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1. Introduction. The distribution of zeros near s = 1/2 for various
families of L-functions has received widespread attention since the appear-
ance of the seminal joint work of Katz and Sarnak, [8] and [9]. One aspect
of the basic conjectures which came to light through their research relates
the one-level normalized spacings of “low-lying” zeros of certain families of
L-functions, when ordered by their conductors, to classical symmetry groups
associated with each family.

In the case of the family of quadratic Dirichlet L-functions (over Q),
partial results (cf. [8], [13], [14]) suggest that the symmetry group associ-
ated with this family should be symplectic; see [8] for more details. In this
case the functional equations for the completed L-functions are “self-dual”,
i.e. remain invariant under the substitution s 7→ 1 − s. In the function field
analogue, where the distribution conjectures become theorems, Katz and
Sarnak have shown that for certain families of zeta functions whose func-
tional equations are self-dual, the distribution of the zeros is governed by a
symplectic symmetry group (cf. [8], [9]).

In the present note, we consider the family of quadratic L-functions over
an arbitrary imaginary quadratic base field. We study the distribution of
their nontrivial zeros close to the real axis. Here, as above, we find that the
completed L-functions have self-dual functional equations; and once again
we see, as in the case over Q, that the distribution of the zeros indicates
a symplectic symmetry group, which is as expected. It should be pointed
out, however, that self-duality of the functional equations associated with
a family of L-functions need not indicate a symplectic distribution of low-
lying zeros. Peter Sarnak has pointed out to us that there are families of
L-functions with associated self-dual functional equations, but for which the
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distribution of the low-lying zeros seems to suggest an orthogonal symmetry
group.

The method of proof is similar to that in our previous article, [14], but
there were obstacles to overcome. The main problem was figuring out the
“main term” in the “form factor” in the case where D = o(x). This impasse
was overcome by using quadratic reciprocity for the 2-power residue symbol
(generalized Legendre symbol) over an arbitrary number field as described
in Hecke’s text [6].

2. Statements of main results. At this point we state our main the-
orem and its two corollaries. Before doing so we need to introduce some
notation and concepts. Let K(s) be a function analytic in the strip −1 <
Re(s) < 2 such that |K(σ + it)| ≪ t−2 as t → ∞ and such that the function

a(x) =
1

2πi

c+i∞\
c−i∞

K(s)x−s ds

is absolutely convergent for −1 < c < 2 and all x > 0, continuous, differen-
tiable for all but finitely many points, of bounded variation, real-valued, non-
negative, of compact support on the interval (0,∞), and such that a(1) 6= 0.
Furthermore, assume K(1/2 + it) = K(1/2 − it) for all real t. A particular
choice of K(s) is given by

K(s) =

(
es−1/2 − e−s+1/2

2s − 1

)2

,

in which case

a(t) =

{
1
2t−1/2

(
1 − 1

2 |log t|
)

if e−2 < t < e2,

0 otherwise

(see [12]).

Next, let k be a complex quadratic number field with discriminant dk and
ring of integers O = Ok. If α is any nonzero integer in k, then denote by χα

the 2-power residue symbol with respect to α. Let L(s, χα) be the (quadratic)
L-series attached to χα. Also let Nα be the norm of α from k to Q.

The point of our main theorem is to investigate the behavior of the sum
∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D ∑

̺(α)

K(̺)x̺

as D → ∞, where the outer sum ranges over the nonzero elements of O and
the inner sum is over the nontrivial zeros of L(s, χα).

Main Theorem. Assume all the notation above and suppose that the

Generalized Riemann Hypothesis (GRH ) holds for all abelian L-functions
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over k. Then as D → ∞ and either x → ∞ or x = 1,
∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D ∑

̺(α)

K(̺)x̺ =






−1
2K

(
1
2

)
Dx1/2 + 1

2K(1)π(4|dk|)−1/4xD1/2 + a
(

1
x

)
D log D

+ O
(
D log D log x + Dx1/3 log x + a

(
1
x

)
D

)
if x = o(D),

0 + O(x log2 x + Dx1/3 log x) if D = o(x).

All the implied constants depend only on the base field k and the kernel K.

