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Generalized multiple Dirichlet series and
generalized multiple polylogarithms

by

Konit MaTsuMoToO (Nagoya) and HiRoFuMI TSUMURA (Tokyo)

1. Introduction and statement of results. Let N be the set of nat-
ural numbers, Ng = N U {0}, Z the ring of rational integers, Q the field of
rational numbers, R the field of real numbers, and C the field of complex
numbers.

Let s = 0 + i7 be a complex variable, and

— _a(n)
].1 S) = —_—_—
(L1) U =X Gy
be a function with complex coefficients a(n), where 3,w € Rwith 0 < f < w.
We assume the following:

ASSUMPTION 1. There exists a ¢ > 0 such that 1(s) is absolutely conver-
gent for o > q.

Throughout this paper we fix 6 € R with 6 > 0 and let v € R with
1<u<1+4+46. Welet

[e.9]

a(n)u

1.2 s;u) = —_—

(12) W) =3 G

By Assumption I, we can check that if 1 < u < 1+ § then the right-hand

side of (1.2) is absolutely convergent for any s € C, so ¥ (s; u) is holomorphic
for all s € C. Corresponding to v (s;u), let

o
(1.3) Gi(t;;u) =Y a(n)u"eP o)t

n=0
where ¢ is a complex variable. By Assumption I, the series (1.3) is convergent
when Rt < 0. We further assume the following:

—-n

AsSUMPTION II. 9(s) can be continued analytically to the whole complex
plane C, and is holomorphic for all s € C. In any fixed strip o1 < o < o9,
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Y(s;u) is uniformly convergent to 1(s) as uw — 1+ 0. Furthermore there
exists a Oy = Op(01,09) € R with 0 < Oy < 7/2 such that (s;u) = O(elTl)
as || — oo.

ASsuMPTION III. There exists a 0 = 0(¢) > 0 such that G1(t;v;u) can
be continued holomorphically to

(1.4) Do) ={teC|t| <o}
for any u € [1,1 4 4].

We will give typical examples which satisfy Assumptions I-III in Sec-
tion 2 (see Example 2.2).

In the present paper, we consider generalized multiple Dirichlet series
defined as follows. Let (ag, a1, ..., ) € R"T and (wy, ..., w,) € R” be such
that g = 0 and 0 < ag, —ag—1 < wg (1 <k <7r). Let P, = {¢1,...,%,},

where
o

(15) (s = Y o

ap — Qp_1 + nwg)s’

n=0
We assume that ¢, (s) and the associated series ¢y (s; u), G1(t; ¥x; u) (defined
similarly to (1.2) and (1.3)) satisfy Assumptions I-1II (1 < k < r). By
Assumptions I and III, there exist {gx = q(¢x) (> 0) | 1 < k < r} and

{or = o(¥y) (>0) |1 <k <r} Welet

_ : r—1
(1.6) Ny = lggr{gk/Q }-

We define the generalized multiple Dirichlet series associated with P, by

o0 _ZT7 n

ar(ny) - - ap(ny)u” 2v=2™

(1.7) U (S1y. .y Spyu) = E 1(T ) il ;) —
n1,e..;nr=0 Hj:l(aj + D p—1 nwy)

for s1,...,s, € C and u € [1,1 + 6]. The special case u = 1 and a;j(n) =1
(1 < j < r) has been studied by the first author in [12, 13]; it can be
regarded as a generalization of both the Euler—Zagier multiple zeta function
and the Barnes multiple zeta function. On the other hand, the special case
u=1 o =jand w; =1 (1 < j < r) has also been studied before: see
Arakawa-Kaneko [2] when a;s are periodic functions on Z, and Matsumoto—
Tanigawa [14] for more general a;s.

First we prove the following result by using the method introduced by
Matsumoto—Tanigawa [14] (see also [11-13]). Indeed, this can be regarded
as a generalization of Theorem 2 in [14].

THEOREM 1.1. For s1,...,8, € C and u € [1,1 + 6], ¥,(s1,...,5r;u)
is absolutely convergent for s; = oj +i1; € C (1 < j < r) with each
oj > qj. Furthermore W,.(s1,...,s,;u) can be continued analytically to the
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whole complex space C" and is holomorphic on C", and satisfies

1. li 2 e S u) =Y e, 81
(1.8) w150 r(s1,. .., 8r50) r(s1,005 805 1)

for any (s1,...,s,) € C".

REMARK 1.2. The meromorphic continuation of ¥,(s1,...,s,;u) can
be proved even if 1 (s) has poles. When u > 1, the multiple series (1.7)
is absolutely convergent, hence holomorphic, for any (si,...,s,) € C".

When v = 1, if we assume that 14 (s) has a pole of order at most one
at s = ¢ and is holomorphic elsewhere (and satisfies 1;(s) = O(eIT]))
for 1 < k < r, then we can show the following result, which generalizes
Theorem 1 in [14]:

The function ¥,(s1,...,8:;1) can be continued meromorphically to the
whole space C", and its possible singularities are located only on the subsets
of C" defined by one of the following equations:

sj+ S =+ 0pgj1 + o+ Oy — 7
(1<j<r é=00r1(2<k<r), neNy).
Moreover, (i) if j=r>2and g € N, thenn <q.—1, (i) if 2<j<r—1,
¢ € Nand 6j41 =--- =6, =1, thenn < g — 1, (iii) if j =r =1 or if
j=1land 6o=---=96, =1, thenn =0.
The proof uses the method of proof of Theorem 1 in [14].

