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1. Introduction

Definition 1. Let A, B ⊆ N0.

(a) A + B = {a + b | a ∈ A, b ∈ B}.
(b) A(n) = #{a ∈ A | 1 ≤ a ≤ n}.
(c) If A + A = N0, then A is called a basis (of order two).
(d) We call d2(A) = lim supn→∞ A(n)/

√
n the upper asymptotic density

of A. If d2(A) < ∞, then A is called thin.
(e) If limn→∞ A(n)/

√
n exists, then we call d2(A) = limn→∞ A(n)/

√
n

the asymptotic density of A. If d2(A) < ∞, then A is called uniformly
thin.

(f) We write an ↑ ∞ for a sequence (an)n∈N0
if a0 < a1 < a2 < · · · and

an → ∞.

Remark 1. Here we only consider bases of order two. So we will say
“basis” instead of “basis of order two”. The existence of uniformly thin
bases was proved by Cassels [2] in 1957. He found a uniformly thin basis C
with asymptotic density d2(C) = 3

√
3 = 5.19615 . . . . In 2001 Hofmeister [3]

showed the existence of a basis H with d2(H) = (10/
√

6) 4
√

5/3 = 4.63859 . . . .

Here we produce a uniformly thin basis B with d2(B) = 2
√

3 = 3.46410 . . . .
Cassels and Hofmeister used the following lemma, which we also apply.
Lemma 1 (Cassels, k = 2). Let A = {a0 < a1 < a2 < · · · } ⊆ N0 and

µ > 0. If

lim sup
n→∞

√
an

an+1 − an

<
µ

2
,

then there is a set B = {b0 < b1 < b2 < · · · } ⊆ N0 and an n0 ∈ N such that

(a) A ⊆ B,
(b) d2(B) = µ,
(c) bn = (1/µ2)n2 + rn, 0 ≤ rn < (1/µ2)(2n + 1) ∀n ≥ n0.
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Remark 2. Note that this is not exactly Cassels’ lemma of [2]. We have
translated (a) into the language of our asymptotic density. But our result
is equivalent to Cassels’ for k = 2. Further we do not mention case “=”, as
we do not need it here. The small improvement in (c) follows from Cassels’
proof in [2].

Definition 2. Let a, b, m ∈ N0, a ≤ b, and m | (b − a).

(a) [ a, (m) , b ] = {a + km | 0 ≤ k ≤ (b − a)/m, k ∈ N0}.
(b) [ a, b ] = [ a, (1) , b ].
(c) [ a, +∞ ] = {n ∈ N0 | n ≥ a}.
(d) R is called a complete set of residues modulo m if any congruence

class modulo m has exactly one residue in R. Then #R = m.

Lemma 2 (without proof). Let a, b, m ∈ N0, a ≤ b, m > 1, m | (b − a),
and (bn)n∈N with mn | bn and bn ↑ ∞.

(a) If R is a complete set of residues modulo m, then for P = [ a, (m) , b ],
r− = minR, and r+ = maxR we obtain [ a + r+, b + r− ] ⊆ P + R.

(b) If Rn, n ∈ N, are complete sets of residues modulo mn, then any Rk

is a set of residues of pairwise distinct congruence classes modulo
mn for all n ≥ k.

(c) Let Pn = [ 0, (mn) , bn ], n ∈ N. Then Pn∩ [ 0, bk ] ⊆ Pk for all k ≤ n.

Remark 3. Lemma 2 is clear and will be often used.

2. PR-bases

Theorem 1 (PR-bases). Let m ∈ N \ {1}, b0 = 0, (bn)n∈N with mn | bn

and bn ↑ ∞. Let Pn = [ 0, (mn) , bn ] and Rn be a complete set of residues
modulo mn for any n ∈ N. Define P to be the set of all those arithmetic
progressions and R to be the set of all the above residues:

P =

∞
⋃

n=1

Pn, R =

∞
⋃

n=1

Rn.

Suppose that there is an n0 ∈ N, n0 ≥ 2, such that for all n ≥ n0,

(a) r+
n = maxRn < bn−1,

(b) Rn−1 ⊆ Rn,
(c) Rn \ Rn−1 ⊆ [ bn−2, bn−1 ].

