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1. Introduction and statement of results. Let N be the set of nat-
ural numbers, N0 = N ∪ {0}, Z the ring of rational integers, Q the field of
rational numbers, R the field of real numbers, and C the field of complex
numbers.

Let s = σ + iτ be a complex variable, and

(1.1) ψ(s) =
∞∑

n=0

a(n)

(β + nw)s

be a function with complex coefficients a(n), where β,w ∈ R with 0 < β ≤ w.
We assume the following:

Assumption I. There exists a q > 0 such that ψ(s) is absolutely conver-

gent for σ > q.

Throughout this paper we fix δ ∈ R with δ > 0 and let u ∈ R with
1 ≤ u ≤ 1 + δ. We let

(1.2) ψ(s;u) =
∞∑

n=0

a(n)u−n

(β + nw)s
.

By Assumption I, we can check that if 1 < u ≤ 1 + δ then the right-hand
side of (1.2) is absolutely convergent for any s ∈ C, so ψ(s;u) is holomorphic
for all s ∈ C. Corresponding to ψ(s;u), let

(1.3) G1(t;ψ;u) =
∞∑

n=0

a(n)u−ne(β+nw)t,

where t is a complex variable. By Assumption I, the series (1.3) is convergent
when ℜt < 0. We further assume the following:

Assumption II. ψ(s) can be continued analytically to the whole complex

plane C, and is holomorphic for all s ∈ C. In any fixed strip σ1 ≤ σ ≤ σ2,
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ψ(s;u) is uniformly convergent to ψ(s) as u → 1 + 0. Furthermore there

exists a θ0 = θ0(σ1, σ2) ∈ R with 0 ≤ θ0 < π/2 such that ψ(s;u) = O(eθ0|τ |)
as |τ | → ∞.

Assumption III. There exists a ̺ = ̺(ψ) > 0 such that G1(t;ψ;u) can

be continued holomorphically to

(1.4) D(̺) = {t ∈ C | |t| < ̺}

for any u ∈ [1, 1 + δ].

We will give typical examples which satisfy Assumptions I–III in Sec-
tion 2 (see Example 2.2).

In the present paper, we consider generalized multiple Dirichlet series
defined as follows. Let (α0, α1, . . . , αr) ∈ Rr+1 and (w1, . . . , wr) ∈ Rr be such
that α0 = 0 and 0 < αk − αk−1 ≤ wk (1 ≤ k ≤ r). Let Pr = {ψ1, . . . , ψr},
where

(1.5) ψk(s) =
∞∑

n=0

ak(n)

(αk − αk−1 + nwk)s
.

We assume that ψk(s) and the associated series ψk(s;u),G1(t;ψk;u) (defined
similarly to (1.2) and (1.3)) satisfy Assumptions I–III (1 ≤ k ≤ r). By
Assumptions I and III, there exist {qk = q(ψk) (> 0) | 1 ≤ k ≤ r} and
{̺k = ̺(ψk) (> 0) | 1 ≤ k ≤ r}. We let

(1.6) ηr = min
1≤k≤r

{̺k/2
r−1}.

We define the generalized multiple Dirichlet series associated with Pr by

(1.7) Ψr(s1, . . . , sr;u) =
∞∑

n1,...,nr=0

a1(n1) · · · ar(nr)u
−

∑r
ν=1

nν

∏r
j=1(αj +

∑j
ν=1 nνwν)sj

for s1, . . . , sr ∈ C and u ∈ [1, 1 + δ]. The special case u = 1 and aj(n) = 1
(1 ≤ j ≤ r) has been studied by the first author in [12, 13]; it can be
regarded as a generalization of both the Euler–Zagier multiple zeta function
and the Barnes multiple zeta function. On the other hand, the special case
u = 1, αj = j and wj = 1 (1 ≤ j ≤ r) has also been studied before: see
Arakawa–Kaneko [2] when ajs are periodic functions on Z, and Matsumoto–
Tanigawa [14] for more general ajs.

First we prove the following result by using the method introduced by
Matsumoto–Tanigawa [14] (see also [11–13]). Indeed, this can be regarded
as a generalization of Theorem 2 in [14].

Theorem 1.1. For s1, . . . , sr ∈ C and u ∈ [1, 1 + δ], Ψr(s1, . . . , sr;u)
is absolutely convergent for sj = σj + iτj ∈ C (1 ≤ j ≤ r) with each

σj > qj. Furthermore Ψr(s1, . . . , sr;u) can be continued analytically to the
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whole complex space Cr and is holomorphic on Cr, and satisfies

(1.8) lim
u→1+0

Ψr(s1, . . . , sr;u) = Ψr(s1, . . . , sr; 1)

for any (s1, . . . , sr) ∈ Cr.

Remark 1.2. The meromorphic continuation of Ψr(s1, . . . , sr;u) can
be proved even if ψk(s) has poles. When u > 1, the multiple series (1.7)
is absolutely convergent, hence holomorphic, for any (s1, . . . , sr) ∈ Cr.
When u = 1, if we assume that ψk(s) has a pole of order at most one
at s = qk and is holomorphic elsewhere (and satisfies ψk(s) = O(eθ0|τ |))
for 1 ≤ k ≤ r, then we can show the following result, which generalizes
Theorem 1 in [14]:

The function Ψr(s1, . . . , sr; 1) can be continued meromorphically to the

whole space Cr, and its possible singularities are located only on the subsets

of Cr defined by one of the following equations:

sj + · · · + sr = qj + δj+1qj+1 + · · · + δrqr − n

(1 ≤ j ≤ r, δk = 0 or 1 (2 ≤ k ≤ r), n ∈ N0).

Moreover , (i) if j = r ≥ 2 and qr ∈ N, then n ≤ qr −1, (ii) if 2 ≤ j ≤ r−1,
qj ∈ N and δj+1 = · · · = δr = 1, then n ≤ qr − 1, (iii) if j = r = 1 or if

j = 1 and δ2 = · · · = δr = 1, then n = 0.

The proof uses the method of proof of Theorem 1 in [14].

We further consider generalized multiple polylogarithms related to (1.5).
Let dr = (d1, . . . , dr) ∈ Cr with ℜdj > qj for each j. With the above
notation, and for u ∈ [1, 1 + δ], let

(1.9) Fr(t1, . . . , tr;dr; Pr;u)

=
∞∑

n1,...,nr=0

a1(n1) · · · ar(nr)u
−

∑r
l=1

nl
∏r

j=1 e
(αj+

∑j
µ=1

nµwµ)tj

∏r
j=1(αj +

∑j
µ=1 nµwµ)dj

.