We further consider generalized multiple polylogarithms related to (1.5).
Let d, = (di,...,d,) € C" with Rd; > ¢; for each j. With the above
notation, and for u € [1,1 4+ ¢], let

(1.9)  Fi(t1,...,tr;dp; Pryu)
i a1(n1) - - - ayp(ny)u=2i=1m T, (@21 nuwp)t;
n1,...,nr=0 H;:l(aj + Zi:l nﬂwﬂ)dj

This multiple series is convergent when Rt; < 0 (1 < j < r). If we
formally let ¢r(s) = ((s), the Riemann zeta function, and dr € N
(1 <k < r)in (1.9), then F,(logzy,...,logx,;d,;Pr;1) is the multi-
ple polylogarithm defined by Goncharov [6] (see also [4]). However, ((s)
does not satisfy Assumption II, so we will not consider the Goncharov
multiple polylogarithms in this paper. Instead, we prove the following re-
sult.

THEOREM 1.3. For d, € C" with each Rd; > q¢; (1 < j <7r) and u €
[1,149], Fr(t1,...,tr;dy; Pryu) is holomorphic for all (t1,...,t.) € D(n.)",
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and satisfies, for (t1,...,t,) € D(n,)",

(1.10)  FEr(t1,... tr;dp; Pryu)
0o t{vl"‘tNT

= U,(dy — N1,...,dr — Npju) ——F—.
Z 7‘( 1 1 T T?u) Nl!"'NT!

Ni,...,Np=0

Furthermore, for any £ € R with 0 < § < ny, (1.10) is uniformly convergent
with respect to (t1,...,ty,u) € D(E)"X[1, 1+6], where D(§) ={t € C | |t| <&}.

The special case ¥j(s) = > ~;(—=1)"n"® (1 < j < r),d, € N" and
t1 = -+ = t,_1 = 0 has been studied by the second author. Indeed,
F.(0,...,0,t;dy; Pr;u) played an important role in giving some evaluation
formulas for Euler—Zagier sums (see [15]). In order to prove Theorem 1.3
and Proposition 2.1 (see below), we make use of the technique introduced
in [15].

As applications, using Theorem 1.3, we prove certain estimates for
U,.(dy—Ni,...,d.—N,;1) (see Proposition 5.1 and Example 5.2). We further
give certain multiple analogues of both Berndt’s and Katsurada’s formulas
for Dirichlet L-functions proved in [3, 9] (see Example 5.3).

The authors wish to express their sincere gratitude to the referee for his
(or her) valuable comments and important suggestions.

2. Generalized polylogarithms. First we consider the case of r = 1.
Let 9(s) be as defined in (1.1) and Fi(¢;d;¢;u) as defined in (1.9). With
the notation of Section 1, we can prove the following.

PROPOSITION 2.1. Ford € C with Rd > q and u € [1,1+0], Fi(t;d;v; u)
is holomorphic for all t € D(p), and satisfies, for t € D(p),
N

(2.1) 1 (t; d; b w) Z W(d
Furthermore, for any £ € R with 0 < § < o, (2.1) is uniformly convergent
with respect to (t,u) € D(&) x [1,1+9].

Proof. By Assumption III, we can let
(2:2) Gi(t;h;u) = B (¢ u
n=0

for |t| < o. We use the method of contour integrals (see, for example,
[16, proof of Theorem 4.2]). We consider the path 7" which consists of the
positive real axis [g,00] (top side), a circle C: around 0 of radius e, and
the positive real axis [e, 00] (bottom side), where 0 < € < p. Note that we
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interpret t° to mean exp(slogt), where the imaginary part of logt varies
from 0 (on the top side of the real axis) to 27 (on the bottom side). Let

(2.3)  Hi(syvhu) = | Gu(—t; 95 u)t° " dt

T
= (627”S -1) S G1(—t; 9 u)ts_1 dt + S G1(—t;v; u)ts_1 dt,
€ Cs

which, in view of (1.3), is holomorphic for all s € C if 0 < € < p. Putting
s =—nforn € Ny and ¢ = £ with 0 < £ < g in (2.3) and using (2.2), we
have

(2mi) B (15 0)(~1)"

Hy(=n3dsu) = | Gr(—tabsu)t ™" dt = .

Ce
From Assumption III, G (¢; ¢; u) is continuous for all (¢, u) € D(p) x[1,1+4].
Hence the value Mg =max{|G1(—t;¢¥;u)| | (t,u)e{teC||t| =&} x [1,140]}
exists. By the above equation, we have

(2.4) Bl % VIG1 (=t ;) ¢ 7" |de]

n!
Ce

< Me
é’n

for any n € Ny and u € [1,1 4+ ¢], where £ is an arbitrary real number with
0<€é<o.

