ACTA ARITHMETICA
124.2 (2006)

On the two-dimensional theta functions of the Borweins
by

AYSE ALACA, SABAN ALACA and KENNETH S. WILLIAMS (Ottawa)

1. Introduction. Let Ny, N, Z, R and C denote the sets of nonneg-
ative integers, positive integers, integers, real numbers and complex num-
bers respectively. Jonathan and Peter Borwein [4], in their work on a cubic
counterpart of Jacobi’s theta function identity and a cubic analogue of the
arithmetic-geometric mean iteration of Gauss and Legendre, introduced the
following three 2-dimensional theta functions:

(1L1) alg):= Y. W geC gl <1,

(m,n)€Z?

(12) b(q) — Z wm—nqm2+mn+n2’ g€ C, ’q| < 1’
(m,n)€Z?

(1.3)  clq) == Z q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)27 geC, lql <1,
(m,n)€Z2

where w = €2™/3. Note that in (1.3) principal values of the cube roots are
taken. We observe that

(1.4) a(0)=1, b0)=1, ¢(0)=0.

The Borweins [4] (and together with F. G. Garvan [5]) proved the beautiful
cubic identity

(1.5) a(a)® = b(a)® + c(a)*.
The Jacobi theta function ¢(q) is defined by

(1.6) pla):= > ¢, qeC g <1

n=—oo
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We have

(1.7) ©(0) = 1.

Set
_ 99 —¢*(d%)

(1.8) p(q) = 22
_ 9

(1.9) k(q) := (4]

Clearly

(1.10) p(0) =0, k(0)=1.

When there is no risk of confusion we write p for p(q) and k for k(q). Making
use of identities proved in [1], [2] and [5], we prove the following parametric
representations of a(¢™), b(¢™), c(¢™) (m € {1,2,3,4,6,8,12}), as well as
of a(—q), b(—q), ¢(—q), in terms of p and k. Since b(¢"™) can be determined
from a(¢™) and c(¢™) by means of (1.5) (with ¢ replaced by ¢™), we only
give the values of b(¢") when they can be expressed in terms of p and k in
a fairly simple manner.

THEOREM 1.
a(g) = (14 4p + p°)k,
b(g) =27 3((1 - p)*(1 +2p)(2 +p) "k,
c(g) = 273(p(1 + p)") k.
THEOREM 2.
a(q®) = (1 +p+p*)k,
b(q?) = 273((1 - p)(1 + 2p) (2 + p))*/°k,
c(q®) = 272/33(p(1 + p))*/*k.
THEOREM 3.
a(q®) =37 (1 +4p+p° + 22/3((1 = p)*(1 + 2p) (2 + p))/*)k,
c(q®) =37 (1 +4p+p* =27 3((1—p)* (1 +2p) 2+ ) /*)k.
THEOREM 4.
a(q") = (L+p—$p°)k,
b(qh) = 27*3((1 - p) (L + 2p) (2 + )k,
c(qh) = 27*23(p" (1 + p)) k.
THEOREM 5.
a(¢®) =37 (1+p+p* +2'3((1 = p)(1 +2p) (2 + p))*/*)k,
c(¢®) =37 (A +p+p* —273((1 = p)(1 + 2p)(2 + p)*/*)k.
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THEOREM 6.
a(¢®) =272 (1 +p+p* +3((1 — p) (L + p)(1 + 2p))/*)k.

Theorems 1-5 are proved in Sections 2—6 respectively. Theorem 6 is
proved in Section 12 by applying the “duplication principle” (Theorem 9)
to Theorem 4. We omit the complicated expressions for b(¢®) and c(¢®). We
could also determine a(q”) and ¢(¢”) by applying the “triplication principle”
(Theorem 10) to Theorem 3. However the resulting expressions for a(¢”) and
c(¢q?) are complicated so we do not give them here.

THEOREM 7.
a(q?) =37 (1+p— 50" +273((1 - p)(1+20) 2+ )" )k,
c(q"?) =37 (14p— 30" = 273((1 = p)(1 + 2p)(2+ p)")'/*) k.
Theorem 7 is proved in Section 7. Alternative proofs can be given by

applying the duplication principle to Theorem 5 and by applying the tripli-
cation principle to Theorem 4.