This multiple series is convergent when ℜtj ≤ 0 (1 ≤ j ≤ r). If we
formally let ψk(s) = ζ(s), the Riemann zeta function, and dk ∈ N

(1 ≤ k ≤ r) in (1.9), then Fr(log x1, . . . , log xr;dr; Pr; 1) is the multi-
ple polylogarithm defined by Goncharov [6] (see also [4]). However, ζ(s)
does not satisfy Assumption II, so we will not consider the Goncharov
multiple polylogarithms in this paper. Instead, we prove the following re-
sult.

Theorem 1.3. For dr ∈ Cr with each ℜdj > qj (1 ≤ j ≤ r) and u ∈
[1, 1+δ], Fr(t1, . . . , tr;dr; Pr;u) is holomorphic for all (t1, . . . , tr) ∈ D(ηr)

r,
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and satisfies, for (t1, . . . , tr) ∈ D(ηr)
r,

(1.10) Fr(t1, . . . , tr;dr; Pr;u)

=
∞∑

N1,...,Nr=0

Ψr(d1 −N1, . . . , dr −Nr;u)
tN1

1 · · · tNr
r

N1! · · ·Nr!
.

Furthermore, for any ξ ∈ R with 0 < ξ < ηr, (1.10) is uniformly convergent

with respect to (t1, . . . , tr, u)∈D(ξ)r×[1, 1+δ], where D(ξ) = {t∈C | |t| ≤ ξ}.

The special case ψj(s) =
∑

n≥1(−1)nn−s (1 ≤ j ≤ r), dr ∈ Nr and
t1 = · · · = tr−1 = 0 has been studied by the second author. Indeed,
Fr(0, . . . , 0, t;dr; Pr;u) played an important role in giving some evaluation
formulas for Euler–Zagier sums (see [15]). In order to prove Theorem 1.3
and Proposition 2.1 (see below), we make use of the technique introduced
in [15].

As applications, using Theorem 1.3, we prove certain estimates for
Ψr(d1−N1, . . . , dr−Nr; 1) (see Proposition 5.1 and Example 5.2). We further
give certain multiple analogues of both Berndt’s and Katsurada’s formulas
for Dirichlet L-functions proved in [3, 9] (see Example 5.3).

The authors wish to express their sincere gratitude to the referee for his
(or her) valuable comments and important suggestions.

2. Generalized polylogarithms. First we consider the case of r = 1.
Let ψ(s) be as defined in (1.1) and F1(t; d;ψ;u) as defined in (1.9). With
the notation of Section 1, we can prove the following.

Proposition 2.1. For d ∈ C with ℜd > q and u ∈ [1, 1+δ], F1(t; d;ψ;u)
is holomorphic for all t ∈ D(̺), and satisfies, for t ∈ D(̺),

(2.1) F1(t; d;ψ;u) =

∞∑

N=0

ψ(d−N ;u)
tN

N !
.

Furthermore, for any ξ ∈ R with 0 < ξ < ̺, (2.1) is uniformly convergent

with respect to (t, u) ∈ D(ξ) × [1, 1 + δ].

Proof. By Assumption III, we can let

(2.2) G1(t;ψ;u) =

∞∑

n=0

Bn(ψ;u)
tn

n!

for |t| < ̺. We use the method of contour integrals (see, for example,
[16, proof of Theorem 4.2]). We consider the path Υ which consists of the
positive real axis [ε,∞] (top side), a circle Cε around 0 of radius ε, and
the positive real axis [ε,∞] (bottom side), where 0 < ε < ̺. Note that we
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interpret ts to mean exp(s log t), where the imaginary part of log t varies
from 0 (on the top side of the real axis) to 2π (on the bottom side). Let

(2.3) H1(s;ψ;u) =
\
Υ

G1(−t;ψ;u)ts−1 dt

= (e2πis − 1)

∞\
ε

G1(−t;ψ;u)ts−1 dt+
\

Cε

G1(−t;ψ;u)ts−1 dt,

which, in view of (1.3), is holomorphic for all s ∈ C if 0 < ε < ̺. Putting
s = −n for n ∈ N0 and ε = ξ with 0 < ξ < ̺ in (2.3) and using (2.2), we
have

H1(−n;ψ;u) =
\

Cξ

G1(−t;ψ;u)t−n−1 dt =
(2πi)Bn(ψ;u)(−1)n

n!
.

From Assumption III, G1(t;ψ;u) is continuous for all (t, u)∈D(̺)×[1, 1+δ].
Hence the value Mξ =max{|G1(−t;ψ;u)| | (t, u)∈{t∈C | |t| = ξ}× [1, 1+δ]}
exists. By the above equation, we have

(2.4)
|Bn(ψ;u)|

n!
≤

1

2π

\
Cξ

|G1(−t;ψ;u)| |t|−n−1 |dt| ≤
Mξ

ξn

for any n ∈ N0 and u ∈ [1, 1 + δ], where ξ is an arbitrary real number with
0 < ξ < ̺.

On the other hand, let s ∈ C with ℜs > max(1, q). Then the second
term on the right-hand side of (2.3) tends to 0 as ε→ 0. Hence

H1(s;ψ;u) = (e2πis − 1)

∞\
0

G1(−t;ψ;u)ts−1 dt(2.5)

= (e2πis − 1)

∞∑

n=0

a(n)u−n
∞\
0

ts−1e−(β+nw)t dt

= (e2πis − 1)Γ (s)ψ(s;u),

where the interchange of summation and integration is valid because ℜs > q.
Hence

(2.6) ψ(s;u) =
1

(e2πis − 1)Γ (s)
H1(s;ψ;u) =

Γ (1 − s)

2πieπis
H1(s;ψ;u),

because

Γ (s)Γ (1 − s) =
π

sinπs
=

2πi

eπis − e−πis
.

The relation (2.6) is valid for all s ∈ C by analytic continuation.
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Next, for d ∈ C with ℜd > q and N ∈ N0, we put s = d − N in (2.3).
Then

H1(d−N ;ψ;u) = (e2πid − 1)

∞\
ε

G1(−t;ψ;u)td−N−1 dt(2.7)

+
\

Cε

G1(−t;ψ;u)td−N−1 dt =: I1 + I2.

