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Zeros of the constant term in the Chowla–Selberg formula

by

Haseo Ki (Seoul)

1. Introduction. We consider the Eisenstein series

E0(z; s) =
1

2

∑

(m,n) 6=(0,0)

ys

|mz + n|2s (Re(s) > 1)

where z = x+ yi, x ∈ R, y > 0. This series has the functional equation

π−sΓ (s)E0(z; s) = π
−1+sΓ (1− s)E0(z; 1− s),

where Γ (s) is the gamma function. Also E0(z; s) can be analytically contin-
ued to the complex plane except for the simple pole at s = 1. In the present
context, the Chowla–Selberg formula asserts that

E0(z; s) = ζ(2s)y
s +
√
π
Γ (s− 1/2)
Γ (s)

ζ(2s− 1)y1−s

+ 4πs
√
y
∞
∑

n=1

n1/2−s
∑

d|n

d2s−1
Ks−1/2(2πny)

Γ (s)
cos(2πnx)

where “d |n” means “d divides n”, ζ(s) is the Riemann zeta function, and
Kz(a) is the K-Bessel function. For these facts see [3].

We denote the constant term in the Chowla–Selberg formula by

C(z; s) = ζ(2s)ys +
√
π
Γ (s− 1/2)
Γ (s)

ζ(2s− 1)y1−s.

Using the functional equation of either ζ(s) or E0(z; s), we see that

π−sΓ (s)C(z; s) = π−1+sΓ (1− s)C(z; 1− s).
One also sees that C(z; s) is analytic for all s except for a simple pole of
residue π/2 at s = 1. Moreover, C(z; s) is real for s ∈ R− {1}, positive for
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s > 1, −1/2 at s = 0, zero of order 1 at s = −1,−2,−3, . . ., and otherwise
nonvanishing on (−∞, 0].
In this note we are interested in the complex zeros of C(z; s). Hejhal

[5, Proposition 5.3] used the Maass–Selberg formula to prove that, for any
y ≥ 1, all complex zeros of C(z; s) are on Re(s) = 1/2. We shall supply a
different proof of this result. In [5, Proposition 5.3] and [6, Theorem 2] it
is proved that all but finitely many complex zeros of C(z; s) are simple for
y ≥ 1. One wonders: is it true that all complex zeros of this function are
simple? We show that the answer is “yes”.

Theorem. For any y ≥ 1 all complex zeros of C(z; s) are simple and
lie on Re(s) = 1/2.

Concerning this theorem, we refer to [1, pp. 64–73] for some related ideas.
The results in that paper are quite interesting.
It should be noted that the author [6, Corollary 1] has shown that for any

y ≥ 1 and anyN = 1, 2, 3, . . ., all but finitely many complex zeros of anyNth
partial sum in the Chowla–Selberg formula are simple and on Re(s) = 1/2.
Since E0(i; s) = 2ζ(s)L(s, χ−4), the Riemann hypothesis would follow if, for
infinitely many N , one was somehow able to remove the “but finitely many”
clause in this corollary in the (very special) case where z = i.
We divide the proof of our theorem into two parts. In proving that all

complex zeros of the function are on Re(s) = 1/2, we apply a variant of
Hermite–Biehler theorem. The author used this argument to justify the
second part of Theorem B in [7]. We will determine the behavior of the
argument of C(z; s) which confirms the second part of our theorem.

2. Proof of the Theorem. To avoid notational confusion, it is best
to change our notation slightly and speak of C(Z; s) with Z = X + iY .
(The variable z can then be used for other purposes.) Using the functional
equation for the Riemann zeta function [9, Chapter II], we see that

C(Z; s) = ζ(2s)Y s + π2s−1
Γ (1− s)
Γ (s)

ζ(2− 2s)Y 1−s.
Set

f(s) = 2(s− 1/2)s(s− 1)π−sΓ (s)C(Z; s).
One readily checks that f(s) is an entire function satisfying

f(s) = −f(1− s)
and that

f(s) = (s− 1)ξ(2s)Y s + sξ(2− 2s)Y 1−s,
where

ξ(s) =
1

2
s(s− 1)π−s/2Γ (s/2)ζ(s)

by [9, eq. (2.1.12)].
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We need the following basic results.