THEOREM 8.
a(—q) = (1 —2p — 2p°)k,
b(—q) = 27/3((1 = p)(1 + 2p)* (2 + )k,
o(—q) = —2'3(p(1 +p))" k.

Theorem 8 is proved in Section 8.

From Theorems 1, 2 and 4, we obtain the duplication principle for p
and k, namely

THEOREM 9 (Duplication principle).
oy 1+p—p = ((1=p)(1+p)(1 +2p))'/?
p(q°) = P :
(L+p—p*+ (1= p)(L+p)(1+2p))' )k
5 :

k(q?) =

Theorem 9 is proved in Section 9.
From Theorems 1, 2, 3 and 5, we obtain the triplication principle for p
and k, namely

THEOREM 10 (Triplication principle).
p(q®) = 371 (=4 — 3p+ 6p* + 4p°)
+223(1 = 2p — 2p*)(1 = p) (1 + 2p)(2 + p))/*
+213(1 4 2p) (1 — p)(1 + 2p) (2 + p))¥®),
k(q®) =372(3+ 23(1 + 2p)((1 — p)(1 + 2p) (2 + p))/*
+243((1 = p)(1 + 2p)(2+ p)) /).
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Theorem 10 is proved in Section 11.
From Theorems 1 and 9, we obtain the “change of sign principle” for p
and k, namely

THEOREM 11 (Change of sign principle).
-p 2
—q)=——, k(—q)=(1+p)k.
p=a) =17, ko =0+p)
Theorem 11 is proved in Section 10.
For n € Ny and I, m € N we set

(1.11)  N(l,m;n)
= card{(z,y, 2,t) € Z* | 1(2* + 2y + y*) + m(2® + 2zt + t*) = n}.
Clearly N(I,m;0) =1 and

(1.12) > O N(l,m;n)g" = al(g))alg™).
n=0

As an application of Theorems 1-7, we determine N (I, m;n) for certain small
values of [ and m. In preparation for doing this we prove in Sections 13-15
some results concerning the Eisenstein series

L(q)=1-24) a(n)q",
n=1

where
= e
THEOREM 12. Forn € N,
N(1,1;n) = 120(n) — 360(n/3).
The proof of Theorem 12 is given in Section 16. A result equivalent to

Theorem 12 was stated but not proved by Liouville [7]. An elementary proof
was given by Huard, Ou, Spearman and Williams [6].

THEOREM 13. Forn € N,
N(1,2;n) = 60(n) — 120(n/2) + 180(n/3) — 360(n/6).
The proof of Theorem 13 is given in Section 17. Liouville [8] gave a result
equivalent to Theorem 13 but did not prove it.
THEOREM 14. Forn € N,
120(n) — 360(n/3) if n =0 (mod3),
N(1,3;n) = < 60(n) if n =1 (mod 3),
0 if n =2 (mod 3).
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The proof of Theorem 14 is given in Section 18. Liouville [11] stated a
result equivalent to Theorem 14 but did not prove it.

THEOREM 15. Forn € N,

120(n/4) — 360(n/12) if n =0 (mod2),
6o(n) — 180(n/3) if n =1 (mod?2).

N(1,4;n):{

The proof of Theorem 15 is given in Section 19. Liouville did not consider
the evaluation of N(1,4;n) and the result appears to be new.

THEOREM 16. Forn € N,
—60(n)+120(n/2)+300(n/3) —600(n/6) if n =0 (mod3),
N(1,6;n) = < 60(n) —120(n/2) if n =1 (mod 3),
0 if n =2 (mod 3).

Theorem 16 is proved in Section 20. Liouville [9] stated but did not prove
a result equivalent to Theorem 16.

THEOREM 17. Forn € N,
—60(n)+120(n/2)+300(n/3) —600(n/6) if n =0 (mod3),
N(2,3;n) =10 if n =1 (mod 3),
60(n)—120(n/2) if n =2 (mod 3).

Theorem 17 is proved in Section 21. Liouville [10] stated but did not
prove a result equivalent to Theorem 17.