Note that if N ≥ ℜd+ 1 then

(2.8)
∣∣∣
∞\
ε

e−(β+nw)ttd−N−1 dt
∣∣∣ ≤

e−(β+nw)εεℜd−N−1

β + nw
.

Hence

|I1| ≤ εℜd−N−1|e2πid − 1|

∞∑

n=0

|a(n)|e−(β+nw)ε

β + nw
.

On the other hand, by using the fact that

(2.9)
\

Cε

tp dt =





2πi (p = −1),

εp+1 e
2πip − 1

p+ 1
(p 6= −1),

for p ∈ C and by (2.2), we have

(2.10) I2 =





(2πi)BN−d(ψ;u)
(−1)N−d

(N − d)!
(N − d ∈ N0),

εd−N (e2πid − 1)
∞∑

n=0

Bn(ψ;u)(−1)nεn

(n+ d−N)n!
(otherwise).

Note that the above infinite series is convergent because of the assumption
ε < ̺ and (2.4). Hence

(2.11)

|I2| ≤





2π
|BN−d(ψ;u)|

(N − d)!
(N − d ∈ N0),

εℜd−N |e2πid − 1|

∣∣∣∣
∞∑

n=0

Bn(ψ;u)
(−1)nεn

(n+ d−N)n!

∣∣∣∣ (otherwise).

From (2.4) with ξ = ε, the first case of (2.11) yields

|I2| ≤ 2πMεε
d−N .

In the second case of (2.11), we let γd = min{|d−m| | m ∈ Z}. Using (2.4)
with ξ such that 0 < ε < ξ < ̺, we see that the second case of (2.11) yields

|I2| ≤ εℜd−N |e2πid − 1|
Mξ

γd(1 − ε/ξ)
.
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Hence it follows from (2.6)–(2.11) that there exists a constant M > 0 which
depends on ε, d and ψ but is independent of N and u such that

(2.12)

∣∣∣∣
ψ(d−N ;u)

Γ (1 +N − d)

∣∣∣∣ =
1

2π|eπid|
|H1(d−N ;ψ;u)| ≤Mε−N

for N ∈ N0 with N ≥ ℜd + 1. Note that we can take ε arbitrary such that
0 < ε < ̺. Since |s| ≤ |ℜs| + |ℑs| for s ∈ C, we have

|Γ (1 +N − d)| = |(N − d)(N − d− 1) · · · ([ℜd] + 1 − d)Γ ([ℜd] + 1 − d)|

≤ (N − [ℜd] + [|ℑd|] + 1)! |Γ ([ℜd] + 1 − d)|

for N ∈ N0 with N ≥ ℜd+ 1. Hence

(2.13)
|ψ(d−N ;u)|

N !

≤
(N − [ℜd] + [|ℑd|] + 1)! |Γ ([ℜd] + 1 − d)|

N !

∣∣∣∣
ψ(d−N ;u)

Γ (1 +N − d)

∣∣∣∣

≤
(N − [ℜd] + [|ℑd|] + 1)! |Γ ([ℜd] + 1 − d)|

N !
Mε−N .

Suppose u ∈ (1, 1 + δ] and t = iθ with θ ∈ (−̺, ̺) ⊂ R. Then there exists
an ε ∈ R with 0 < ε < ̺ and |θ| < ε. From the definition (1.9) we have

F1(iθ; d;ψ;u) =

∞∑

n=0

a(n)u−n

(β + nw)d

∞∑

N=0

(β + nw)N (iθ)N

N !
(2.14)

=
∞∑

N=0

ψ(d−N ;u)
(iθ)N

N !
.

From (2.13) we can see that each side of (2.14) is uniformly convergent with
respect to u ∈ [1, 1 + δ] because |θ| < ε. Hence we can let u → 1 on each
side of (2.14), so (2.14) holds for u = 1 when θ ∈ (−̺, ̺). We can define

F1(t; d;ψ;u) =

∞∑

N=0

ψ(d−N ;u)
tN

N !

for any u ∈ [1, 1 + δ] and t ∈ C with |t| < ̺. From (2.13), this is uniformly
convergent with respect to (t, u) ∈ D(ξ) × [1, 1 + δ] when 0 < ξ < ̺. Thus
we have the assertion.

Example 2.2. Let f : Z/mZ → C be such that
∑m

a=1 f(a) = 0. It can
be regarded as a periodic function defined on Z. For example, any non-trivial
primitive Dirichlet character and any non-trivial additive character defined
mod m satisfy this condition. We define

(2.15) L(s; f) =

∞∑

n=1

f(n)

ns
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and

G1(t;L;u) =

∞∑

n=1

f(n)u−nent =

m∑

a=1

f(a)u−aeat

1 − u−memt

for u ∈ [1, 1 + δ]. Then L(s; f) and G1(t;L;u) satisfy Assumptions I–III.
Note that ̺ = 2π/m and q = 1 in this case. For d ∈ C with ℜd > 1, let

F1(t; d;L) =
∞∑

n=1

f(n)ent

nd
.

It follows from Proposition 2.1 that F1(t; d;L) is holomorphic on D(2π/m)
and satisfies

(2.16) F1(t; d;L) =
∞∑

N=0

L(d−N ; f)
tN

N !
.

In particular, when f is a primitive Dirichlet character χ of conductor m, we
know that L(−2j− 1, χ) = 0 if χ(−1) = −1 and L(−2j, χ) = 0 if χ(−1) = 1
for j ∈ N0 (see, for example, [16, Chap. 4]). Hence, applying (2.16) with
d = 2k and d = 2k + 1 for k ∈ N and using cosx = (eix + e−ix)/2, we
obtain

∞∑

n=1

χ(n) cos(nθ)

n2k
=

k−1∑

j=0

L(2k − 2j, χ)
(iθ)2j

(2j)!
(χ(−1) = 1),

∞∑

n=1

χ(n) cos(nθ)

n2k+1
=

k∑

j=0

L(2k + 1 − 2j, χ)
(iθ)2j

(2j)!
(χ(−1) = −1)

for θ ∈ (−2π/m, 2π/m). These are typical examples of Berndt’s result (see
[3, Theorem 4.2]; see also [5, (1.2.12)]). Similarly, it follows from (2.16)
that

∞∑

n=1

χ(n) cos(nθ)

n2k+1
=

∞∑

j=0

L(2k + 1 − 2j, χ)
(iθ)2j

(2j)!
(χ(−1) = 1),

∞∑

n=1

χ(n) cos(nθ)

n2k
=

∞∑

j=0

L(2k − 2j, χ)
(iθ)2j

(2j)!
(χ(−1) = −1)

for k ∈ N and θ ∈ (−2π/m, 2π/m). Using the functional equations for
L(s, χ), we can confirm that these equations coincide with Katsurada’s for-
mulas for L(s, χ) (see [9, Theorem 3]).