On the other hand, let s € C with Rs > max(1,¢). Then the second
term on the right-hand side of (2.3) tends to 0 as ¢ — 0. Hence

(2.5) Hy(s;3u) = (€2 = 1) | Gi(—t;9pu)t™ " dt
0
_ (6271'1'3 _ 1) Za(n)u—n S ts—le—(ﬂ—i-nw)t dt
n=0 0

= (™ =)' (s)¥(s;w),

where the interchange of summation and integration is valid because Rs > q.
Hence

) — 1 oy T(l—s) <ol
(26> 1,0(8716) - m H1(87,¢}’u) - 27T’i€7ris H1(871/),U),
because
T 21

I'(s)I'1—s) = =

sinwTs  eTis — g~ mis

The relation (2.6) is valid for all s € C by analytic continuation.
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Next, for d € C with Rd > ¢ and N € Ny, we put s = d — N in (2.3).
Then

(27)  Hi(d=Nigu) = (= 1) | Gi(—t;gsu)pe’=V " de

£

+ S G1(—t; u)td_N_1 dt =: 11 + I.

Ce
Note that if N > Rd 4+ 1 then
(2.8) ‘oxoe(ﬁJrnw)tthl dt‘ < e_(ﬁ-f-nw)ee%d—N—l
J . 6+ nw
Hence
0 —(B+nw)e
I | < Rd=N-1) 2mid _ la(n)le
LR e F
On the other hand, by using the fact that
2mi (p = _1)7
(2.9) {trat=q e —1
. & T (p # 1),
for p € C and by (2.2), we have
. (_1)N—d
(27?2)%]\[_(1(1/1; U) m (N —d € NO),
(2.10) Iy = -
- : B (15 u)(—1)"e" .
d—N (_2mid ;
g (e — 1)7;) (ntd— Nl (otherwise).

Note that the above infinite series is convergent because of the assumption
e < p and (2.4). Hence

2.11
210 BN —a(t;u)|

2T (N = d)!

(N —de NO)»
|I2| S fe'e)
ngo %n(d), U) m (otherWISe).
From (2.4) with £ = ¢, the first case of (2.11) yields

|Io] < 2xMed= N,

In the second case of (2.11), we let 74 = min{|d — m| | m € Z}. Using (2.4)

with £ such that 0 < £ < £ < g, we see that the second case of (2.11) yields
Me

Ya(l —¢e/€§)

5§Rd—N|e2m‘d _ 1’

’.[2| < 6§Rd—N|€27rid o 1’
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Hence it follows from (2.6)—(2.11) that there exists a constant M > 0 which
depends on ¢, d and v but is independent of N and w such that

¥(d — N;u) 1
T+ N—d)| 2n|emd|
for N € Ng with N > Rd + 1. Note that we can take £ arbitrary such that
0 < e < p. Since |s| < |Rs| + |Ss| for s € C, we have

I'1+N—-=d)|=|(N—d)(N—d—=1)---([Rd)]+1—=d)([Rd] + 1 — d)|
< (N = [Rd] + [|Sd|] + D! T'([Rd) + 1 — d)]
for N € Ng with N > Rd + 1. Hence

(2.12) |Hi(d — N;¢;u)| < Me™

< (N — [Rd] + [|d|] + 1)! [I'([Rd] + 1 — d)|‘ Y(d— N;u) ‘
= NI I1+N—d)
< (N — [Rd] + [|Sd]] 4]-V1')! (IR +1-d)|, -~

Suppose u € (1,1 + 6] and t = if with 6 € (—p,0) C R. Then there exists
an € € R with 0 < e < p and |f| < e. From the definition (1.9) we have

L an)u & nw)N (10)N
(2.14) Fy(if; dihsu) = Y L)d 3 (8+ N)! (i6)
N=0

ot (6 +nw

= o)
—NZO¢(d—N,u) NT

From (2.13) we can see that each side of (2.14) is uniformly convergent with
respect to u € [1,1 + ¢ because |0| < e. Hence we can let u — 1 on each
side of (2.14), so (2.14) holds for u = 1 when 6 € (—p, g). We can define

o0 N
Fi(tdisu) = > yp(d— Nju) t—,
N=0
for any w € [1,14 6] and t € C with |t| < p. From (2.13), this is uniformly
convergent with respect to (t,u) € D(£) x [1,1 4 8] when 0 < £ < p. Thus
we have the assertion. m

EXAMPLE 2.2. Let f : Z/mZ — C be such that > ", f(a) = 0. It can
be regarded as a periodic function defined on Z. For example, any non-trivial
primitive Dirichlet character and any non-trivial additive character defined
mod m satisfy this condition. We define

(2.15) Lis;f) =Y ffb’j)
n=1
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and
e B m f(a)u—aeat
Gi(t: Liu) =3 ment =y LAY €
1(7 ,U) n:1f(n)u € a:1]7__u—m€nn

for w € [1,1 + §]. Then L(s; f) and G1(¢t; L;u) satisfy Assumptions I-III.
Note that ¢ = 27 /m and ¢ = 1 in this case. For d € C with Rd > 1, let

Fi(t;d;L) =Y f(z)dent.
n=1

It follows from Proposition 2.1 that Fj(¢;d; L) is holomorphic on D(27/m)
and satisfies

o N
(2.16) Fy(t;d;L) = Y L(d— N; f) %
N=0 )

In particular, when f is a primitive Dirichlet character x of conductor m, we
know that L(—2j—1,x) =0if x(—1) = —1 and L(—2j,x) =01if x(—1) =1
for j € Ny (see, for example, [16, Chap. 4]). Hence, applying (2.16) with
d =2k and d = 2k + 1 for k¥ € N and using cosz = (e + e7%)/2, we
obtain

. v(n) cos(n k! i6)27

> MWD S k-2 (D=1,
n=1 7=0

> n) cos(n k i0)2

> % =Y L(2k+1-2j,x) ((20;)!] (x(=1) =-1)

S

Il
—
.