We close our introduction by noting that for small |g| we have

(1.13) a(q) =1+ 6qg + O(q2),
(1.14) b(g) =1—3q+ O(¢),
(1.15) c(q) = 3¢"*(1 + ¢+ O(¢%)),
(1.16) ¢(q) = 1+2¢+ O(q"),
(1.17) p(q) = 2q +2¢° + O(¢*),
(1.18) k(q) =1—2q+ O(q”)
Hence
c(¢®) 3231 +0(¢%) 1
c2(q) - 9(]2/3(1 + O(q)) - § (1 + O(Q))v
_elg®) 1
(1.19) Jm S =g
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2. Proof of Theorem 1. For n € N set

(2.1) 2n = zn(q) = ¢*(d").
Also set

Z1 ¢*(q)
(2.2) m=m(q) = i 2
From (1.8) and (2.2) we deduce
(2.3) m=2p+ 1.
From (1.9), (2.1) and (2.2) we obtain
(2.4) Vzizs =k(2p+1).

Berndt, Bhargava and Garvan [3, Lemma 2.1, p. 4168] (see also Berndt [2,
Lemma 2.1, p. 94]) have shown that

m2 m —
(2.5) a(q) = /2123 #,
— ) (9 — m2)1/3
(2.6) b(q) = /=123 3 31522/3 ) )
m m2— 1)1/3
(2.7) cla) = vz o D= D

Theorem 1 now follows on using (2.3) and (2.4) in (2.5)—(2.7).

3. Proof of Theorem 2. Berndt, Bhargava and Garvan [3, eqn. (5.16),
p. 4184] (see also Berndt [2, eqn. (5.16), p. 112]) have shown (with ¢? re-
placed by q) that

1(c(q) 62(q2)>
3.1 a(q) = —( +4 .
(31) 0=3 c(¢?) c(q)
Using the expressions for a(q) and ¢(q) given in Theorem 1 in (3.1), we
obtain

2—2/33(p(1 +p)4)2/3k22 27/33—262((]2)

(32)  (1+4p+p°)k= o) (1 + p) DBk

If we set

c(¢®)
(3.3) z=x(q) = 2-2/33(p(1 + p))2/3k’

then equation (3.2) becomes after rearrangement
(3.4) 2 — (14+4p+pHz+ (1 +2p+p?) =0.
Solving the cubic equation (3.4) for x, we find

1 2 1 2
(3.5) r=1-(4/2p+5+-—1)or——(/2p+5+—-+1).
2 P 2 p
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From (1.17) and (1.18) we see that as ¢ — 0" we have p — 0" and k — 1~.
Thus from (3.5) we deduce

(3.6) lim z =1, +00 or —oo
q—07t

respectively. From Theorem 1 and (3.3) we obtain

c(q?)

3.7 z=3(1+p)°k 5=

(37) (149 50

Hence by (1.19) we have

3.8 li =1

( ) qi}’(l)lﬁ— *

From (3.5), (3.6) and (3.8) we deduce that = 1. Hence by (3.3) we have
(3.9) c(q®) = 273(p(1 + )"k

as asserted.

Now Borwein, Borwein and Garvan [5, eqn. (2.28), p. 44] have shown
that

(3.10) a(q) = S 20

Appealing to Theorem 1 for the values of a(q), b(q) and ¢(q), and (3.9) for
the value of c(q¢?), from (3.10) we obtain

(3.11) b(g®) = 27*/3((1 = p)(1 4 2p)(2 + p))*/*k.
Then, from the identity
(3.12) a(@)a(q®) = b(q)b(¢?) + c(a)e(q®)
(see [5, Theorem 2.6, p. 40]), we obtain
(3.13) a(¢®) = (L+p+p)k.
4. Proof of Theorem 3. The following two identities are proved in [5,
Lemma 2.1(ii), p. 36 and eqn. (2.1), p. 37
(4.1) a(¢®) = ga(q) + 3b(a),
(4.2) c(¢”) = zalg) — 5b(q)-
The values of a(¢®) and c(¢?) then follow by Theorem 1.