3. Proof of Theorem 1.1. Using the method introduced in [14, Sec-
tion 2] (see also [11–13]), we give the proof of Theorem 1.1 by induction
on r. The case of r = 1 can be directly obtained from Assumptions I and II.



Multiple Dirichlet series 147

Hence we assume that Theorem 1.1 holds for r−1, and aim to prove the case
of r (≥ 2).

As in Section 1, let

Ψr(s1, . . . , sr;u) = Ψr(s1, . . . , sr;ψ1, . . . , ψr;u)

be the function defined by (1.7). Since each ψk(s) defined by (1.5) converges
absolutely for ℜs > qk (1 ≤ k ≤ r), we can easily check that Ψr(s1, . . . , sr;u)
converges absolutely if σk = ℜsk > qk (1 ≤ k ≤ r).

First we assume each σk > qk (1 ≤ k ≤ r). Recall the Mellin–Barnes
formula

(3.1) Γ (s)(1 + λ)−s =
1

2πi

\
(c)

Γ (s+ z)Γ (−z)λz dz,

where ℜs > 0, |arg λ| < π, λ 6= 0, −ℜs < c < 0, and the path of integration
is the vertical line ℜz = c. By the above assumption, we may assume −σr <
c < −qr. Put s = sr and

λ =
αr − αr−1 + nrwr

αr−1 + n1w1 + · · · + nr−1wr−1

in (3.1). Then multiply both sides by

a1(n1) · · · ar(nr)u
−

∑r
ν=1

nν

∏r−2
j=1(αj +

∑j
ν=1 nνwν)sj (αr−1 +

∑r−1
ν=1 nνwν)sr−1+sr

and sum up with respect to n1, . . . , nr to obtain

(3.2) Ψr(s1, . . . , sr;u) =
1

2πi

\
(c)

Γ (sr + z)Γ (−z)

Γ (sr)

× Ψr−1(s1, . . . , sr−2, sr−1 +sr +z;u)ψr(−z;u) dz.

Let M ∈ N and ε ∈ R be a small positive number. We shall shift the
path to ℜz = M − ε. We see that

Ψr−1(s1, . . . , sr−2, sr−1 + sr + z;u) = O(1)

in the region c ≤ ℜz ≤M − ε because σk > qk (1 ≤ k ≤ r−2), −σr < c and

σr−1 + σr + ℜz ≥ σr−1 + σr + c > σr−1.

From the well-known Stirling formula for Γ (s), we have

(3.3) |Γ (s)| = e−π|τ |/2(|τ | + 1)σ−1/2

(
1 +O

(
1

|τ | + 1

))

as |τ | → ∞, where s = σ + iτ . Hence, by Assumption II, the integrand
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on the right-hand side of (3.2) tends to zero as |ℑz| → ∞, so this shift is
possible. By the inductive assumption, Ψr−1 is holomorphic on Cr−1 and
ψr holomorphic on C. Therefore we only have to count the residues of the
poles of Γ (−z) at z = 0, 1, . . . ,M − 1. Since the residue of the pole of
Γ (sr + z)Γ (−z)/Γ (sr) at z = k equals −

(
−sr

k

)
, we obtain

(3.4) Ψr(s1, . . . , sr;u)

=
M−1∑

k=0

(
−sr

k

)
Ψr−1(s1, . . . , sr−2, sr−1 + sr + k;u)ψr(−k;u)

+
1

2πi

\
(M−ε)

Γ (sr + z)Γ (−z)

Γ (sr)

× Ψr−1(s1, . . . , sr−2, sr−1 + sr + z;u)ψr(−z;u) dz =: S1 + S2.

Now S1 is holomorphic on the whole Cr by the inductive assumption. On
the other hand, Γ (sr + z) has no pole on the path (M − ε), when ℜ(−sr) =
−σr < M − ε, so that σr > −M + ε. Using (3.3) and Assumption II,
we see that S2 is absolutely convergent, so it is holomorphic in the re-
gion

{(s1, . . . , sr) ∈ Cr | σ1 > q1, . . . , σr−1 > qr−1, σr > −M + ε},

where M is arbitrary.

Next we fix sr ∈ C with σr > −M + ε, and consider the continuation
with respect to sk for 1 ≤ k ≤ r − 1. Since Ψr−1 is holomorphic on Cr−1,
the integrand in S2 is holomorphic for all (s1, . . . , sr−1) ∈ Cr−1. So, if we
prove that S2 converges absolutely for any (s1, . . . , sr−1) ∈ Cr−1 and sr ∈ C

with σr > −M + ε, then Ψr(s1, . . . , sr;u) is holomorphic on the whole Cr

because M is arbitrary. In order to prove this result, we need the following
lemma.

Lemma 3.1. For r ∈ N with r ≥ 2, there exists a polynomial Pr(X) ∈
R[X] such that

(3.5) Ψr(s1, . . . , sr;u) = O(Pr(|τr|)e
θ0|τr |) (|τr| → ∞)

for any (s1, . . . , sr−1) ∈ Cr−1 and u ∈ [1, 1 + d], where the constant implied

by the O-symbol depends on τ1, . . . , τr−1.

Proof. We denote (3.5) by

Ψr(s1, . . . , sr;u) ≪ Pr(|τr|)e
θ0|τr|.

We prove this lemma by induction on r (≥ 2). First we consider the case of
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r = 2. It follows from Assumption II and (3.4) that

(3.6) |Ψ2(s1, s2;u)|

≤
M−1∑

k=0

∣∣∣∣
(
−s2
k

)∣∣∣∣|Ψ1(s1 + s2 + k;u)ψ2(−k;u)|

+
1

2π

∣∣∣∣
\

(M−ε)

Γ (sr + z)Γ (−z)

Γ (sr)
Ψ1(s1 + s2 + z;u)ψ2(−z;u) dz

∣∣∣∣

≪
M−1∑

k=0

∣∣∣∣
(
−s2
k

)∣∣∣∣e
θ0|τ2| +

1

2π

∞\
−∞

∣∣∣∣
Γ (sr +z)Γ (−z)

Γ (sr)

∣∣∣∣e
θ0|τ2+y|eθ0|y| dy,

where z = x+ iy. For simplicity, we denote the last term on the right-hand
side of (3.6) by I. Using (3.3), we have

(3.7) I ≪ eπ|τ2|/2(|τ2| + 1)−σ2+1/2

×

∞\
−∞

e(θ0−π/2)|τ2+y|e(θ0−π/2)|y|(|τ2 + y| + 1)σ2+x−1/2(|y| + 1)−x−1/2 dy.