Il
=)

for 6 € (—2m/m,2mw/m). These are typical examples of Berndt’s result (see
[3, Theorem 4.2]; see also [5, (1.2.12)]). Similarly, it follows from (2.16)
that

OOX ) cos(n@) > i0)?
>SS = Lk 1200 g (D =1,

= (27)
3 Mmcostnf) ZL (2% — 2j.) <(9)) (1) = 1)
n=1

for k € N and 0 € (—27r/m, 27/m). Using the functional equations for
L(s, x), we can confirm that these equations coincide with Katsurada’s for-
mulas for L(s, x) (see [9, Theorem 3)).

3. Proof of Theorem 1.1. Using the method introduced in [14, Sec-
tion 2] (see also [11-13]), we give the proof of Theorem 1.1 by induction
on 7. The case of r = 1 can be directly obtained from Assumptions I and II.
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Hence we assume that Theorem 1.1 holds for r—1, and aim to prove the case
of r (> 2).
As in Section 1, let

WT(SL...,ST;U) = WT(SL" . 787";w17"'7w7";u)

be the function defined by (1.7). Since each 1% (s) defined by (1.5) converges
absolutely for ®s > g (1 < k <), we can easily check that ¥, (s1,...,s;u)
converges absolutely if o, = Rsp > g (1 <k < 7).

First we assume each o, > ¢ (1 < k < r). Recall the Mellin—Barnes
formula

(3.1) T(s)(142)° = % | D(s +2)0(—2)\* dz,

(c)

where Rs > 0, larg A| < 7, A # 0, —Rs < ¢ < 0, and the path of integration
is the vertical line 8z = ¢. By the above assumption, we may assume —g, <
c < —qr. Put s = s, and

O — Op—1 + NypWy
Qp_1 +nMwy+ -+ Np_1Wr—1

in (3.1). Then multiply both sides by

al(nl) e ar(nr)u_Z;:l ny

125 (g + S0y )% (o1 + Y0021 myw, ) o1t

and sum up with respect to ny,...,n, to obtain
1 I'(sy +2)I'(—2)

3.2 v, e, S U) = ——

(32 Tlsr,. )= g2 | ==7rs

(¢)
X W 1(S1y vy Sp—2y Sp—1+ Sp +2;u)p(—2;u) dz.

Let M € N and € € R be a small positive number. We shall shift the
path to Rz = M — . We see that

U 1(S1y -y Sp—2ySp—1 + 8p + z;u) = O(1)
in the region ¢ < Rz < M —¢e because o, > g (1 <k <r—2), —0, < cand
op_1+o,+Rz2>0,_1+0,+c>00_1.

From the well-known Stirling formula for I'(s), we have

(3.3) ()] = e ™TV2(|r| + 1>”_1/2(1 + O(|T|1+ 1))

as |T| — oo, where s = o + ir. Hence, by Assumption II, the integrand
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on the right-hand side of (3.2) tends to zero as |3z| — oo, so this shift is
possible. By the inductive assumption, ¥,_; is holomorphic on C"~! and
1 holomorphic on C. Therefore we only have to count the residues of the
poles of I'(—z) at z = 0,1,...,M — 1. Since the residue of the pole of
I(sy +2)['(=2)/T(s;) at z =k equals —(7;"), we obtain

(3.4)  W.(s1,...,8;u)

M—-1
= Z ( I:T>Wr—1(317 ey Sr_2, 81+ S + K U)%(—k;u)
k=0

I'(sy +2)I'(—2)
I'(sr)

L b S
211
(M—e)

X W 1(S1,y .y Sp—2, Sp—1 + Sy + 2;u)r(—25u) dz =: S + So.

Now 57 is holomorphic on the whole C" by the inductive assumption. On
the other hand, I'(s, + z) has no pole on the path (M —¢), when R(—s,) =
—0, < M — ¢, so that o, > —M + €. Using (3.3) and Assumption II,
we see that S5 is absolutely convergent, so it is holomorphic in the re-
gion

{(s1,.-.,8)€C" |o1>q1,...,00—1 > @p—1, 0p > —M + &},

where M is arbitrary.

Next we fix s, € C with 0, > —M + ¢, and consider the continuation
with respect to s; for 1 < k < r — 1. Since ¥,_; is holomorphic on C" 1,
the integrand in Sy is holomorphic for all (sq,...,s,—1) € C" L. So, if we
prove that Sy converges absolutely for any (s1,...,8._1) € C""! and s, € C
with o, > —M + ¢, then ¥, (s1,...,S;u) is holomorphic on the whole C”
because M is arbitrary. In order to prove this result, we need the following
lemma.

LEMMA 3.1. Forr € N with r > 2, there exists a polynomial P,(X) €
R[X] such that

(3.5) U (s1,. .., 50 u) = O(P(|r))e®l™hy (7] = o)

for any (s1,...,8.—1) € C"! and u € [1,1+ d], where the constant implied
by the O-symbol depends on 1, ..., Tr_1.

Proof. We denote (3.5) by
Uy (s1,. .., spu) < Po(|ry])eflm .