5. Proof of Theorem 4. Berndt, Bhargava and Garvan [3, eqn. (5.16),
p. 4184] (see also Berndt [2, eqn. (5.16), p. 112]) have shown that

i o) = 5(Ta + 1587 )
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Using the values of a(¢?) and ¢(q?) from Theorem 2 in (5.1), we obtain
21352 (p(1 + p)) 38?

5.2 31+p+p°)k=
(52) 3 ) S
+ 28837 (p(1 4 p)) Pk P (),
Set
c(q*)

5.3 = = '
(5.3) y=y(q) 2-4/33(p*(1 + p)) Y3k
Then (5.2) becomes after some rearrangement
(54) Py’ = (L +p+p°)y+ (1 +p) =0
Solving the cubic equation (5.4) for y, we find

1 - 1
(5.5) y=1, — or b
p p

From (5.3) and (5.5) we deduce
(5.6) c(q") =27 33(p" (1 +p)' Pk, 273(p(1+ )"k
or —27433(p(1 + p)H k.

Berndt, Bhargava and Garvan [3, eqn. (6.3), p. 4188] (see also Berndt [2,
eqn. (6.3), p. 116]) have shown that

2(a?
65.7) ola) ~ ata?) =25
Thus

4 — a(a?) — 02((14)

From Theorem 2, (5.6) and (5.8), we obtain

a(@d) = (1+p—3p)k, (=3 +p+pHkor (-5 —2p— Lp?)k.
As a(0) =1, p(0) = 0 and k(0) = 1, we deduce that
(5.9) a(g") = (L+p— 3p°)k,
(5.10) c(g) = 27Y33(p* (1 + p)) k.
Finally, by (1.5) (with ¢ replaced by ¢%), (5.9) and (5.10), we obtain

b(g")’ = a(q")’ = ¢(q")’ = 274 (1 = p) (1 + 2p)(2 + p)*°,
so that
ba!) = 273((1 = p)(L +2p)(2 +p)*)"*k

for some cube root of unity €. As b(0) =1, p(0) = 0, £(0) = 1, we must have
¢ = 1. Thus,

(5.11) b(q*) = 272((1 = p)(1 + 2p)(2 + p)") k.
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6. Proof of Theorem 5. Replacing ¢ by ¢? in (4.1) and (4.2), we have
(6.1) a(¢®) = ga(¢®) + 3b(¢°),
(6.2) c(¢°) = §a(g®) — 5b(¢%).
Appealing to Theorem 2 for the values of a(¢?) and b(¢?), we obtain the
values of a(q%) and ¢(¢%).

7. Proof of Theorem 7. Replacing ¢ by ¢ in (6.1) and (6.2), we have
(7.1) a(q'?) = ga(q") + 3b(q"),
(7.2) c(q") = 3alq*) — b(g").
Appealing to Theorem 4 for the values of a(¢*) and b(¢*), we obtain the
values of a(g'?) and c(g'?).

8. Proof of Theorem 8. This theorem follows from Theorems 1 and 4
and the relations

(8.1) a(q) + a(—q) = 2a(q"),
(8.2) b(q) + b(—q) = 2b(q"),
(8.3) c(q) + e(—q) = 2¢(q"),

proved in [5, p. 40].

9. Proof of Theorem 9. For convenience we set

(9.1) p1=p(d*), ki =k().

By Theorems 1 and 2 we have

(9-2) (1+4p1 + 0kt = (1 +p+ 1)k
and by Theorems 2 and 4 we have

(9.3) (L+p1+p)kr = (1+p— 2p°)k.

From (9.2) and (9.3) we deduce

L+4p;+p?  1+p+p?

l+pi+p?  1+p—ip?

Writing (9.4) as a quadratic equation in p;, we obtain

(9.5) p°’pi —2(1+p—p*)p1+p* = 0.

Solving (9.5) for p; gives

Cl+p—p?+ M1 =p) (A +p)(1 +2p)Y/?
p? ’

(9.4)

(9.6) p1
where A = £1. Taking ¢ =0 in
PPp1=1+p—p* + M1 -p) (L +p)(1+2p)">
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we obtain, as p(0) = p1(0) =0, 0 =1+ X so that A = —1. Hence
_l4p—p’ —((L-p(+p)(1+2p)'”
- 2

p
as claimed. Then, from (9.2) and (9.7), we obtain

(1+p—p*+ ((L=p)(L+p)(1+2p)"/Hk
: .