Then

A = P ∪ R ∪ [ 0, mn0−1 − 1 ]

is a basis. We call any basis constructed in this way a PR-basis.

Proof. Set r−n = minRn for all n ≥ n0. Then [ r+
n , bn + r−n ] ⊆ Pn + Rn

by Lemma 2(a), so [ bn−1, bn ] ⊆ Pn + Rn, and hence [ bn0−1, +∞ ] ⊆ P + R.
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For any 1 ≤ n ≤ n0 − 1 the set [ 0, mn − 1 ] is a complete set of residues
modulo mn. Then [ 0, bn ] ⊆ Pn + [ 0, mn − 1 ] for any 1 ≤ n ≤ n0 − 1. So
[ 0, bn0−1 ] ⊆ A + A and A is a basis.

Remark 4. We say “PR-bases” as this type of basis mainly consists
of a set P of arithmetic progressions and a set R of residues. Note that
(a) is sufficient to obtain a basis. But condition (b) reduces the number of
elements in A and the further requirement (c) ensures that we introduce the
residues when they are needed. Note that (b) is possible by Lemma 2(b).

3. Upper asymptotic density of PR-bases

Lemma 3. For any thin PR-basis there are n0 ∈ N and s, S ∈ R, 0 <
s ≤ S, such that

s ≤ cn =
bn

m2n
≤ S ∀n ≥ n0.

Proof. For thin bases A(n)/
√

n is bounded, so in particular for thin PR-
bases we have A(bn) = O(

√
bn). Moreover, A(bn) ≥ mn+1 − 1, as r+

n+1 ≤ bn;
thus m2n = O(bn). From A(bn) ≥ #Pn = bn/mn we obtain bn = O(m2n).

Theorem 2. Let A be a thin PR-basis. Let

s = lim inf
n→∞

bn

m2n
.

Then the upper asymptotic density of A satisfies

d2(A) ≥
(

m

s
+

1

m
+ 1

)√
s.

It follows that

d2(A) ≥ 2
√

3

for any PR-basis, where d2(A) = 2
√

3 is only possible if m = 2 and s = 4/3.

Proof. To estimate the upper asymptotic density, we can estimate the
counting function at the points bn. For n0 and b0 of Theorem 1, Lemma 2(c)
shows that for all n ≥ n0,

A(bn) ≥ #Rn+1 + #
n
⋃

l=1

Pl − #
(

Rn+1 ∩
n
⋃

k=1

Pk

)

− 1

= #Rn+1 +
n

∑

l=1

bl − bl−1

ml
− #

(

Rn+1 ∩
n
⋃

k=1

Pk

)

= mn+1 +
bn

mn
+ (m − 1)

n−1
∑

l=1

bl

ml+1
− #

(

Rn+1 ∩
n
⋃

k=1

Pk

)

.
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Note that we do not count 0: If 0 ∈ Rn+1 then 0 ∈ Rn+1 ∩
⋃n

k=1 Pk. First
we estimate the last term. Since A is a PR-basis, we have

Rl \Rl−1 ⊆ [ bl−2, bl−1 ] and
(

n
⋃

k=1

Pk

)

∩ [ bl−2, bl−1 ] = [ bl−2, (m
l−1) , bl−1 ]

for any l with n0 ≤ l ≤ n + 1. As [ bl−2, (m
l−1) , bl−1 ] contains residues of at

most m distinct congruence classes modulo ml, we get

#
(

(Rl \ Rl−1) ∩
n
⋃

k=1

Pk

)

≤ m.

Then from Rn+1 = Rn0−1 ∪
⋃n

l=n0−1(Rl+1 \ Rl) we deduce that

#
(

Rn+1 ∩
n
⋃

k=1

Pk

)

≤ #Rn0−1 +
n

∑

l=n0−1

#
(

(

Rl+1 \ Rl

)

∩
n
⋃

k=1

Pk

)

≤ mn0−1 + (n − n0 + 2)m.