We prove this lemma by induction on r (> 2). First we consider the case of
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r = 2. It follows from Assumption IT and (3.4) that
(3.6)  |Wa(s1, s2;u)

M-1
<D
k=0

<_]:2) ‘Wl(sl + 52 + ks u)ho(—k; u)

1 (s, I(—
+| (s ;:(2)( 2 gy (51 + 55 + 2 u)ba(—7 ) d
(M—¢)
M-1 .
752 | olmal ¢ L L(sr+2)I(~2) Oolr2+yl bolyl 4
b kZ:O ( k ) o _S s |© Y

where z = x + ty. For simplicity, we denote the last term on the right-hand
side of (3.6) by I. Using (3.3), we have

(3.7) I < e™m2(|ny| 4+ 1)702+1/2
X S 6(0077T/2)|T2+y‘6(90771-/2)'?”‘(’TQ—i—y‘ +1)0‘2+m71/2(’y‘ +1)7171/2 dy

—00
Now Lemma 4 in [12] applied with A = B =6y —7/2, p =02 +x —1/2 and
q=—x—1/2 yields

(3.8) I < €™ml2(|5y| 4 1) 02 H+1/2
X {1+ (1ol + 17552 (o] 4 1) 7412600/
+ {1+ (|| + 1) 2 1/2) e (O0=m/2)Imal)

Combining (3.6) and (3.8), we see that there exists Py(X) € R[X] such that
Wy (51, 52;u) < Po(|7a)e®!™l (7] — o0).

Thus we have the assertion for r = 2.
Assume that the assertion holds for » — 1. Substituting the assumed
bounds into (3.4) and using Assumption II, we have

—0y + 17,
k

o

S ‘F(sr +2)[(—=2)
I'(sy)

M-1

Uy (81, 0y Spyu) <K Z

k=0
1
211
—00

Prfl("rrfl + Tr’)eao‘TT71+TT|

X P71 + 7 + y\)eeU|TT—1+Tr+y|690\yl dy.

By the same method as above, we can see that there exists P,.(X) € R[X]
such that
(815000 8r5u) K Pr(|7'r|)660|m-

This finishes the proof of Lemma 3.1. =
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Now we can complete the proof of Theorem 1.1 as follows. If we fix any
(s1,...,8r) € C", then it follows from Lemma 3.1 that

Qrfl(sla ey Sp—2,8r—1 + S + 2; U) < Pr71(|7_r71 + 7 + y|)eGO‘TT71+TT+y|
as |y| — oo, where z = x + 4y. Since s,_1 is fixed, this can be written as
(3.9)  Wo_1(51,. .., Sr—2, Sp_1+8r+2u) < Pr_y (|1rty| )T (Jy| = o00),

where P._1(X) € R[X]. Recall that Sy is the second term on the right-hand
side of (3.4). Then, by using (3.3), and by (3.8) and Assumption II, we
have

oo

Sy < S D, (y)e Il 2=mlmtul/2 ol +yl bolul gy
—0o0
S S
— S P,_1(y)e o=/ +yl+1yD) gy

—00

for some P,_1(X) € R[X]. Since 0 < y < 7/2, S converges absolutely for
any (s1,...,s,) € C". By (3.4), ¥,(s1,...,S;u) is holomorphic on C".

Lastly, we prove (1.8). More precisely, we prove that (1.8) holds uniformly
with respect to s; (1 < j < r) in any fixed strip o1; < Rs; < 095 as u — 14-0.
The case of r = 1 follows from Assumption II. Hence we assume that the
case of 7 — 1 holds and prove the case of r (> 2). Let v — 1+ 0 in (3.4).
From the inductive assumption, the integrand in S is uniformly convergent
with respect to z in any fixed strip o1 <Rz (=M —¢) <oz asu— 1+0.
Exchanging lim,,_,1 9 and the integral, and using the inductive assumption,
we see that the right-hand side of (3.4) tends to

M-1
(310) > ( Sr)&ﬁr_l(sl,...,sr_g,sr_l—l—sr—l—kz; 1)y (—k; 1)

k
k=0

1 S I'(sp 4+ 2)I'(—2)

27i I'(sy)

(M—¢)

X wr—l(&glv cey 8p—2,8r—1t+ Sr + 25 1)¢T(_Z§ 1) dz
as u — 1 + 0. It is clear that this convergence is uniform with respect to
s; in any fixed strip o1; < Rs; < 095 (1 < j < r). From (3.4), we see that

(3.10) coincides with ¥, (sy,...,s,;1). Hence the assertion in the case of r
holds. This completes the proof of Theorem 1.1.

REMARK 3.2. For any N € Ng, le¢t M = N +1 and s, — —N
in (3.4). Then S2 tends to 0 because I'(s;) has a pole at s, = —N. Hence
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we obtain

(3.11)  ¥p(s1,...,80—1,—N;u)
N /N
:Z v Ep?“—l(slv"°7S7“—27S1”—1-}_V_]V;u)d]’r‘(_y;u)
v=0

for u € [1,1+6] and (s1,...,8,—1) € C"~L. In particular, let 1;(s) = L(s; f;)
(1 <j <r)and u = 1, where each f; is defined mod m; and satisfies
a certain condition (see Example 2.2). Then we can check that Assump-
tions I-IIT hold. In this case, ¥.(s1,...,Sy;1) coincides with the multiple

L-function
oo

Lr(sl,-..,sr;fl,...,fr): Z fl(nl)"'fr(nr)

n‘il(nl +n2)32 . (nl + . +nr)ST7

ny,...,np=1

which has been studied in [2]. Hence (3.11) gives
(312) LT(Sla"'asTflv_N;flv'"7f7‘)

/N
= Z <V>LT_1(81, ey Sp—92,8p-1 +V — N;fl, .. .,fr_l)Ll(—l/;fT)
v=0

for (s1,...,8-—1) € C"~L. This result was proved by Kamano (see [8]) by
using the method introduced in [1]. This case can also be derived directly
from the relation (2.3) in [14].