Now define, for y ∈ R,

FK(y, D) =

(
1

2
K

(
1

2

)
D

)−1 ∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D ∑

̺(α)

K(̺)Diyγ ,

where ̺ = 1/2 + iγ. Then we have the following corollary, which is just a
special case of the Main Theorem.

First Corollary. Assuming GRH for all abelian L-functions over k,
as D → ∞,

FK(y, D) =

{
−1 +

(
1
2K

(
1
2

))−1
D−y/2a(D−y) log D + o(1) if |y| < 1,

0 + o(1) if 1 < |y| < 2,

uniformly on compact subsets of (−2,−1) ∪ (−1, 1) ∪ (1, 2).

The second corollary concerns the distribution of the nontrivial zeros of
our family of L-functions near the real axis.

Second Corollary. Suppose r(y) is an even continuous function with

r(y) and yr(y) in L1(R), such that its Fourier transform,

r̂(y) =

∞\
−∞

r(u)e−2πiyu du,

is also continuous and in L1(R), and has compact support in (−2, 2)r{±1}.
Then under GRH for all abelian L-functions over k, an imaginary quadratic

number field, as D → ∞,

D−1
∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

(
1

2
K

(
1

2

))−1 ∑

̺(α)

K(̺)r

(
γ log D

2π

)

= 2

∞\
−∞

(
1 − sin 2πy

2πy

)
r(y) dy + o(1),

where the implied constant depends only on the field k and the kernel K.
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3. Preliminaries. Let k be an imaginary quadratic number field. De-
note by O = Ok the ring of integers of k and by dk its discriminant. If α is
a nonzero algebraic integer of k, then let χα be the 2-power residue symbol;
i.e. if p is any (nonzero) prime ideal of O not dividing (2α), then let

χα(p) =

(
α

p

)
=

{
1 if x2 ≡ α mod p has a solution,

−1 if x2 ≡ α mod p has no solutions.

Define χα(p) = 0 if p divides (2α), and extend this definition to all nonzero
ideals a of O by multiplicativity. As is well known, χα is induced by a prim-
itive character χ∗

α which may be identified with the Artin symbol ( · , K/k)

where K = k(
√

α). Indeed, (p, K/k)(
√

α) = (α/p)
√

α for all p relatively
prime to 2α.

Let

L(s, χα) =
∑

a

χα(a)

Nas
(Re(s) > 1),

where the sum is over all nonzero integral ideals a of Ok and Na = #(O/a).
The L-function associated with χ∗

α is defined analogously. As is well known,
these L-series have Euler product expansions by the unique factorization
property of ideals in O. Moreover, the Dedekind zeta function of K satis-
fies

ζK(s) = ζk(s)L(s, χ∗
α) (Re(s) > 1).

All of the functions above can be analytically continued to the whole com-
plex plane (with simple pole at s = 1 for zeta functions), thanks to Hecke.
Thus, in particular, L(s, χ∗

α) and L(s, χα) differ by a finite Euler factor and
so have the same set of nontrivial zeros.

Next, we apply Weil’s explicit formula to L(s, χ) where χ = χ∗
α. To this

end, we refer to the article [1] of Barner. Suppose F : R → C is a function
of bounded variation; let

Φ(s) =

∞\
−∞

F (z)e(s−1/2)z dz.

By a change of variable, z = log t, we see that

Φ(s) =

∞\
0

F (log t)ts−1/2 dt

t
.

If K(s) is a function on C and x is any real number greater than 2, formally
set K(s)xs = Φ(s) =: Φx(s). Then

K(s) =

∞\
0

F (log t)x−sts−1/2 dt

t
=

∞\
0

x−1/2F (log t)(x−1t)s−1/2 dt

t
.
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Replacing x−1t by t we obtain

K(s) =

∞\
0

(xt)−1/2F (log(xt))ts
dt

t
=

∞\
0

a(t)ts
dt

t
,

where a(t) = (xt)−1/2F (log(xt)). Then notice that F (log z) = z1/2a(z/x).
Now assume that K(s) is rapidly decreasing in t where s = σ + it (i.e.

|K(σ+ it)| ≪ t−2 as t → ∞) and K(1/2+ it) = K(1/2− it) such that a(t) is
nonnegative and has compact support in (0,∞). In particular, assume that
its support lies in [A, B]. Then Weil’s explicit formula takes the form