Hence

(∗) A(bn)√
bn

≥ mn+1

√
bn

+

√
bn

mn
+

m − 1√
bn

n−1
∑

l=1

bl

ml+1
− mn0−1 + (n − n0 + 2)m√

bn

.

To get a lower estimate of the upper asymptotic density it will suffice to
examine a sequence (nk)k∈N such that

lim
k→∞

bnk

m2nk

= s.

Further we consider each term on the right hand side of (∗). The sum of the
lower limits of these terms is less than or equal to the lower limit of their
sum. Note that s > 0 by Lemma 3. Thus Theorem 2 will be proved if we
can show the following limits and estimates:

lim
k→∞

mnk+1

√

bnk

=
m√
s
,

lim
k→∞

√

bnk

mnk

=
√

s,

lim
k→∞

mn0−1 + (nk − n0 + 2)m
√

bnk

= 0,

lim inf
k→∞

m − 1
√

bnk

nk−1
∑

l=1

bl

ml+1
≥

√
s

m
.

The three limits follow from bnk

∼= sm2nk . For any ε > 0 there is a positive
integer l0 = l0(ε) such that bl ≥ (1 − ε)sm2l for all l ≥ l0. Then for all nk
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with nk − 2 ≥ l0 we obtain

(m − 1)

nk−1
∑

l=1

bl

ml+1
≥ (1 − ε)(m − 1)

nk−1
∑

l=l0

sm2l

ml+1
= (1 − ε)(mnk−1 − ml0−1)s.

This is equivalent to

lim inf
k→∞

m − 1
√

bnk

nk−1
∑

l=1

bl

ml+1
≥ (1 − ε)

√
s

m
.

Letting ε → 0 completes the proof.

Remark 5. The second part of Theorem 2 is pure analysis of the func-
tion f : [2, +∞) × R

+ → R
+, f(m, s) = (m/s + 1/m + 1)

√
s. Note that

for fixed m = m0 the global minimum 2
√

m0 + 1 of f only appears if
s = s0 = m2

0/(m0 + 1). Blomer [1] has found thin bases A with

d2(A) =

√
3

(
√

2 − 1) 4
√

8
= 2.48635 . . . + ε.

Therefore by Theorem 2, PR-bases cannot give an improvement over thin
bases.

4. Uniformly thin sets including P. Here we exhibit uniformly thin
sets Q including P. In the following section we substitute Q\P by the set R
of all residues.

Theorem 3. Let Pn = [ 0, (mn) , bn ], n ∈ N, m ∈ (N \ {1}), bn
∼= cm2n,

and c < m2/(m − 1). Then for P =
⋃

∞

n=1 Pn = {p0 < p1 < p2 < · · · } there
is a uniformly thin set Q = {q0 < q1 < q2 < · · · } satisfying

(a) P ⊆ Q,

(b) d2(Q) =

(

m

c
+

1

m
+ 1

)√
c,

(c) qk =
1

d2
2(Q)

k2 + rk, 0 ≤ rk <
1

d2
2(Q)

(2k + 1) ∀k ≥ k0.

Proof. We can apply Cassels’ lemma to P: indeed,

lim sup
k→∞

√
pk

pk+1 − pk

=
√

c,

and since c < m2/(m − 1) we get
√

c < µ/2 with µ = (m/c + 1/m + 1)
√

c.

Remark 6. For fixed m0 we must choose c = m2
0/(m0 + 1) to get the

minimal lower estimate of d2(A) for PR-bases by Theorem 2 and Remark 5.
Here we need c < m2

0/(m0 − 1). Then Theorem 3 can be applied to the
progressions Pn of the PR-bases with best possible upper asymptotic density.
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5. A basis B with d2(B) = 2
√

3. We only look at the case m = 2,
c = 4/3. We should mention that for all c < m2/(m − 1) we can prove the
existence of a uniformly thin PR-basis B with d2(B) = (m/c + 1/m + 1)

√
c.

Observe that this is best possible for PR-bases by Theorem 2. In particular,
we get the best possible asymptotic density for fixed m.

Theorem 4. Let b0 = 0. For any positive integer let

bn =
1

3
4n+1 + xn, 0 ≤ xn < 2n+1,

be such that 2n+1 | bn, and set

Pn = [ 0, (2n) , bn ].