Lemma 2.1. For the Riemann Ξ-function we have the following :

Ξ(z) = ξ

(

1

2
+ iz

)

= −1
2

(

z2 +
1

4

)

π−1/4−iz/2Γ

(

1

4
+ i
z

2

)

ζ

(

1

2
+ iz

)

;(1)

Ξ(z) = Ξ(0)
∞
∏

k=1

(

1− z
2

a2k

)

,(2)

where a1, a2, a3, . . . enumerate all the zeros of Ξ(z) in the right half-plane
such that 0 < Re(a1) ≤ Re(a2) ≤ Re(a3) ≤ · · · and −1/2 < Im(ak) < 1/2
for any k = 1, 2, 3, . . .;

(3) Ξ(z) =

∞\
−∞

Φ(t)eizt dt

where

Φ(t) = 2

∞
∑

n=1

(2n4π2e9t/2 − 3n2πe5t/2)e−n2πe2t .

Here Φ(t) = Φ(−t) and Φ(t) > 0 for any t ∈ R. Thus Ξ(z) = Ξ(−z) and
Ξ(z) = Ξ(z) for any complex number z.

For Lemma 2.1 we refer to [9, pp. 16, 30, 44, and 255].

2.1. All complex zeros of f(s) are on Re(s) = 1/2. We put Z = X + iY
in C and then consider

F (z) =
f(1/2 + iz)

i
√
Y

.

Using Lemma 2.1(1), we obtain

F (z) = (z + i/2)Ξ(2z − i/2)Y iz + (z − i/2)Ξ(2z + i/2)Y −iz.
Clearly F (z) is entire and F (−z) = −F (z). Moreover, F (z) = F (z).
It suffices to show that any zero α of F (z) is either real or purely imag-

inary. We need the following lemma.

Lemma 2.2. Let U(z) and V (z) be real polynomials. Assume that U 6≡ 0
and thatW (z) = U(z)+iV (z) has exactly n zeros (counted with multiplicity)
in the lower half-plane. Then U(z) can have at most n pairs of conjugate
complex zeros (again counted with multiplicity). Similarly for the upper half-
plane.

Proof. See [2, p. 215].

For each n = 1, 2, 3, . . . , we define

Wn(z) = Ξ(0)

(

z +
i

2

)(

1 +
iz log Y

n

)n n
∏

k=1

(

1− (2z − i/2)
2

a2k

)

.
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By Lemma 2.1(2) and the fact that log Y ≥ 0 we observe that for any
n = 1, 2, 3, . . . , Wn(z) has only one zero in the lower half-plane. Thus Lemma
2.2 implies that for any n = 1, 2, 3, . . . , Wn(z)+Wn(z) has at most one pair
of conjugate complex roots. We note that Wn(z) converges uniformly to

Ξ(0)

(

z +
i

2

)

yiz
∞
∏

k=1

(

1− (2z − i/2)
2

a2k

)

on any compact set in the complex plane. Thus Wn(z) +Wn(z) converges
uniformly to F (z) on any compact set in the complex plane. Hence F (z)
has at most one pair of conjugate complex roots. Suppose that F (z0) = 0
and, say, Im(z0) > 0. Since F is odd and F (z) = F (z), we see that F also
vanishes at −z0. It follows that z0 = −z0, i.e. z0 is purely imaginary. We
conclude that any zero α of F (z) is either real or purely imaginary, and the
first part of the Theorem follows.

Our proof shows that F (z) has at most two complex zeros. These zeros
are confined to the open interval (−i/2, i/2) since C(Z; s) is positive for
s > 1 and has a simple pole of residue π/2 as s→ 1.
Remark. For the exceptional real zeros of C(Z; s), we refer to [8, The-

orem 3].

2.2. All complex zeros of f(s) are simple. In the previous section, we
found that all complex zeros of f(s) are on Re(s) = 1/2. In this section, we
use a more careful analysis to show that these zeros are simple.