Now Lemma 4 in [12] applied with A = B = θ0 −π/2, p = σ2 +x− 1/2 and
q = −x− 1/2 yields

I ≪ eπ|τ2|/2(|τ2| + 1)−σ2+1/2(3.8)

× [{1 + (|τ2| + 1)σ2+x−1/2}(|τ2| + 1)−x+1/2e(θ0−π/2)|τ2|

+ {1 + (|τ2| + 1)σ2+x−1/2}e(θ0−π/2)|τ2|].

Combining (3.6) and (3.8), we see that there exists P2(X) ∈ R[X] such that

Ψ2(s1, s2;u) ≪ P2(|τ2|)e
θ0|τ2| (|τ2| → ∞).

Thus we have the assertion for r = 2.
Assume that the assertion holds for r − 1. Substituting the assumed

bounds into (3.4) and using Assumption II, we have

Ψr(s1, . . . , sr;u) ≪
M−1∑

k=0

∣∣∣∣
(
−σr + iτr

k

)∣∣∣∣Pr−1(|τr−1 + τr|)e
θ0|τr−1+τr|

+
1

2πi

∞\
−∞

∣∣∣∣
Γ (sr + z)Γ (−z)

Γ (sr)

∣∣∣∣

× Pr−1(|τr−1 + τr + y|)eθ0|τr−1+τr+y|eθ0|y| dy.

By the same method as above, we can see that there exists Pr(X) ∈ R[X]
such that

Ψr(s1, . . . , sr;u) ≪ Pr(|τr|)e
θ0|τr|.

This finishes the proof of Lemma 3.1.
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Now we can complete the proof of Theorem 1.1 as follows. If we fix any
(s1, . . . , sr) ∈ Cr, then it follows from Lemma 3.1 that

Ψr−1(s1, . . . , sr−2, sr−1 + sr + z;u) ≪ Pr−1(|τr−1 + τr + y|)eθ0|τr−1+τr+y|

as |y| → ∞, where z = x+ iy. Since sr−1 is fixed, this can be written as

(3.9) Ψr−1(s1, . . . , sr−2, sr−1+sr+z;u)≪P̃r−1(|τr+y|)e
θ0|τr+y| (|y|→∞),

where P̃r−1(X) ∈ R[X]. Recall that S2 is the second term on the right-hand
side of (3.4). Then, by using (3.3), and by (3.8) and Assumption II, we
have

S2 ≪

∞\
−∞

˜̃
Pr−1(y)e

−π|y|/2−π|τr+y|/2eθ0|τr+y|eθ0|y| dy

=

∞\
−∞

˜̃
Pr−1(y)e

(θ0−π/2)(|τr+y|+|y|) dy

for some
˜̃
Pr−1(X) ∈ R[X]. Since 0 ≤ θ0 < π/2, S2 converges absolutely for

any (s1, . . . , sr) ∈ Cr. By (3.4), Ψr(s1, . . . , sr;u) is holomorphic on Cr.

Lastly, we prove (1.8). More precisely, we prove that (1.8) holds uniformly
with respect to sj (1 ≤ j ≤ r) in any fixed strip σ1j ≤ ℜsj ≤ σ2j as u→ 1+0.
The case of r = 1 follows from Assumption II. Hence we assume that the
case of r − 1 holds and prove the case of r (≥ 2). Let u → 1 + 0 in (3.4).
From the inductive assumption, the integrand in S2 is uniformly convergent
with respect to z in any fixed strip σ1 ≤ ℜz (= M − ε) ≤ σ2 as u→ 1 + 0.
Exchanging limu→1+0 and the integral, and using the inductive assumption,
we see that the right-hand side of (3.4) tends to

(3.10)

M−1∑

k=0

(
−sr

k

)
Ψr−1(s1, . . . , sr−2, sr−1 + sr + k; 1)ψr(−k; 1)

+
1

2πi

\
(M−ε)

Γ (sr + z)Γ (−z)

Γ (sr)

× Ψr−1(s1, . . . , sr−2, sr−1 + sr + z; 1)ψr(−z; 1) dz

as u → 1 + 0. It is clear that this convergence is uniform with respect to
sj in any fixed strip σ1j ≤ ℜsj ≤ σ2j (1 ≤ j ≤ r). From (3.4), we see that
(3.10) coincides with Ψr(s1, . . . , sr; 1). Hence the assertion in the case of r
holds. This completes the proof of Theorem 1.1.

Remark 3.2. For any N ∈ N0, let M = N + 1 and sr → −N
in (3.4). Then S2 tends to 0 because Γ (sr) has a pole at sr = −N . Hence
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we obtain

(3.11) Ψr(s1, . . . , sr−1,−N ;u)

=

N∑

ν=0

(
N

ν

)
Ψr−1(s1, . . . , sr−2, sr−1 + ν −N ;u)ψr(−ν;u)

for u ∈ [1, 1+δ] and (s1, . . . , sr−1) ∈ Cr−1. In particular, let ψj(s) = L(s; fj)
(1 ≤ j ≤ r) and u = 1, where each fj is defined mod mj and satisfies
a certain condition (see Example 2.2). Then we can check that Assump-
tions I–III hold. In this case, Ψr(s1, . . . , sr; 1) coincides with the multiple
L-function

Lr(s1, . . . , sr; f1, . . . , fr) =

∞∑

n1,...,nr=1

f1(n1) · · · fr(nr)

ns1

1 (n1 + n2)s2 · · · (n1 + · · · + nr)sr
,

which has been studied in [2]. Hence (3.11) gives

(3.12) Lr(s1, . . . , sr−1,−N ; f1, . . . , fr)

=

N∑

ν=0

(
N

ν

)
Lr−1(s1, . . . , sr−2, sr−1 + ν −N ; f1, . . . , fr−1)L1(−ν; fr)

for (s1, . . . , sr−1) ∈ Cr−1. This result was proved by Kamano (see [8]) by
using the method introduced in [1]. This case can also be derived directly
from the relation (2.3) in [14].