Further let P =
⋃

∞

n=1 Pn. Then there is a set R such that B = P ∪ R is a
uniformly thin PR-basis with asymptotic density

d2(B) = 2
√

3 .

If A is a (uniformly) thin PR-basis, then

d2(B) = 2
√

3 ≤ d2(A)

by Theorem 2. So the (upper) asymptotic density of the PR-basis B is best
possible for PR-bases.

Proof. We show the following four items:

(1) There is a uniformly thin set Q = {q0 < q1 < q2 < · · · } such that
P ⊆ Q, d2(Q) = 2

√
3, and qi = 1

12 i2 + ri with 0 ≤ ri < 1
12(2i + 1)

for all i ≥ i0.
(2) If a set T satisfies T(bn+1) − T(bn) ≤ c0 for all n ≥ n1 and some

c0 ∈ N then d2(T) = 0. If d2(T) = 0, then any (uniformly) thin set A
satisfies d2(A) = d2(A ∪ T) = d2(A \ T) (and d2(A) = d2(A ∪ T) =
d2(A \ T)).

(3) Let S(n) = (Q\P)∩ [ bn−2, bn−1 ]. Then 2n−1−3 ≤ #S(n) ≤ 2n−1 +2
for all n ≥ n0.

(4) Let R0 be a complete set of residues modulo 2n0−1. Then the sets
S(n) can be substituted by sets R(n) for all n ≥ n0 such that:

(a) R(n) ⊆ [ bn−2, bn−1 ].
(b) Rn = R0 ∪

⋃n
l=n0

R(l) is a complete set of residues modulo 2n.

(c) Let, in particular, R0 = [ 0, 2n0−1 − 1 ]. Then

B = P ∪ R0 ∪
∞
⋃

l=n0

R(l)

is a uniformly thin PR-basis with asymptotic density

d2(B) = 2
√

3.
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Proof of (1). Use Theorem 3 with m = 2 and c = 4/3.

Proof of (2). For any k ∈ N there is an n ∈ N with bn < k ≤ bn+1.
Then T(k) ≤ T(bn+1) ≤ c0(n + 1) + c with a constant c for sufficiently
large k. Notice that

√
k ≥

√
bn = (1/

√
3 )2n+1, so d2(T) = 0. If the (upper)

asymptotic density of a set T vanishes, then adding it to or subtracting it
from another set A does not change the (upper) asymptotic density of A:
for example,

d2(A) = lim
k→∞

A(k)√
k

= lim
k→∞

A(k) + T(k)√
k

≥ lim sup
k→∞

(A ∪ T)(k)√
k

and

d2(A) = lim
k→∞

A(k)√
k

≤ lim inf
k→∞

(A ∪ T)(k)√
k

,

so d2(A ∪ T) = d2(A).

Proof of (3). Since P ∩ [ bn−2, bn−1 ] = Pn−1 ∩ [ bn−2, bn−1 ] we obtain

#S(n) = Q(bn−1) − Q(bn−2) −
bn−1 − bn−2

2n−1
∀n ≥ n0.

Further from the definition of the bn we get

bn−1 − bn−2

2n−1
=

1

3
(2n+1 − 2n−1) +

xn−1 − xn−2

2n−1
∈ {2n−1, 2n−1 + 1}.

For sufficiently large n by (1) we have

bn =
1

3
4n+1 + xn ≥ 1

12
(2n+2)2 = q2n+2 − r2n+2 ,

q2n+2+3 ≥ 1

12
(2n+2 + 3)2 > bn.

Note that Q ∩ [ q2n+2 − r2n+2 , q2n+2 ] = {q2n+2}. Thus

q2n+2 ≤ bn < bn+1 < q2n+3+3.

As 0 ∈ Q the index of the qi equals the counting function: Q(qi) = i. So

2n+2 ≤ Q(bn) ≤ 2n+2 + 2.

Summarizing, for sufficiently large n we obtain

2n − 2 ≤ Q(bn−1) − Q(bn−2) ≤ 2n + 2, 2n−1 − 3 ≤ #S(n) ≤ 2n−1 + 2.

