for z > 4 and
T>2,

1
~ logz

(20) > E((y—+)logz) + O(log®T)

0<yY'<T

where k(u) = —h(u)2. Note that since h is odd, h is odd. So k and k are
even functions. Also, from [8],

ogn
= on2 Z T + 0(a?),

T A2 (n) logn 2+z—:
72 nlog?n
nsr

H(T) = -
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Thus, by Lemma 3.4,
~G(T) — H(T) + O(2*"°)
T A2(n) ., logn T A?(n)

[ — ]_ — elogz 2 _|_ -
272 by nlogzn[ ol ) 27T2 nloan

<z
Z (n) (logn 2k logn +l A%(n)
- 27‘r2 n log n \logz 2w log x 27‘1’2 “n log n

- L 1 ¥ AZ(n)k( logn >+£ A2(n)

2 2 2 2
27 log eyt 27 log x 27 nlog*n
T 1 AQ(TZ) < o~ -logn T AQ(TL)
= — - logz k(rl 2T dr 4 ——
57 oz 2w ) loszh(rlogz)e r+2ﬂmeog -
n<x —00 <z
T 1 T ~ A%(n
= = —s — k(rl -
2772 log$ X (T 08 x) Z nlfzr 27T2 Z nlog n’
—00 n<x

because k is even. Now
1 1 1
(21) Z— :loglogu+C’o+Z[log<1——> +—} +7r(u),
pgup p p p

where r(u) < u~/?*¢ under RH and the sum over primes is equal to
=D =2 2_p 1/mp™. Therefore,

T 1 T ~ A2%(n
(22) —G(T)-H(T)= ~ 97 losw | k(rlogz)>" nl(_) dr
—00 n<x
5 |loglogz + Cp — Z Z(— - —2> ! ] +O<%> + O(x*+9).
=yAm m x

5. Using pair correlation. Define
t
l=log— and X =loguz.
27

In view of (19) and (22), it remains to deal with R or the double sum

= > k(y-A)logz)= > fly—9)

0<y,y'<T 0<v,y'<T

with f(r) = k(rlogz). Note: Since h(v) < e "I by Lemma 3.3 and
E(v) = h * h(v) (the convolution of h with itself), E(v) < e " and
f(r) < e~ Irlog=l” 1t is here that we make use of (3). Note: The formula
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in the form of (3) is by Conrey and Snaith [6] using the ratios conjecture of
Conrey, Farmer and Zirnbauer (see Conjecture 1 of [5]). By (3),

alfron o315
+ :ng [(2) (1+ir)+ 5 - B(ir)] dr
+ 1 £(r)2 (%) N [gu —ir)C(1+ i) A(ir) — %2} dr} dt + O(TV/*+)
_ (271r)2 Ezwz [f(O) + _OS;f<27”u> <1 - (Si?rZ“)Q) du] dt
+2L7T208;f(1")[<%)/(1+2r)+ -~ B( )] dr
11T , N [ sy
+53 g _Soof(r) {gu —ir)C(1 +ir) A(ir) — 72} e~ dr dt

+ O(zlogz) + O(T"/?+%)
= 21 + Zy + 3+ O(zlogz + T/?+9),

The integrals can be extended to oo with small error because of the good
decay of f. Note that the above matches exactly with the pair correlation
function R(z) in [2]; ¥, ¥y and Y3 correspond to Rgug(r), R.(z) and
R%(z) in [2] respectively.

Since h is odd, one can easily check that k(0) = §{* _h x h(z)dz = 0.
Now, by Parseval’s identity {* ]?(:U)g(:n) de =" f(z)g(z) dz,

? :f(0)+_0§ f(%%) du—_ogo f<27”u> (Siizu>2du} dt

o0 o0

Ne!
—
I

_
[\]
=4

—~
[\
— 3
S~—
(]

oo

:2(0)+0— | %k(ﬁ&) max{1 — |v|, O}dv]

—0o0

Do
=)

—~~
BN
— 3
S~—
()

r o0

1
l lv l lv
L N b B W 11—
__Soo 2mk<2m) dv _Slz Ak<2 A)( ’”de]d

") aol a

—~~
BN
3

S~—

[\

[t

S
=
L/ﬁg
[\
a‘N
>
VR
S"N
y@
N~
QU
S
_l_
e
a“’h
y@
7N
MN
7|
>

Il

o

|

e

BN |t 8N 8
Y
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Asl> Xand v > 1, we have lv/27 A > 1/27. Thus, since k(u) = —E(u)2, we
may apply Lemma 3.3 to get

R I : 1 I

23 2= Aml|\ —— dv+ \ ——— —dv
(23) ! (2m)? S H Am2 (e I )2 2\ S/ 4%2(2”/\)2 2
Mt lv lv

T 1/2n
1 2T 2w I 2X
S 7Tl|:4ﬂ_2l +oleey T (S) k(u)udu} dt
T 1/27
A A
= | [— +Slog— +2) | k(u)udu] dt
s
T 0

_Q+Ql o Z_Qlo oer — il L
22 272 8 glogT T ! o
1/2m

+ 2T\ S kE(u)udu + O(z)).
0

Here Li(z) = ; %.