4. Proof of Theorem 1.3. In this section, we prove Theorem 1.3 by
induction on r.

The case of r = 1 is just what we proved in Proposition 2.1. Hence we
assume that the assertion holds for r − 1 and prove the case of r (≥ 2).

Let Pr = {ψ1, . . . , ψr} satisfy Assumptions I–III. Then we can take
{qk}1≤k≤r and {̺k}1≤k≤r, and define ηr−1 and ηr by (1.6). Let

(4.1) Gr(t1, . . . , tr;dr−1; Pr;u)

= Fr−1(t1, . . . , tr−2, tr−1 + tr;dr−1; Pr−1;u)G1(tr;ψr;u)

=
∞∑

n1,...,nr=0

a1(n1) · · · ar(nr)u
−

∑r
l=1

nl
∏r

j=1 e
(αj+

∑j
µ=1

nµwµ)tj

∏r−1
j=1(αj +

∑j
µ=1 nµwµ)dj

,

which is convergent when ℜtj < 0 (1 ≤ j ≤ r). By the inductive assump-
tion, Fr−1(t1, . . . , tr−1 + tr;dr−1; Pr−1;u) is holomorphic for (t1, . . . , tr) ∈
D(ηr−1)

r−2 × D(ηr−1/2)2, and G1(tr;ψr;u) is holomorphic for tr ∈ D(̺r).
Since ηr ≤ min(ηr−1/2, ̺r), we see that Gr(t1, . . . , tr;dr−1; Pr;u) is holo-
morphic for (t1, . . . , tr) ∈ D(ηr)

r. Therefore, if we fix tr ∈ D(ηr) then
the function of r − 1 real variables Gr(iθ1, . . . , iθr−1, tr;dr−1; Pr;u) is real-
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analytic for (θ1, . . . , θr−1) ∈ (−ηr, ηr)
r−1 ⊂ Rr−1 (see, for example, [10,

Corollary 2.3.7]). Similarly, if we fix (θ1, . . . , θr−1) ∈ (−ηr, ηr)
r−1, then

Gr({iθk}, tr;dr−1; Pr;u) is holomorphic for tr ∈ D(ηr). Hence we define
{Bn({iθk};dr−1; Pr;u)}n≥0 by

(4.2) Gr(iθ1, . . . , iθr−1, tr;dr−1; Pr;u) =

∞∑

n=0

Bn({iθk};dr−1; Pr;u)
tnr
n!
.

As in the proof of Proposition 2.1, we let

(4.3) Hr(s; iθ1, . . . , iθr−1;dr−1; Pr;u)

=
\
Υ

Gr({iθk},−t;dr−1; Pr;u)t
s−1 dt

= (e2πis − 1)

∞\
ε

Gr({iθk},−t;dr−1; Pr;u)t
s−1 dt

+
\

Cε

Gr({iθk},−t;dr−1; Pr;u)t
s−1 dt,

which is holomorphic for all s ∈ C if we fix (θ1, . . . , θr−1) ∈ (−ηr, ηr)
r−1 and

0 < ε < ηr.

Putting s = −n for n ∈ N0 and ε = ξ with 0 < ξ < ηr in (4.3), and using
(4.2), we have

Hr(−n; iθ1, . . . , iθr−1;dr−1; Pr;u) =
\

Cξ

Gr({iθk},−t;dr−1; Pr;u)t
−n−1 dt

=
(2πi)Bn({iθk};dr−1; Pr;u)(−1)n

n!
.

By the inductive assumption and (4.1), we see that the Taylor expansion
of Gr({iθk},−t;dr−1; Pr;u) around t = 0 is uniformly convergent with re-
spect to (θ1, . . . , θr−1, t, u) ∈ [−ξ, ξ]r−1 × D(ξ) × [1, 1 + δ] when ξ ∈ R

with 0 < ξ < ηr. In particular, Gr({iθk},−t;dr−1; Pr;u) is continuous for
(θ1, . . . , θr−1, t, u) ∈ [−ξ, ξ]r−1 × D(ξ) × [1, 1 + δ]. Hence the value

M̃ξ = max{|Gr({iθk},−t;dr−1; Pr;u)| |

(t, u) ∈ [−ξ, ξ]r−1 × {|t| = ξ} × [1, 1 + δ]}

exists when ξ ∈ R with 0 < ξ < ηr. By the above equation, we have

(4.4)
|Bn({iθk};dr−1; Pr;u)|

n!
≤

M̃ξ

ξn

for any n ∈ N0, (θ1, . . . , θr−1) ∈ [−ξ, ξ]r−1 and u ∈ [1, 1 + δ].
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Define

(4.5) Zr(dr−1, s; iθ1, . . . , iθr−1; Pr;u) = Fr(iθ1, . . . , iθr−1, 0;dr−1, s; Pr;u)

=
∞∑

n1,...,nr=0

a1(n1) · · · ar(nr)u
−

∑r
ν=1

nν
∏r−1

j=1 e
(αj+

∑j
µ=1

nµwµ)iθj

∏r−1
j=1(αj +

∑j
ν=1 nνwν)dj (αr +

∑r
ν=1 nνwν)s

for (θ1, . . . , θr−1) ∈ (−ηr, ηr)
r−1, s ∈ C with ℜs > qr and u ∈ [1, 1 + δ].

Assuming ℜs > max(1, qr) and using the same method as in the proof of
Proposition 2.1, we have

Zr(dr−1, s; {iθk}; Pr;u) =
1

(e2πis − 1)Γ (s)
Hr(s; {iθk};dr−1; Pr;u)(4.6)

=
Γ (1 − s)

2πi eπis
Hr(s; {iθk};dr−1; Pr;u).

Note that Hr(s; {iθk};dr−1; Pr;u) is holomorphic for all s ∈ C if we fix
{θk} ∈ (−ηr, ηr)

r−1 (as mentioned above), and the poles of Γ (1−s) coincide
with N = {1, 2, . . .}. Since Zr(dr−1, s; {iθk}; Pr;u) is absolutely convergent
for s ∈ C with ℜs > qr, it follows from (4.6) that Zr(dr−1, s; {iθk}; Pr;u)
is defined and holomorphic for all s ∈ C \ {1, 2, . . . , [qr]} if we fix {θk} ∈
(−ηr, ηr)

r−1.