Proof of (4). We will prove that for all n ≥ n0 we can replace S(n)

by a set R
(n)
0 of residues of distinct congruence classes modulo 2n with

#R
(n)
0 = #S(n), R

(n)
0 ∩ Pn−1 = ∅, R

(n)
0 ⊆ [ bn−2, bn−1 ], without changing

asymptotic density:

d2

((

Q \
∞
⋃

n=n0

S(n)
)

∪
∞
⋃

n=n0

R
(n)
0

)

= d2(Q),
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where the residues of R
(n)
0 can be chosen in any congruence classes which

are not contained in Pn−1.

Assume this statement is already proved.

By the definition of R0 we can assume that Rn−1 satisfies (4)(a) and
(4)(b). To pass from Rn−1 to Rn we need residues of exactly 2n−1 distinct
congruence classes modulo 2n contained in [ bn−2, bn−1 ].

First case: There are residues in [ bn−2, bn−1 ] \ Pn−1 for any congruence
class modulo 2n.

Then R
(n)
0 contains residues of at least 2n−1 − 3 distinct congruence

classes modulo 2n. If #R
(n)
0 < 2n−1 then we add the residues of the miss-

ing congruence classes modulo 2n (by (3) at most three) using any of their

residues contained in [ bn−2, bn−1 ]. If #R
(n)
0 > 2n−1 then we omit the super-

fluous residues (by (3) at most two). If #R
(n)
0 = 2n−1 then there is nothing

to do. In all cases we have found R(n) ⊆ [ bn−2, bn−1 ] which contains exactly
the residues of the missing 2n−1 congruence classes modulo 2n. So we set
Rn = Rn−1 ∪ R(n). Now we apply (2) to obtain

d2

((

Q \
∞
⋃

n=n0

S(n)
)

∪
∞
⋃

n=n0

R(n)
)

= d2

((

Q \
∞
⋃

n=n0

S(n)
)

∪
∞
⋃

n=n0

R
(n)
0

)

.

Other cases: There are only residues of at most two distinct congruence
classes modulo 2n, which are not in [ bn−2, bn−1 ] \ Pn−1, as Pn−1 itself con-
tains only residues of exactly two distinct congruence classes modulo 2n.
Then if we first take residues of at most two unnecessary congruence classes

modulo 2n into R
(n)
0 instead those at most two necessary ones, we can use the

above considerations and obtain the same asymptotic density. In the end we
replace the unnecessary residues by the necessary ones, which are also con-
tained in the arithmetic progression [ bn−2, (m

n−1) , bn−1 ]. By (2) this does
not change the asymptotic density. Again we have found R(n) ⊆ [ bn−2, bn−1 ]
and Rn satisfying (4)(a) and (4)(b).

Now we can turn to (4)(c). As adding finitely many elements to a set
does not change its asymptotic density we see that

d2(B) = d2

(

P ∪ R0 ∪
∞
⋃

n=n0

R(n)
)

= d2

(

P ∪
∞
⋃

n=n0

R(n)
)

= d2

(

((Q \ P) ∩ [ 0, bn0−2 ]) ∪ P ∪
∞
⋃

n=n0

R(n)
)

= d2

((

Q \
∞
⋃

n=n0

S(n)
)

∪
∞
⋃

n=n0

R(n)
)
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= d2

((

Q \
∞
⋃

n=n0

S(n)
)

∪
∞
⋃

n=n0

R
(n)
0

)

= d2(Q) = 2
√

3.

Probably one should read these equations backwards. Further note that

((Q \ P) ∩ [ 0, bn0−2 ]) ∪ P ∪
∞
⋃

n=n0

R(n) =
(

Q \
∞
⋃

n=n0

S(n)
)

∪
∞
⋃

n=n0

R(n).

By (4)(a)–(c), B is a PR-basis.