We set

θ(t) = arg(2it(1/2 + it)(−1/2 + it)π−1/2−itΓ (1/2 + it)ζ(1 + 2it))
for t ∈ R. One readily checks that

f(1/2 + it) = 0 precisely when θ(t) + t log Y ≡ 0 mod π.
For orientation purposes, it is also helpful to note that

θ′(t) = − log π +Re Γ
′

Γ

(

1

2
+ it

)

+ 2Re
ζ ′

ζ
(1 + 2it).

Using the standard partial fraction expansion of ζ ′(s)/ζ(s) as in [9, eq.
(2.12.7)], one then gets

(2.1) θ′(t) = 2b− log π − 2

1 + 4t2
+ 2Re

∑

̺

(

1

1 + 2it− ̺ +
1

̺

)

where b = log(2π)− 1− 12γ and ζ(̺) = 0, 0 < Re(̺) < 1. Since

Re
Γ ′

Γ

(

1

2
+ it

)

= log t+O

(

1

t

)

,
ζ ′

ζ
(1 + 2it) = O

(

log t

log log t

)
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(cf. [4, p. 47, (7)] and [9, eq. (5.17.4)]), the function θ(t) is increasing for
large t; in fact,

θ′(t) ∼ log t.
The mean spacing of the zeros of f will thus be π/log t (in the limit t→∞).
Cf. [5, p. 88 (middle)].

Lemma 2.3. We have

(1) θ(0) = π,
(2) θ(t) > π/2 for t > 0,
(3) θ(t) is a convex function in (0, 7),
(4) θ(t) increases in [7,∞).
Proof. Using Lemma 2.1(1), we have

θ(t) = arg((−1/2 + it)Ξ(2t− i/2)).
By [9, p. 30], one has Ξ(−i/2) = 1/2. We thus get θ(0) = π, and (1) follows.
Since Im(ak) > −1/2 with Ξ(ak) = 0 (k = 1, 2, 3, . . .), we see that

arg(Ξ(2t− i/2)) > 0 for t > 0. Thus we obtain

θ(t) > arg(−1/2 + it) = π
2
+ tan−1

1

2t
>
π

2
,

which is (2).
For the first three zeros 1/2 + ia1, 1/2 + ia2, 1/2 + ia3 of ζ(s) in the

upper half-plane, one knows that

14.1 < a1 < 14.2, 21 < a2 < 21.1, 25 < a3 < 25.1.

For ζ(̺) = 0, we write ̺ = β+iγ. We note that ζ(β−iγ) = 0 and 0 < β < 1.
Using (2.1), we thus obtain

θ′′(t) =
16t

(1 + 4t2)2
(2.2)

+ 8
∑

γ>0

(

(1− β)(γ − 2t)
[(1− β)2 + (2t− γ)2]2 +

(1− β)(−γ − 2t)
[(1− β)2 + (2t+ γ)2]2

)

.

Since 0 < β < 1 and γ > 14.1, each term in the summation of (2.2) is greater
than

4t(1− β)3[−(1− β)2 + 2(γ2 − 4t2)]
[(1− β)2 + (2t− γ)2]2[(1− β)2 + (2t+ γ)2]2 > 0

for t ∈ (0, 7). Thus θ′′(t) > 0 in (0, 7), which implies (3).
We now prove (4). For this purpose, we need

Fact 2.4. Let a > 0 and x2 > x1. Then

arg(x2 − ia) > arg(x1 − ia),

arg(−1/2 + ix2)− arg(−1/2 + ix1) > −
x2 − x1
2x1x2

(x1 > 0),
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arg

(

1− 2x2 − i/2
a

)

− arg
(

1− 2x1 − i/2
a

)

>
1

1 + κ−2
x2 − x1

(2x1 − a)(2x2 − a)
.

In the last inequality , κ = min{2|2x1−a|, 2|2x2−a|} and we assume 2x1 > a
or 2x2 < a.