(9.7) p1 = p(¢*)

(98) ki =k(") =

10. Proof of Theorem 11. For convenience we set
(10.1) p2 =p(—=q), k2 =k(—q).
By Theorems 2 and 4 we have
(10.2) (1+p2+p3)ks = (L+p+p°)k,
(10.3) (L+p2 = 5p3)k2 = (L +p — 30°) k.
From (10.2) and (10.3) we deduce

l+po+ps  1+p+p?

(10.4) - ,
L+p2—gp5  1+p— 30

Rewriting (10.4) as a quadratic equation in p2, we obtain
(10.5) (14 p)ps — p*p2 —p* =0.
Hence ps = p or —p/(1 + p). From (1.17) we have
p =p(q) = 2¢ + 2¢° + O(¢°),
p2 = p(—q) = —2¢ +2¢° + O(¢"),

for small |¢|, so that ps # p. Hence

—p
10. —p(—g) = P
(10.6) P =p(-0) = 15
Then, from (10.2) and (10.6), we have
1+p+pHk
F(—g) = ky = — LFPHP) — = (1+p)’k.
1 p + p

T 1+4p  (1+p)?

11. Proof of Theorem 10. For convenience we set

(11.1) ps=p(¢"), ks =k(g).
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From Theorems 1-5 and 7 we deduce that
(11.2) (1 +4ps + pd)ks
= (1 +4p+p” + 22/%((1 - p)* (1 + 2p) (2 + ) )k,
(11.3) (14 p3+p3)ks
= 3L+ p+p" +23((1 = p)(1 + 2p)(2+ p)*/*)k,
(11.4)  (1+4ps— 3p3)ks

=11 +p—*+ 27 = p) (1 +2p) 2+ p)") ).

Set
X =(1-p(+2p)(2+p)"*

Then

ks = —3(1+4ps + p3)ks + 2(1 4+ ps + p3)ks + 2 (1 + ps — 3p3) ks

= LA +dp+p?+ 2220 - p) X))k + 21+ p+p? + 23Xk
+2(1+p-1pP+ 2732+ p)X)k

so that
(11.5) k(q®) = ks = $(3+223(1 + 2p) X + 23X %)k

as asserted.
Next, from (11.2) and (11.3), we deduce

p3ks = 5(1+4ps + p3)ks — 5(1 + ps + p3) ks
=11 +4p+p? + 2221 - p)X)k— A +p+p* + 23Xk
so that
(11.6) psks = $(3p +2*3(1 — p) X — 2'3 X %)k
Hence, from (11.5) and (11.6), we obtain
_ 3p+223(1 - p)X — 2132
3+ 22/3(1 4+ 2p) X + 24/3X2

p(¢*) = ps

187

= 1(—4 - 3p+6p® +4p> +22/3(1 — 2p — 2p*) X +2'/3(1 + 2p) X?)

as claimed.

12. Proof of Theorem 6. Set
(12.1) t=((1-p)(1+p)(1+2p))"?
SO

(12.2) 2 =1+2p—p*—2p°.
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By Theorem 11 we have

l+p—p*+t)k

l4p—p*—t
D2
Thus, by (12.2) and (12.3), we have

(123)  p(d?)

(24 4p — 2p? — 4p> +p*) — 2(1 + p — p?)t
. .
p

(124)  pX(¢*) =
Then, by Theorem 4, we obtain
a(¢®) = (1 +p(¢®) — 50°(4*)) (d?)
= 10 +p+p"+3((1—p)(1+p)(1+2p))"*)k

as asserted.