Next, it turns out that there are some cancellations among Yy, G(T")
and H(T). In view of (19), (21) and the decomposition of X', consider

(24) J:—ZQ—G( )—H(T)

T 1 1 1

m=2 p p

T 1 ~ 1
+2—log:n S)Ok:(rlog:c [<C> (1+ir)+ s

-3 () - S e o)

n<x

T
_J1+J2+O< = >+O(x2+s)

by (22) and the definitions of A and B (see (4) and (5)). Before proceeding,

we need some lemmas.
LEMMA 5.1. For x > 4,

logp _ A(n)logn — A%(n) 0 log? x log log x
> o —1) > it + 172 :

p n<lz
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Proof. The left hand side equals
log? p 1 2_ log?p <= k+1
zp: p2(1+ir) 1— 1/p1+z'r - zp: p2(1+ir) pad pk(l—l-ir)

log? p k+1 U
-S| 2 s re( ] )

P helose oxs
ogp

(k+1)log?p logx (1—1)log%p log x
= > it 9 Z T\
pk
pF<z p §
B (1—1)log?p Tr ; log? p log x
- Z pl(1+w) +0 Z Z pl +0 T
p,ll<22 =2 gl/l<p<gl/(1-2)
p'sx
(1—1)log?p T oo log? u log =
=Y 5> +0 1| —=—du)+0
P (1+4r) U T
p,l>2 =2 1/
pl<z
B (1—1)log?p log? z1log log log
- Z 1(1+ir) +0 g2 +0 z )
p,l>2 p
pl<z

which gives the lemma.

LEMMA 5.2. Assume RH. For real v, x > 1 and some 0 < e < 1/4,
ir

! 1 A(n)1 —ir] 11—z~
<C> (1+ir) + — 5 :Z (n) an+ x ‘ng n x +0(96_1/4+a)_

C n1+zr ir 742

Note: Both sides are well defined even when r = 0.

n<x

Proof. By Perron’s formula (see Titchmarsh [11, Lemma 3.12] for exam-
ple), for some large M > 1,

A(n)logn st ' i log®
Aln)logn 1 5 1 il
ng; i 27”6_8“\4 R (s+ —Hr) 54+ 0 M2+ i
1/24e+iM
1 / S
= Ress—0 + Resg——_i» +T S (C—> (s+1+ir) L s
T\ jote—in s

xf log® = xf log4A M
Fo( S+ 9) o Tl
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where Res;—, stands for the residue of the integrand at s = a and the last er-
ror term comes from estimating the horizontal line integrals at height £iM,
as 1/C(o +it), ¢'(0 +it) and (" (o +it) are all smaller than log? |¢| for some
A >0 when 1/24+¢ <o <2 and [t > 1 under RH. The integral on the
right hand side is

<z V2 M log* M.

By standard calculations with Taylor’s expansion, one has

!

Ress:O = (%) (1 + iT‘), Ressz_ir = —

Combining all these together and choosing M = z'/#, we have the lemma.

x " logx oz
& +

ir rZ -

Now, we are ready to resume the proof. By Lemmas 5.1 and 5.2, the

Dirichlet polynomials in Jo of (24) cancel out exactly and we have
T oo ir

e

TN 11—z
- + 3
i T

+ O(:c‘”““)} dr

2w\ ir 2 L1/A—z
T T~ 1 —cos(rA)  sin(r)) T
T T ~ 1—cosu sinu T
T T~ sin(u/2)\* 1 T ~ _sinu T
T[T 1 e
=53 S k(v)2m max{l — |27v],0} 5 dv — S k(v)mx(_1/2,1 /9 (V) dv
T
+ O<:L,1/45)
1/2m 1/2w T
=57 |:27T S kE(v)(1 —2mv)dv—m7 S k(v) dv} + O(W)
0 —1/2x
1/2m T
= — 2T S k(v)vdv—i—O(W)

0
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by Parseval’s identity. This cancel out with one of the terms in (1/\)X}.
Therefore, from (19)—(21),

T

[ 1s(@)12dt = R — a(T) - H(T) + O(T"2'/?)
0
1
= 3 [Zr 4 2o + 25 - G(T) - H(T) + o(T"21/2).
Combining the results in (23)—(25), we have
T
(26) | [S(t)]dt
0
> 1 1)\ 1 1 T
— stogto 1+ 5 +co-£;<a-m>ﬁ} u(1)
1 T oo R
+ CYURY X S k(rX) [C(l —ir)C(1 +ir)A(ir) — 2] e~ dr dt

T
+ O (am> + O(T1/2$1/2) + O($2+E).

6. Completion of the proof. It remains to deal with the integral
in (26). Let
3(r) == ¢(1 —ir)¢(1 +ir)Air) — 1/r2.
Then j(r) < min(1,log?r) for some B > 0. Moreover, from the definition

of A(n), j(z) can be treated as a function at least on the complex disc
|z| <1/3. Let

S %(r)\)j(r)e_m dr.