4. Proof of Theorem 1.3. In this section, we prove Theorem 1.3 by
induction on r.

The case of r = 1 is just what we proved in Proposition 2.1. Hence we
assume that the assertion holds for r — 1 and prove the case of r (> 2).

Let P, = {41,...,9,} satisfy Assumptions I-III. Then we can take
{ar}1<k<r and {0k }1<k<,, and define n,_; and 7, by (1.6). Let

(4.1)  Gp(t1,. .., tp;dp_1; P u)
= r—l(tla cotr_a e F e de_1; P U)Gl(tr; Yr; 'LL)

i a1(n) - ap(ny)yu= St 7 (@i Ty muw)t

ni,...,np=0 H;:l (aj + Z;];:l nﬂwu)d]
which is convergent when Rt; < 0 (1 < j < r). By the inductive assump-
tion, Fr_1(t1,...,tr—1 + tp;dyp—1;Pr_1;u) is holomorphic for (¢1,...,t,) €
D(nr—1)""2 x D(nr—1/2)%, and G1(t,;y;u) is holomorphic for t. € D(o,).
Since 7, < min(n,—1/2, 0,), we see that G,(t1,...,t,;dy—1;Pr;u) is holo-
morphic for (t1,...,t.) € D(n,)". Therefore, if we fix ¢, € D(n,) then
the function of r — 1 real variables G, (i01,...,i0,_1,t,;d,—1; Pr;u) is real-

)
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analytic for (01,...,0,—1) € (=, n)""1 C R™™1 (see, for example, [10,
Corollary 2.3.7]). Similarly, if we fix (61,...,0,—1) € (—=n.,n,)" "1, then
G, ({ib;},t,;dr—1; Pr;u) is holomorphic for ¢, € D(n,). Hence we define
{8, ({101 }; dr—1;Pr; u) b0 by

o) m
(4.2)  Gp(ib1, ... 0001, tr;dr1; Pru) = Z %n({lek}v dy—1;Pr;u) _T'
=0 n.

As in the proof of Proposition 2.1, we let
(4.3)  Hy(s;101,...,i0,_1;dy—1;Pr;u)

= S Gr({i0}, —t; dy1; Prsu)ts L dt
r

= (2™ — 1) S Gr({i0}, —t;dy_1; Prsu)t® Lt
€
+ S Gr({lek}v —t;dr_1;Pp; u)ts_l dt,
Ce

1

which is holomorphic for all s € C if we fix (61,...,0,-1) € (=1, n,)" " and

0<e<n.
Putting s = —n for n € Ny and € = £ with 0 < £ < 7, in (4.3), and using
(4.2), we have

HT(_n; 01, ..., 10 1;5dr 15 Py U) = S GT({ZGI{?}7 —t;dp—1; Pr; U)tinil dt

Ce

(2mi)Bn({i0x}; dr—1; Py u) (=1)"
n! '

By the inductive assumption and (4.1), we see that the Taylor expansion
of G;({i0k}, —t;d;—1;Pr;u) around ¢ = 0 is uniformly convergent with re-
spect to (01,...,0,_1,t,u) € [=& €1 x D(€) x [1,1 + 8] when € € R
with 0 < ¢ < n,. In particular, G,({i0}, —t;d,—1; P;u) is continuous for
(O1,...,0,—1,t,u) € [, x D(€) x [1,1 + §]. Hence the value
Me = max{|G,({ibx}, —t; dy_1; Pr; u)| |
(t,u) € [, € x {lt] = € x [1,1 +3]}

exists when £ € R with 0 < £ < n,.. By the above equation, we have

B ({0} d1; Priw)| _ Me
n! - &n

for any n € No, (01,...,0,—1) € [-& €™ and u € [1,1+6].

(4.4)
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Define
(4.5)  Zp(dy_1,s5i01,...,90p_1;Pr;u) = Fp(i01,...,10,-1,0;d,—1, s; Priu)
® gi(ng) - ap(ne)us To=1mw H;; (@221 nuwy)i6;
- nl,.%;o H;;i(aj + 30 ) (ar + 30y mw, )

for (01,...,0,—1) € (=nr,m)" "1, s € C with Rs > ¢, and v € [1,1 + 4].
Assuming Rs > max(1,q,) and using the same method as in the proof of
Proposition 2.1, we have

1

(e~ ) I5)
= % Hr(5§ {ng}a d,—1; P u)
Note that H,(s;{i0k}; dr—1; Pr;u) is holomorphic for all s € C if we fix
{01} € (—=nr,mr)" ! (as mentioned above), and the poles of I'(1—s) coincide
with N = {1,2,...}. Since Z,(d,_1,s; {i0x}; Pr; u) is absolutely convergent
for s € C with s > ¢,, it follows from (4.6) that Z,(d,—1, s; {ifk}; Pr;u)
is defined and holomorphic for all s € C\ {1,2,...,[¢|} if we fix {0;} €
(_777’7 nr)T_l-