13. The Eisenstein series L(q). The Eisenstein series L(q) is defined

by
[o.¢]
(13.1) L(g)=1-24) o(n)q".
n=1
It is shown in [1, eqns. (3.84) and (3.87)] that
(13.2) L(q) — 2L(¢%) = —(1 4 14p + 24p® + 14p> + p")k?,
(13.3) L(q) — 3L(¢%) = —2(1 + 8p + 18p* + 8p° + p")i?,

with p and k as defined in (1.8) and (1.9). Applying the triplication principle
(Theorem 10) to (13.2) and the duplication principle (Theorem 9) to (13.3),
we obtain

(13.4) L(¢*) = 2L(¢°) = —(1 4+ 2p + 2p° + p")k?,
(13.5) L(g®) — 3L(¢°) = —2(1 + 2p + 3p” + 2p® + p")k?,

in agreement with [1, eqns. (3.85) and (3.88)]. Applying the triplication
principle to (13.4) and the duplication principle to (13.5), we have

(13.6)  L(¢") — 2L(¢")
= (=11 — 10p + 24p” — 10p° — 11p*
_ 22/34(1 —p3)((1 —p)(l + 2p)(2 +17)))1/3
— 2134(1 + 4p + p?) (1 - p)(1 + 2p)(2 + ) ¥/ )k?,
(13.7)  L(¢") —3L(¢"*) = (-2 — dp+ 20" — 5p") K%,

These results will be needed in the following sections.
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14. The sum L; 2(q). We define

(14.1) Liglg) = > o(n)g™
n=1

n=1 (mod 2)

In this section we evaluate Lj 2(g) in terms of p and k. We begin by recalling
(13.2). We have

(14.2) L(q) — 2L(¢%) = —(1 + 14p + 24p® + 14p® + ph)k2.
Applying the change of sign principle (Theorem 11) to (14.2) we have
(14.3) L(—q) — 2L(¢%) = —(1 — 10p — 12p? — 4p> — 2p™ k2.
Subtracting (14.2) from (14.3), we obtain

(14.4) L(—q) — L(q) = 3(8p + 12p* + 6p* + p*) k™.
Hence
Lia(g)= Y o) =35) o)~ 5 on)(-9)"
n=1 n=1 n=1
n=1 (mod 2)

= ~(L(~q) - Le))

T q q)),
so that by (14.4),
(14.5) Lia(q) = (5p+ 30" + 3p° + 350" K.
Applying the triplication principle (Theorem 10) to (14.5), we obtain
(14.6) Ll,g(q3) = (%p3 + %Gp4)k2.

15. The sums L;3(¢) and L2 3(q). We define

(15.1)  Lig(e):= > on)g", Lesle):= Y.  o(n)g"

n=1 n=1
n=1 (mod 3) n=2 (mod 3)

These sums have been studied in [12]. In this section we evaluate them in
terms of p and k. From [12, Theorem 1.4] we have

(15.2) Lis(q) = 1+ (1 —z)/3 =201 — 2)?/3) g’—;
(15.3) Loa(@) = (1201 — )3 1 (1 — )2 2

27’
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where, in the notation of [1], we have

4
(15.4) r=u13(q) =B = 2(?7_11?(41]0—:_122)3,
(15.5) w=w3(x3(q)) = X = (1 +4p + p)k.
Now

27p(1 4 1—p)%1 +2p)(2
(156) 1-z—1- Tp( +p)23:( p)(1+ p)g 3+p)7
2(1+4p +p?) 2(1+ 4p + p?)

271/3(1 — p)((1 — p)(1 + 2p) (2 + p)) /3
1+ 4p +p? '

(15.7) (1—2)Y3 =
Hence
(15.8)  Lis(q) = 5 (14 8p + 18p + 8p* + p?
+2713(1 4 3p — 3p® — p*)((1 — p)(1 + 2p)(2 + p))'/?
—23(1 = 2p+p?)((1 — p)(1 + 2p)(2+ p))/*) k2,
(15.9)  Lo(q) = 5 (14 8p + 18p + 8p* + p?
—223(1 4+ 3p — 3p® — p*)((1 — p)(1 + 2p)(2 + p))'/?
+2723(1 = 2p+p*) (1 — p)(1 + 2p) (2 + p)) /) k2.
From (15.8) and (15.9) we deduce
L13(q) +2La3(q) = $(1 4+ 8p + 18p* + 8p° + p*)k*
— L2734 3p—3p” — pP) (1 — p)(1+ 2p)(2+ p)) /3K
so that
(15.10) 1 2%3(1 4 3p — 3p* — p*)((1 — p)(1 + 2p)(2 + p)) /3 k*
= 2(1+4p+ p*)°k* — 6L13(q) — 12La3(q).
Applying the duplication principle (Theorem 9) to (15.9), we obtain
(15.11)  Log(q®) = 5= (1 +2p + 3p® + 2p° + p*
+ 27432 4+ 3p — 3p” — 2p) (1 — p)(1 + 2p) (2 + p)) /3
=231+ p+ pH) (1 — p) (1 +2p) (2 + p))*/*)k?.
From (15.8) and (15.11) we deduce
(15.12)  Lis(q) — 2La3(q®) = 95 (—1 + 4p + 12p° + 4p* — p*