Furthermore, we can prove that Zr(dr−1, s; {iθk}; Pr;u) has no pole as
follows. Fix s ∈ C. If 1 < u ≤ 1 + δ then from (1.7) and (4.5), and by

substituting the Taylor expansion for each exp((αj +
∑j

ν=1 nνwν)iθj) and
changing the order of summations, we have

(4.7) Zr(dr−1, s; {iθk}; Pr;u)

=
∞∑

N1,...,Nr−1=0

Ψr(d1−N1, . . . , dr−1−Nr−1, s;u)
(iθ1)

N1 · · · (iθr−1)
Nr−1

N1! · · ·Nr−1!
.

We see that (4.3) is uniformly convergent with respect to (θ1, . . . , θr−1, u) ∈
[−ξ, ξ]r−1× [1, 1+δ], for any ξ ∈ R with 0 < ξ < ηr. Hence, for u ∈ [1, 1+δ],
Hr(s; {iθk};dr−1; Pr;u) is real-analytic for (θ1, . . . , θr−1) ∈ (−ηr, ηr)

r−1. Put
θ1 = · · · = θr−1 = θ. Then for u ∈ [1, 1 + δ], Hr(s; {iθ};dr−1; Pr;u) is real-
analytic for θ ∈ (−ηr, ηr), and its Taylor expansion around θ = 0 is uniformly
convergent with respect to (θ, u) ∈ [−ξ, ξ] × [1, 1 + δ]. It follows from (4.6)
that Zr(dr−1, s; {iθ}; Pr;u) also has these properties. Hence, for any u ∈
[1, 1 + δ], we define the one-variable complex function Zr(dr−1, s; {t}; Pr;u)
which is holomorphic for t ∈ D(ηr) and its Taylor expansion around t = 0 is
uniformly convergent with respect to (t, u) ∈ D(ξ)× [1, 1+ δ]. In particular,
Zr(dr−1, s; {t}; Pr;u) is continuous for (t, u) ∈ D(ξ)×[1, 1+δ]. Putting ξ = ε
with 0 < ε < ηr shows the existence of

M
′
ε = max{|Zr(dr−1, s; {t}; Pr;u)| | (t, u) ∈ {t ∈ C | |t| = ε} × [1, 1 + δ]}.
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Using the same method as in the proof of (4.4) and by (4.7) and the conti-
nuity of Ψr(d1−N1, . . . , dr−1−Nr−1, s;u) in u ∈ [1, 1+δ] (see Theorem 1.1),
we see that

(4.8)

∣∣∣∣
∑

N1+···+Nr−1=n

Ψr(d1 −N1, . . . , dr−1 −Nr−1, s;u)

N1! · · ·Nr−1!

∣∣∣∣ ≤
M′

ε

εn

for u ∈ [1, 1 + δ] and n ∈ N0, where ε is an arbitrary real number with
0 < ε < ηr. This means that the right-hand side of (4.7) is uniformly con-
vergent with respect to (θ1, . . . , θr−1, u) ∈ [−ξ, ξ]r−1 × [1, 1 + δ] for any
ξ ∈ R with 0 < ξ < ηr. Hence we can let u → 1 in (4.7), so (4.7) holds for
u ∈ [1, 1+δ]. Since s is an arbitrary complex number, Zr(dr−1, s; {iθk}; Pr;u)
has no pole, so it is holomorphic for all s ∈ C when u ∈ [1, 1 + δ],
and real-analytic for (θ1, . . . , θr−1) ∈ (−ηr, ηr)

r−1 when s ∈ C and u ∈
[1, 1 + δ].

For dr ∈ C with ℜdr > qr and N ∈ N0 with N ≥ ℜdr + 1, we put
s = dr −N in (4.3). Then we have

(4.9) Hr(dr −N ; {iθk};dr−1; Pr;u)

= (e2πidr − 1)

∞\
ε

Gr({iθk},−t;dr−1; Pr;u)t
dr−N−1 dt

+
\

Cε

Gr({iθk},−t;dr−1; Pr;u)t
dr−N−1 dt =: J1 + J2.

Since N ≥ ℜdr + 1, we have

∣∣∣
∞\
ε

e−(αr+
∑r

µ=1
nµwµ)ttdr−N−1 dt

∣∣∣ ≤
e−(αr+

∑r
µ=1

nµwµ)ε|εdr−N−1|

αr +
∑r

µ=1 nµwµ
.

Hence

(4.10) |J1| ≤ εℜdr−N−1|e2πidr − 1|

×
∞∑

n1,...,nr=0

|a1(n1) · · · ar(nr)|e
−(αr+

∑r
µ=1

nµwµ)ε

∏r−1
j=1(αj +

∑j
µ=1 nµwµ)ℜdj (αr +

∑r
µ=1 nµwµ)

.

On the other hand, by using (2.9), we have

J2 =





(2πi)BN−dr
({iθk};dr−1; Pr;u)

(−1)N−dr

(N − dr)!
(N−dr ∈ N0),

εdr−N (e2πidr−1)
∞∑

n=0

Bn({iθk};dr−1; Pr;u)(−1)nεn

(n+ dr −N)n!
(otherwise).

The last series is uniformly convergent with respect to (θ1, . . . , θr−1, u) ∈
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[−ε, ε]r−1 × [1, 1 + δ] because of the assumption ε < ηr and (4.4). Hence
either

(4.11) |J2| ≤ 2π
|BN−dr

({iθk};dr−1; Pr;u)|

(N − dr)!
(N − dr ∈ N0)

or

(4.12) |J2| ≤ εℜdr−N |e2πidr−1|

∣∣∣∣
∞∑

n=0

Bn({iθk};dr−1; Pr;u)
(−1)nεn

(n+ dr −N)n!

∣∣∣∣

(otherwise).

Just as (2.12), it follows from (4.4), (4.6), (4.8)–(4.12) that there exists a
constant M > 0 independent of N and {θk} such that

(4.13)

∣∣∣∣
Zr(dr−1, dr −N ; {iθk}; Pr;u)

Γ (1 +N − dr)

∣∣∣∣

≤
1

2π|eπidr |
|Hr(dr −N ; {iθk};dr−1; Pr;u)| ≤Mε−N

for N ∈ N with N ≥ ℜdr + 1. Note that we can take ε arbitrary such that
0 < ε < ηr. As in the case of (2.13), we have

(4.14)
|Zr(dr−1, dr −N ; {iθk}; Pr;u)|

N !