Furthermore, we can prove that Z,(d,—_1, s;{i0x}; Pr;u) has no pole as
follows. Fix s € C. If 1 < w < 1+ ¢ then from (1.7) and (4.5), and by
substituting the Taylor expansion for each exp((a;j + > 7_; nyw,)ib;) and
changing the order of summations, we have

(4.7 Zyp(dy—q, 85 {0k }; Prsu)

(4.6)  Zy(dr—1,5;{i0k}; Priu) = H, (55 {0k }; dr—1; Prj u)

= d ] N . N._
10 1...(20 1
Z !pT( 1 N17--.,dr_1—N,«_1;8;u)( 1)N'(_Z\fr 1?
Ni,....,Np_1=0 ! Y

We see that (4.3) is uniformly convergent with respect to (61,...,60,-1,u) €
[—&, €771 x [1,1+4], for any ¢ € R with 0 < ¢ < n,. Hence, for u € [1,1+4],
H,.(s;{i0}; d,_1; Pp; u) is real-analytic for (01, ...,60,_1) € (—n,,n.)" L. Put
61 =---=0,_1 =0. Then for v € [1,1+ 0], H,(s;{i6};d,—1; Py;u) is real-
analytic for 0 € (—n,,n,), and its Taylor expansion around 6 = 0 is uniformly
convergent with respect to (0,u) € [=&,£] x [1,1 + d]. It follows from (4.6)
that Z,(dy—1,s;{i0}; P,;u) also has these properties. Hence, for any u €
[1,1+ 6], we define the one-variable complex function Z,(d,_1, s; {t}; Pr;u)
which is holomorphic for ¢ € D(n,) and its Taylor expansion around ¢ = 0 is
uniformly convergent with respect to (t,u) € D(£) x [1,1+6]. In particular,
2 (dy_1, 8;{t}; Pp; u) is continuous for (t,u) € D(&) x[1,1+4]. Putting £ = ¢
with 0 < € < n, shows the existence of

ML = max{|Z,(d—1,s; {t}; Pr;u)| | (t,u) € {t € C| |t| =€} x [1,1+ 6]}
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Using the same method as in the proof of (4.4) and by (4.7) and the conti-
nuity of ¥, (dy — Ni,...,dr—1—Ny_1, $;u) in u € [1,146] (see Theorem 1.1),
we see that

U,.(dy — N1,...,dr_1 — N,_1, s; /
(48) ‘ Z (1 1 1 18U) <%

Nyt Ny 1=n Nl! s Nr_ll en
for w € [1,1+ 6] and n € Ny, where € is an arbitrary real number with
0 < € < np. This means that the right-hand side of (4.7) is uniformly con-
vergent with respect to (01,...,0,_1,u) € [=& & x [1,1 + 4] for any
¢ € R with 0 < £ < n,. Hence we can let v — 1 in (4.7), so (4.7) holds for
u € [1,1+44]. Since s is an arbitrary complex number, Z,(d,_1, s; {10y }; Pr; u)
has no pole, so it is holomorphic for all s € C when u € [1,1 + 9],
and real-analytic for (01,...,60,_1) € (=n,,1,)""! when s € C and u €
1,1+ 4].

For d, € C with Rd, > ¢, and N € Ny with N > Rd, + 1, we put
s =d, — N in (4.3). Then we have

(4.9)  H.(d, — N;{ib};dr—1; Pr;u)
= (e2™idr _ 1) S Gr({i0}, —t; dp_1; Py )t N1t
€
+ S G,r({i0}, —t;dyp—1; Pp; u)td’“_N_l dt =: J1 + Js.
Ce
Since N > Rd, + 1, we have

—(or+37 1 npwp)e |€dr_N_1

T
Qg Wy

(o]
’ S o (@t npwy)tydp—N—1 dt‘ <
€

Hence

(4.10) | Jy| < Rdr—N-1| 2midr _
1 - )
=0 LG=1(05 + 300 1,0, (ov + D e MWy

On the other hand, by using (2.9), we have

ar(nr) ’e_(aT+Z;:1 nuwy)e

, , (—1)N—dr
(271'1)%]\[_(174({29]4;}; dr,a_l; :PTW U) m (N—dr S NO),
Jo = oo . o
6dT—N(627ridr o 1) Z %n({zek}7 drfla [PT'a U)(—l) 3 (OthGI‘WiSG).

Z (n+d, — N)n!

The last series is uniformly convergent with respect to (61,...,60,_1,u) €
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[—e,e]"7! x [1,1 + 6] because of the assumption ¢ < 7, and (4.4). Hence
either

’%Nfdr ({’Lek}, dr—l; :P'r; ’U,)‘

4.11 <2 N —d,
(4.11) | Jo| < 27 v )l (N —d, € Ny)
or
- ' 00 —1)”8”
412 < %dr N 27TZdT_1 n 9 .dr_ .‘:Pr. (—
( ) ’J2| ¢ (& | 7;)% ({7' k}a 1 ,’U,) (n+ dr—N)n'
(otherwise).

Just as (2.12), it follows from (4.4), (4.6), (4.8)—(4.12) that there exists a
constant M > 0 independent of N and {6} such that
Zr<dr—17 d, — N; {Z‘gk}y Pr; u)
I'(l+ N —d,)
1

< —
— 2m|emidr]

(4.13)

|H, (dy — N3 {0 }; dpy; Pryu)| < Me™V

for N € N with V > Rd, + 1. Note that we can take ¢ arbitrary such that
0 < e < 1. As in the case of (2.13), we have

’Zr(dr—ladr - N; {z@k},ﬂ’T,u)]
N!
o (N = [Rdy] + [|ISd,[] + D! [I([Rdy] + 1 — dy)|
- N!
for N € Nwith N > Rd, +1 and u € [1,1+ §].