— 2731 = p*) (1 - p)(1 + 2p) (2 + p)) /3
+ 2131+ 4p+ p?) (1 — p) (1 +2p) (2 + p))¥/?)k2.
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From (13.6) and (15.12) we obtain
(15.13) 2231 —p®)((1 = p)(1 + 2p)(2 + p))"/*K?
= (=3 +p+12p* +p° — Ip")k?
— 9L(¢°) +9L(¢"®) — 18L15(q) + 36L23(¢?),
(15.14)  2Y3(1+4p+ p*)((1 — p)(1 + 2p)(2 +p))2/3k:2
= (-1 —Ip—6p* — Ip® — 1)K’
—9L(°) + 3L(¢"®) + 18L1,3(q) — 36L2,3(q%).

16. Proof of Theorem 12. By (1.12), Theorem 1 and (13.3), we have
> N(L,1L;n)q" = a(q)® = (1+8p + 18p* + 8p® + p*)k?
= —3(L(g) = 3L(¢%) =1 + Z (120 (n) — 360(n/3))q"

Equating coefficients of ¢" (n € N) we obtain N(1,1;n).

17. Proof of Theorem 13. By (1.12), Theorem 1, Theorem 2, (13.2)
and (13.4), we have

iN(lﬂ;n)q" = (1+4p+p*)(1+p+p°)k?
= 1(1+14p+24p® + 14p° + pHk* + 3(1 + 2p + 2p* + p*)k?
= —1(L(q) —2L(¢*)) - $(L(¢”) —2L(¢°))

+Y (60(n) —120(n/2) + 180 (n/3) — 360(n/6))q"

n=1

Equating coefficients of ¢" (n € N) we obtain N(1,2;n).

18. Proof of Theorem 14. By (1.12), Theorems 1, 3, and the proof
of Theorem 12, we obtain

> ON(1,3n)q" = 3(1+4p + p*)°k?
-223(1+ 3p — 3p* — p*)((1 — p)(1 + 2p)(2 + p))/*k?

1
3
= (1 + 4p —|—p2)2k‘2 — 6L173(q) — 12L273(q)
a(q)® — 6Ly 3(q) — 12L23(q)

(L(q) —3L(¢%)) — 6L1,3(q) — 12La3(q),
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that is,

Y ON(L,3in)g" =1+ Y (120(n) — 360(n/3))q"
n=0 n=1

-6 Z o(n)g" — 12 Z o(n)q".
n=1 n=1
n=1 (mod 3) n=2 (mod 3)

Equating coefficients of ¢" (n € N) we obtain N(1,3;n).

19. Proof of Theorem 15. By (1.12), Theorems 1 and 4, (13.7), (14.5)
and (14.6), we obtain

ZN(1,4; n)q" = —%(—2 —4p+2p° — %p4)k2
- +6(3p+ 3%+ 3p* + 2p") k> — 18(Lp® + £pY) K
= —4(L(q") — 3L(q 12))+6L12( ) — 18L12(q%)

=1+12) o(n/4)q" —362 (n/12)¢"
n=1
+6 Y om)g"-18 > o(n/3)q"
n=1 n=1
n=1 (mod 2) n=1 (mod 2)

Equating coefficients of ¢" (n € N) we obtain N(1,4;n).