Thus it remains to prove the statement from the beginning of the proof.
There are only two congruence classes modulo 2n in the arithmetic pro-
gression Pn−1. So there remain 2n − 2 > #S(n) distinct congruence classes,

residues from which can be chosen to be put in R
(n)
0 . Let sn = #S(n),

S(n) = {s(n)
1 < · · · < s

(n)
sn

}, and let ̺(n) = {̺(n)
1 < · · · < ̺

(n)
sn

} be a set of sn

distinct congruence classes modulo 2n for n ≥ n0. Note that bn−1−bn−2 >2n.
Then

{s(n)
j − (2n − r), s

(n)
j + r} ∩ [ bn−2, bn−1 ] 6= ∅

for any s
(n)
j ∈ S(n) and r < 2n. So there exists t

(n)
j with |t(n)

j | < 2n such that

r
(n)
j = s

(n)
j + t

(n)
j ∈ [ bn−2, bn−1 ], r

(n)
j ∈ ̺

(n)
j .

Let R
(n)
0 = {r(n)

1 < · · · < r
(n)
sn

} for n ≥ n0 and

B0 =
(

Q \
∞
⋃

n=n0

S(n)
)

∪
∞
⋃

n=n0

R
(n)
0 .

Finally, we must investigate B0(k). By the construction of r
(n)
j we know

that B0(bn−2) = Q(bn−2) for all n ∈ N. If qi ∈ [ bn−2, bn−1 ] and j > 6 with
qi±j ∈ [ bn−2, bn−1 ] then

|qi±j − qi| ≥
j − 1

12
(2 · 2n + 1) > 2n,

as we must cross j−1 intervals
[

1
12 l2, 1

12(l+1)2
)

by (1). Using Q(bn−2)≥ 2n−1

we find that l ≥ 2n and the minimal length of the intervals is 1
122n+1 + 1

12 .

So for any substituted qi = s
(n)
j we obtain

max{qi−7, bn−2} ≤ r
(n)
j ≤ min{qi+7, bn−1},

i.e. there are only two possibilities for any qi ∈ Q: either qi ∈ B0 or qi is

substituted by a new element r
(n)
j ∈ B0 which satisfies the above condition.

Then B0(qi−7) ≤ Q(qi) = i and B0(qi+7) ≥ Q(qi) = i. So B0 satisfies

Q(qi) − 7 = Q(qi−7) ≤ B0(qi) ≤ Q(qi+7) = Q(qi) + 7.
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For any k ∈ N there is an i such that qi ≤ k < qi+1. Then i = Q(qi) =
Q(k) < Q(qi+1) = i + 1. Since B0(qi) ≤ B0(k) ≤ B0(qi+1) we find that

B0(k) ≥ B0(qi) ≥ Q(qi) − 7 = Q(k) − 7,

B0(k) ≤ B0(qi+1) ≤ Q(qi+1) + 7 = Q(k) + 8.

By the definition of the asymptotic density it follows that

d2(B0) = d2(Q) = 2
√

3.

Remark 7. Note that d2(B) = 2
√

3 is best possible for PR-bases by
Theorem 2 for upper asymptotic density. We should mention some results
of [4]. Neither the famous thin basis A0 of Stöhr with d2(A0) = 3

2

√
3 nor the

thin basis A1 of Hofmeister [3] with d2(A1) = 2
√

5/3 can be embedded in
a uniformly thin set. Possibly Blomer’s [1] UR-bases can be transformed to
uniformly thin sets, but it would be a surprise. Further the uniformly thin
bases of Cassels [2] and Hofmeister [3] contain subsets C0 and H0, which are
bases themselves. But we can prove that any uniformly thin set C∗ or H∗

which includes C0 or H0 satisfies d2(C
∗) ≥ 3

√
3 = 5.19615 . . . and d2(H

∗) ≥
(10/

√
6) 4

√

5/3 = 4.63859 . . . . So Lemma 1 is sharp in these cases. If we
further look at the lower asymptotic density d2(A) = lim infn→∞ A(n)/

√
n,

then there exists no function of d2(A), d2(A) which gives the asymptotic
density for a uniformly thin set D containing A, i.e. generally d2(D) 6=
f(d2(A), d2(A)). Proofs can be found in [4].

Acknowledgements. The author would like to thank Gerd Hofmeister
for his helpful comments.

References

[1] V. Blomer, Thin bases of order h, J. Number Theory 98 (2003), 34–46.
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