Suppose 1 <u <1+ and 6, € (—n,,n,). Then by (1.9), and using the
Taylor expansion for exp((a, + >, _; nyw,)if,), we have

(4.15)  Fp(ib,...,i0p_1,10,;ds; Pryu)

(4.14)

MeN

o0 . N’!‘
= Z Zr(dr—h dy — Ny; {Z@k}, :PT;U) %
Np=0 "
By (4.14), the right-hand side of (4.15) is uniformly convergent with respect
to (0,,u) € [—€,&] x [1,1 4 6] when (61,...,0,_1) € (=np,n,)" "' and 0 <
& < ny. Hence (4.15) holds for v = 1. As mentioned above, (4.7) holds for
any s € C, (61,...,0,_1) € (=nr,m)" "1, and u € [1,1 + §]. Consequently

(4.16)  Z,(dy_1,dr — Np; {i0k}; Prsu)
> (igl)Nl st (Z'(gr_l)NT*1

= > W(d—Ny,....dr— Nyju) NN, !
Nl,.--,Nr—lZD




156 K. Matsumoto and H. Tsumura

for u € [1,1 4 0]. Hence (4.15) can also be written as
(4.17)  F.(ibq,...,i0,;dp; Prsu)

0o ) ]
i0)N .. (40,
= Z Epr(dl—Nl,...,dr_Nr;U)( I?VIEV:')
Ni,...,N=0 " "

for u € [1,1 + 0], and (4.17) is uniformly convergent with respect to
(01,...,0r,u) € [-€,&]" x[1,1+0] for any € € R with 0 < £ < n,. Therefore,
for u € [1,1 4+ 0], we can define

(4.18)  Ey(t1,...,tr;dp; Pryu)

s NN
= Z Wr(dl—Nl,...,dr—Nr;U)m,
Ni,....Ny=0
which is uniformly convergent with respect to (t1,...,t.,u) € D(&)" x

[1,1 4+ 0] and holomorphic for (¢1,...,t,) € D(n,)" (see, for example,
[7, Section 2.2]). Thus we obtain the case of r. This completes the proof
of Theorem 1.3.

5. Some applications. First we prove the following estimates for
V,.(dy — Ni,...,d, — Ny;u) by using the same method as in the proof of
Proposition 2.3.10 in [10].

ProrosiTION 5.1. With the same notation as in Theorem 1.3,

W, (dy — Nu,... dy — Npyu)| | /)
Nyl N;! e
Proof. Assume otherwise. Then we take x € R with x > 1/n, such that
there exist infinitely many (Ny,..., N,) € Nj such that
|g/r(d1 — Ni,...,dp — Nr;u)| > jN1+-+N;
Nil---N,! '
This means that the right-hand side of (1.10) does not converge absolutely
at (1/k,...,1/k) € D(n,)", which is a contradiction. =

EXAMPLE 5.2. Let ¢;(s) = L(s; fj) (1 < j < r) as considered in Re-
mark 3.2. Then (5.1) gives

{‘LT<dI_N1""’dr—Nr;fl,...,fr>’}1/(Nl+'“+Nr> 1

<
Nl N, =

(5.1) lim sup
Ni+-+Np—o0

(5.2) lim sup
Nit-+Ny—o00

where each Rd; > 1 (1 < j <r) and 1, = minj<g<,{27/2" " tmy.}.

Secondly we give certain multiple analogues of both Berndt’s and Kat-
surada’s formulas considered in Example 2.2.
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EXAMPLE 5.3. As in the above example, let 1;(s) = L(s; f;) (1 < j <)
and define a generalization of multiple polylogarithm by

(5.3)  Frltr,.o o tesdei f1ooo, fr)

S AU8) | A SR
nclll(nl +ng)% - (g 4 -+ ny)dr

ni,...,np=1

for dy,...,d, € C with Rd; > 1 (1 < j < r). Theorem 1.3 with 9;(s) =
L(s; f;) 1 <j <r)and u =1 shows that F,.(t1,...,t,;dy; f1,..., fr) is
defined and holomorphic for (t1,...,t.) € D(n,)" such that

(5.4)  Fr(te, .. tesdys fr,000 fr)

e t e Ve
- Z Lr(dl_va-”yd?“_Nr;fl)"'yf?“)ijiﬁ“7
A
N1, Np=0
where 7, = minj<g<,{27/2" " 'my}. Putting t; = --- = t,_1 = 0 and ¢, =

+i6 for 6 € (—n,,n,) in (5.4), we have

(5.5)

filny) -+ fr(ny)cos((ny + -+ + n,)0)
Z ncll (n1 + ng)dQ (n1 + -+ Tlr)dr

ny,...,np=1
(i9)2N
2N

—ZL (di,....dp_1,dp —2N; f1,. .. fr)

REMARK 5.4. In the case fj(n) = (—=1)" (1 < j < r), the function
Fr(i61,...,i0.; f1, ..., fr) has recently been used to prove what is called the
parity result for Euler-Zagier sums (see [15]).
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