20. Proof of Theorem 16. Appealing to (1.12), Theorems 1 and 5,
(15.14) and (13.4), we obtain

> N(1,6n)¢" = (1L +4p+p*)(1 +p +p?)
+ 2131+ 4p + p?) (1 — p) (1 + 2p) (2 + p) /K>
(14 5p+6p* + 5p° + p* )k
+2'3(1 4+ 4p + 57) (1= p)(1+ 29)(2 + ) *°K7)
((1+5p+6p + 5p° + ph)k?
+ (=3 —5p—6p> = §p° — ")k’
— 3L(¢°) + $L(¢"®) + 18L1 3(q) — 36 L2 3(¢%))
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= (7 +3p+30° + 0")k = 1L(¢") + 3L(¢")
+ 6L13(q) — 12L2 3(¢°)
= — 3(L(¢*) = 2L(¢") = §L(¢°) + 5 L(¢"®)
+6L13(q) — 12L23(¢%)

=1+ (60(n/3) - 120(n/6) + 180(n/9) — 365(n/18))q"

n=1
+6 Z o(n)q" — 12 Z o(n/2)q"
n=1 n=1
n=1 (mod 3) n=1 (mod 3)

Equating coefficients of ¢" (n € N) we obtain
60(n/3)—120(n/6)+180(n/9)—360(n/18) if n =0 (mod 3),

o(n)—120(n/2) if n =1 (mod3),
if n = 2 (mod 3).

N(1,6;n)=16
0
When n = 0 (mod 3) we have the elementary identities
(20.1) o(n) =40(n/3) — 30(n/9),
(20.2) o(n/2) =40(n/6) — 30(n/18),
60(n/3) — 120(n/6) + 180 (n/9) — 360(n/18)
= —60(n) + 120(n/2) + 300(n/3) — 600(n/6),

completing the proof.

21. Proof of Theorem 17. Appealing to (1.12), Theorems 2, 3 and
(15.13), we obtain

> N2, 3n)q" = 3[(1+p+p°)(1+4p +p*)k’

+22/3(1 = p*)((1 = p)(1 + 2p)(2 + p)) /*k?]
= 1[(1 + 5p + 6p* + 5p°® + p*)k?
+ (=3 +p+12p% +p* — 3ph)k?
— 5L(¢°) +9L(¢"*) — 18L13(q) + 36 L2,3(¢°)]
= (-3 +2p+6p* +2p° — Ip")k* — 3L(¢°) + 3L(¢"®)
—6L1,3(q) + 12La3(q?).
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Next
(=3 +2p+ 69" +2p” — 5p")

= 1(1+ 14p + 24p® + 14p° + ph)k* — 2(1 + 2p + 2p° + p*)k?
= —1(L(q) = 2L(¢*)) + §(L(¢*) — 2L(¢°))
= —31L(@) + 3L(¢*) + $L(¢") — 3L(d").

Hence

Y N(23n)¢" = —1L(g) + 5L(¢°) + §L(¢°) — $L(¢°) — 3L(4")
—|—3L< 18) — 614 3( ) + 12L2’3(q2)
=1+ Z (60(n) — 120(n/2) — 180(n/3)

+ 36a(n/6) +360(n/9) — 720(n/18))q"

(e.0) (o ¢]
—6 Z o(n)g" + 12 Z o(n/2)q"
n=1 n=1
n=1 (mod 3) n=1 (mod 3)
Equating coefficients of ¢" (n € N) we obtain

60(n) — 120(n/2) — 180(n/3)
+ 360(n/6) 4+ 360(n/9) — 720(n/18) if n =0 (mod 3),
if n =1 (mod 3),
6o(n) — 120(n/2) if n = 2 (mod 3).
When n = 0 (mod 3) then from (20.1) and (20.2) we have
o(n9) = So(n/3) — to(n),  o(n/18) = Lo (n/6) — Jo(n/2),
so that
60(n) — 120(n/2) — 180(n/3) + 360(n/6) + 360(n/9) — 720(n/18)
= 60(n) — 120(n/2) — 180(n/3) + 360(n/6) + 480 (n/3)
—120(n) — 960(n/6) + 240(n/2)
= —60(n) + 120(n/2) + 300(n/3) — 600(n/6),
completing the proof.

N(2,3;n) =
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