— o0

I .=

By substituting v = rl/2m, we have

(27) I= 2}\—7; X E(Qﬂlkv)j<27;—v>e_2ﬂ” dv

—00

1/8n
. 27T -~ 277-)\1) . 27TU —2miv —CP\‘&
=3 _l§8 k( i )]( ;i )e dv+ O(e )

for some constant ¢ > 1. Now, as k and k are even,

1 U T~ .
k2 = L —27miux dr.
- <a> _SOO (ax)e x
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Differentiating this m times, we have

1 1 m) [ U T m_—2miux
(28) Waerl k( )<g> = S ]C(CLI‘)CC e 2 de

—0o0

We can do this because k has good decay. Suppose the Taylor expansion of
j(z) with remainder term in |z| < 1/4 is

1 j(s)ds
2 N+1
(29) ao+ a1z + a2’ + - +anz +—2 zgisNH(s—z)z

where C' = {|z| = 1/3} (see Ahlfors [1, p. 179] for example). Since j is
bounded on C, the above remainder term is O((3|z|)N¥*+1). Putting (29) into
(27), we have

1/87

27 21\ INFLNFINT 5
=% (5 {Z o (3F) + (e ) |7
+ O(e=%)
2 or\" T/ 2maw (6m) N+
_ X n ,—2mwiv —cA®
ﬁza”<7> S k( i >v e dU+O<W>+O(e )
n=0 —1/8m
N oo
27 27\" T 270\ L, _ori (6m)N+L _d\e
=5 n:Oan< 7 > _Lk( i )v e dv—i—O( TN +O0(e )
for some 0 < d < 1. Note: a,, = ﬁ SC j}ﬂ dz < 3". By (28),
n n+1 N+1
I = 2 2_7T 1 : t JACD) L +0 (67)
)\l ) (=2mi)™ \ 27\ 27T [N+1
( o )-
But recall k(u) = ( )2 = 1/4m%u? when u > 1/27. Thus,
N n n+1 n+2
27 2 1 l (=)™ 2w\
(30) = _lgan<7> (—2mi)n (27r)\> 472 (n+1) < l )
(6m)"+! —dxe

— %2 Z:%an (%Z)n(n + 1)+ O(%) +0(em ™),

which is independent of A and gives an asymptotic series for the lower order
terms.
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Applying I'(s) = {;” e “u*~ 1 dt to (30), we have, for N < L,
1= i é an (—Tw)”] we™ du+ O <%> O
= liglg -j <_Tw> + O(%)]ueﬂ” du

+ 0(@) + OEN IV

lOL

1 — 3NFLHN +2)! a

= 1_28 ( ;U>ue_u du+0<%> +O(3N1(N+1)oce—d/\ ).
0

Taking N = 1°/K logl with K large enough and using (N+2)! < (N+2)V+2,
we have, as [ > A,

i« .
1 - X
(31) I= 2 S j<#>ue" du + O(e”®A%)
0

e P (R (R Yy e e

= oo™ ol 0+ 040 +

] dv+ O(e~ %)
0

for some 0 < d’ < 1. Putting (31) into (26) and integrating with respect
to t, we deduce Theorem 1.1. Note: d’ may depend on a.

7. Numerical evidence. Recalling Cy = 0.5772156649... and by
Mathematica, one has

Z Z(E — W) L L 0.176248.

m=2 p
Note that

21 2re 8

where N(T') denotes the number of non-trivial zeros of ((s) from height 0

N(T) = £1ogi+3+5(:r)+o<%>

up to height T. The second moment ST S(t)? dt is essentially the variance of
N(T) from = log 71— 4% with small error. Thus, one can use a list of the zeros
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of {(s) (for example by Odlyzko [9]) to compute Sg S(t)? dt. The asymptotic
formula in (6) can be calculated by Mathematica. For our computations, we
take z = VT and approximate the Euler product A(r) by a partial product
where p ranges through the first 5000 primes. Also, instead of integrating
the second integral from 0 to 1, we integrate it from 0 to 1 — 1/7 with
an error at most O(logT'). We give the numerical evidence in the following
table. Column A stands for the value from the formula in (6), B from the

formula in (2), and C from the formula in (2) minus £ Li(L).

T
T §, S()?dt A B C

9998.85040 1653.145 1651.05 1721.61 1638.76
19999.27562 3411.009 3407.72 3534.54 3386.35
29999.71003 5200.768 5196.71 5376.49 5167.12
39999.49733 7009.117 7005.47 7236.31 6968.18
49999.57275 8831.813 8828.58 9109.15 8783.93
59998.88155  10668.969  10662.70 10991.90 10610.90
69999.61050  12509.875  12506.10 12883.30 12447.40

The values of T are the largest imaginary parts of the zeros of ((s) just
below 10000, 20000, ..., 70000 respectively. By comparing the second and
third columns, the asymptotic formula in (6) gives very good approximation
to the second moment. By comparing the second, fourth and last columns,

we see that it is reasonable to have —% Li(%) in the asymptotic formula.
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