≤
(N − [ℜdr] + [|ℑdr|] + 1)! |Γ ([ℜdr] + 1 − dr)|

N !
Mε−N

for N ∈ N with N ≥ ℜdr + 1 and u ∈ [1, 1 + δ].

Suppose 1 < u ≤ 1 + δ and θr ∈ (−ηr, ηr). Then by (1.9), and using the
Taylor expansion for exp((αr +

∑r
ν=1 nνwν)iθr), we have

(4.15) Fr(iθ1, . . . , iθr−1, iθr;dr; Pr;u)

=
∞∑

Nr=0

Zr(dr−1, dr −Nr; {iθk}; Pr;u)
(iθr)

Nr

Nr!
.

By (4.14), the right-hand side of (4.15) is uniformly convergent with respect
to (θr, u) ∈ [−ξ, ξ] × [1, 1 + δ] when (θ1, . . . , θr−1) ∈ (−ηr, ηr)

r−1 and 0 <
ξ < ηr. Hence (4.15) holds for u = 1. As mentioned above, (4.7) holds for
any s ∈ C, (θ1, . . . , θr−1) ∈ (−ηr, ηr)

r−1, and u ∈ [1, 1 + δ]. Consequently

(4.16) Zr(dr−1, dr −Nr; {iθk}; Pr;u)

=
∞∑

N1,...,Nr−1=0

Ψr(d1 −N1, . . . , dr −Nr;u)
(iθ1)

N1 · · · (iθr−1)
Nr−1

N1! · · ·Nr−1!
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for u ∈ [1, 1 + δ]. Hence (4.15) can also be written as

(4.17) Fr(iθ1, . . . , iθr;dr; Pr;u)

=

∞∑

N1,...,Nr=0

Ψr(d1 −N1, . . . , dr −Nr;u)
(iθ1)

N1 · · · (iθr)
Nr

N1! · · ·Nr!

for u ∈ [1, 1 + δ], and (4.17) is uniformly convergent with respect to
(θ1, . . . , θr, u) ∈ [−ξ, ξ]r× [1, 1+δ] for any ξ ∈ R with 0 < ξ < ηr. Therefore,
for u ∈ [1, 1 + δ], we can define

(4.18) Fr(t1, . . . , tr;dr; Pr;u)

=
∞∑

N1,...,Nr=0

Ψr(d1 −N1, . . . , dr −Nr;u)
tN1

1 · · · tNr
r

N1! · · ·Nr!
,

which is uniformly convergent with respect to (t1, . . . , tr, u) ∈ D(ξ)r ×
[1, 1 + δ] and holomorphic for (t1, . . . , tr) ∈ D(ηr)

r (see, for example,
[7, Section 2.2]). Thus we obtain the case of r. This completes the proof
of Theorem 1.3.

5. Some applications. First we prove the following estimates for
Ψr(d1 − N1, . . . , dr − Nr;u) by using the same method as in the proof of
Proposition 2.3.10 in [10].

Proposition 5.1. With the same notation as in Theorem 1.3,

(5.1) lim sup
N1+···+Nr→∞

{
|Ψr(d1 −N1, . . . , dr −Nr;u)|

N1! · · ·Nr!

}1/(N1+···+Nr)

≤
1

ηr
.

Proof. Assume otherwise. Then we take κ ∈ R with κ > 1/ηr such that
there exist infinitely many (N1, . . . , Nr) ∈ Nr

0 such that

|Ψr(d1 −N1, . . . , dr −Nr;u)|

N1! · · ·Nr!
> κN1+···+Nr .

This means that the right-hand side of (1.10) does not converge absolutely
at (1/κ, . . . , 1/κ) ∈ D(ηr)

r, which is a contradiction.

Example 5.2. Let ψj(s) = L(s; fj) (1 ≤ j ≤ r) as considered in Re-
mark 3.2. Then (5.1) gives

(5.2) lim sup
N1+···+Nr→∞

{
|Lr(d1−N1, . . . , dr−Nr; f1, . . . , fr)|

N1! · · ·Nr!

}1/(N1+···+Nr)

≤
1

ηr
,

where each ℜdj > 1 (1 ≤ j ≤ r) and ηr = min1≤k≤r{2π/2
r−1mk}.

Secondly we give certain multiple analogues of both Berndt’s and Kat-
surada’s formulas considered in Example 2.2.
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Example 5.3. As in the above example, let ψj(s) = L(s; fj) (1 ≤ j ≤ r)
and define a generalization of multiple polylogarithm by

(5.3) Fr(t1, . . . , tr;dr; f1, . . . , fr)

=

∞∑

n1,...,nr=1

f1(n1) · · · fr(nr)
∏r

j=1 e
(
∑j

µ=1
nµ)tj

nd1

1 (n1 + n2)d2 · · · (n1 + · · · + nr)dr

for d1, . . . , dr ∈ C with ℜdj > 1 (1 ≤ j ≤ r). Theorem 1.3 with ψj(s) =
L(s; fj) (1 ≤ j ≤ r) and u = 1 shows that Fr(t1, . . . , tr;dr; f1, . . . , fr) is
defined and holomorphic for (t1, . . . , tr) ∈ D(ηr)

r such that

(5.4) Fr(t1, . . . , tr;dr; f1, . . . , fr)

=

∞∑

N1,...,Nr=0

Lr(d1 −N1, . . . , dr −Nr; f1, . . . , fr)
tN1

1 · · · tNr
r

N1! · · ·Nr!
,

where ηr = min1≤k≤r{2π/2
r−1mk}. Putting t1 = · · · = tr−1 = 0 and tr =

±iθ for θ ∈ (−ηr, ηr) in (5.4), we have

(5.5)
∞∑

n1,...,nr=1

f1(n1) · · · fr(nr) cos((n1 + · · · + nr)θ)

nd1

1 (n1 + n2)d2 · · · (n1 + · · · + nr)dr

=
∞∑

N=0

Lr(d1, . . . , dr−1, dr − 2N ; f1, . . . , fr)
(iθ)2N

(2N)!
.

Remark 5.4. In the case fj(n) = (−1)n (1 ≤ j ≤ r), the function
Fr(iθ1, . . . , iθr; f1, . . . , fr) has recently been used to prove what is called the
parity result for Euler–Zagier sums (see [15]).
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