Proof. The first two inequalities are easy. For the last one, it suffices to
show it for 2x1 > a, because the other case follows by the same method. We
have

arg

(

1− 2x2 − i/2
a

)

− arg
(

1− 2x1 − i/2
a

)

= tan−1
1

2(2x1 − a)
− tan−1 1

2(2x2 − a)

=

1
2(2x1−a)\

1
2(2x2−a)

1

1 + x2
dx >

1

1 + κ−2
x2 − x1

(2x1 − a)(2x2 − a)
.

Let t1 and t2 be such that 13 ≤ t1 < t2. Using Lemma 2.1(2), Fact 2.4
and 2(2t1 − ak) > 1.8 for k = 1, 2, 3, we have
θ(t2)− θ(t1) = arg(−1/2 + it2)− arg(−1/2 + it1)

+
∞
∑

k=1

arg

(

1− (2t2 − i/2)
2

a2k

)

− arg
(

1− (2t2 − i/2)
2

a2k

)

> − t2 − t1
2t1t2

+
3
∑

k=1

arg

(

1− 2t2 − i/2
ak

)

− arg
(

1− 2t1 − i/2
ak

)

> − t2 − t1
2t1t2

+
1

1 +
(

1
1.8

)2

3
∑

k=1

t2 − t1
(2t1 − ak)(2t2 − ak)

> − t2 − t1
2t1t2

+
1

1 +
(

1
1.8

)2

3

4

t2 − t1
t1t2

> 0.

Let 10 ≤ t1 < t2 ≤ 13. Since 5 ≤ 2t1−a1, 2t1−a1 < t1 and 2t2−a1 < t2,
we similarly have

θ(t2)− θ(t1) > −
1

2

t2 − t1
t1t2

+ arg

(

1− 2t2 − i/2
a1

)

− arg
(

1− 2t1 − i/2
a1

)

> − 1
2

t2 − t1
t1t2

+
1

1 +
(

1
10

)2

t2 − t1
(2t1 − a1)(t2 − a1)

> 0.

Let 7 ≤ t1 < t2 ≤ 10. Then it is not hard to see that
8

5
>

(

a2
t1
− 2
)(

a2
t2
− 2
)

or
1

1 +
(

1
2

)2

1

(2t1 − a2)(2t2 − a2)
>
1

2

1

t1t2
.
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Similarly, we obtain

θ(t2)− θ(t1) > −
1

2

t2 − t1
t1t2

+
1

1 +
(

1
2

)2

t2 − t1
(2t1 − a2)(2t2 − a2)

> 0.

Thus, θ(t) is increasing in [7,∞), which completes the proof of Lemma 2.3.
By Lemma 2.3, either θ(t) is increasing in (0,∞) or there exists t0 ∈ (0, 7)

such that θ(t) decreases in (0, t0) and θ(t) increases in (t0,∞).
Suppose that the first case holds. Since log Y ≥ 0, the function θ(t) +

t log Y increases in (0,∞). Thus all complex zeros of f(s) are simple in
Im(s) > 0.
For the second case, the proof is as follows. Similarly, all zeros of f(s) in

Im(s) ≥ t0 are simple. By Lemma 2.3(3) it is easy to see that θ(t)+t log Y is
a convex function in (0, 7). By convexity and since θ(t)+t logY = π at t = 0
and θ(t) + t log Y > π/2 for t ∈ (0, 7), there exists no t∗ ∈ (0, 7) such that
θ(t) + t log Y has a local minimum at t∗ and θ(t∗) + t∗ log Y = mπ, m ≥ 1.
Hence all zeros of f(s) in 0 < Im(s) ≤ t0 are simple. For the second case,
we also conclude that all complex zeros of f(s) are simple in Im(s) > 0.
Thus the second part of the Theorem follows.

Remark. Let 0 < Y < 1. Then on Re(s) = 1/2 the assertion of our
theorem may not be valid. But it is known (see [6, Theorem 2]) that for any
δ > 0 all but finitely many zeros of f(s) in {s : |Re(s)−1/2| < δ} are simple
and lie on Re(s) = 1/2.
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