∑

̺

K(̺)x̺ = ε0(K(0) + K(1)x) + a

(
1

x

)
log

(NdK/k)|dk|
4π2

−
∑

p

∞∑

n=1

(log Np)a

(
Npn

x

)
χ(pn)

−
∑

p

∞∑

n=1

log Np

Npn
a

(
1

xNpn

)
χ(pn) + W∞(a, χ),

where the
∑

̺ is over the nontrivial zeros of L(s, χ),
∑

p is over the nonzero
prime ideals of O, ε0 = ε0(χ) = 1 if χ is the principal character, and ε0 = 0
if not. Finally,

W∞(a, χ) = 2
Γ ′

Γ

(
1

2

)
a

(
1

x

)

−
∞\
1

(
t1/2a

(
t

x

)
+ t−1/2a

(
t−1

x

)
− 2a

(
1

x

))
t−1/2

1 − t−1

dt

t
.

This implies that
∑

̺

K(̺)x̺ = ε0K(1)x + a

(
1

x

)
log

(NdK/k)|dk|
4π2

−
∑

p

∞∑

n=1

(log Np)a

(
Npn

x

)
χ(pn) + O(1).

We need to extend this result to the (not necessarily primitive) charac-
ters χα.

Proposition 1. If L(s, χα) is the L-function associated with χα, then

the following explicit formula holds:
∑

̺

K(̺)x̺ = ε0K(1)x + a

(
1

x

)
log

(Nα)|dk|
4π2

−
∑

p

∞∑

n=1

(log Np)a

(
Npn

x

)(
α

pn

)
+ O((log Nα)(log x)).
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Proof. Suppose χ is the primitive character of conductor f that in-
duces χα. Then as noted earlier L(s, χ) and L(s, χα) share the same set
of nontrivial zeros. Then the left-hand side of the equation in the proposi-
tion is identical with that in the explicit formula above. Now consider the
difference of the right-hand sides of the two formulas:

∑

p,n

(log Np)a

(
Npn

x

)
(χ(pn) − χα(pn)) ≪

∑

p|(2α)

(log Np)a

(
Np

x

)

≪
∑

p|(2α)
Np≤x

log Np ≪ (log Nα)(log x),

since if (2α) = pa1
1 · · · pam

m is the prime ideal factorization of 2α, then

log Nα = a1 log Np1 + · · · + am log Npm ≫ m.

Now notice that

a

(
1

x

)
log

(Nα)|dk|
4π2

− a

(
1

x

)
log

(N f)|dk|
4π2

= O(log Nα).

This establishes the proposition.

4. Technical lemmas. We start by stating a 2-variable version of
Euler–Maclaurin summation. Let Pm(x) denote the mth periodic Bernoulli
function. Hence Pm(x) = Bm(x − [x]), where as usual Bm(x) is defined by

etx

et − 1
=

∞∑

m=0

Bm(x)
tm

m!
.

Lemma 1 (Euler–Maclaurin summation). Let N be a positive integer

and f(u, v) be a function such that any 2N th-order partial derivative of f
is continuous. Then for integers a, b, c, d with a ≤ b and c ≤ d we have

d∑

n=c

b∑

m=a

f(m, n) =

d\
c

b\
a

f(u, v) du dv

+
N∑

µ,ν=1

(−1)µ+ν

µ!ν!
Pµ(u)Pν(v)

∂µ+ν−2f(u, v)

∂uµ−1∂vν−1

∣∣∣∣
b+

a−

∣∣∣∣
d+

c−

+
N∑

µ=1

(−1)µ

µ!
Pµ(u)

d\
c

∂µ−1f(u, v)

∂uµ−1
dv

∣∣∣∣
b+

a−

+

N∑

ν=1

(−1)ν

ν!
Pν(v)

b\
a

∂ν−1f(u, v)

∂vν−1
du

∣∣∣∣
d+

c−
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+
N∑

µ=1

(−1)N+µ−1

µ!N !
Pµ(u)

d\
c

PN (v)
∂N+µ−1f(u, v)

∂uµ−1∂vN
dv

∣∣∣∣
b+

a−

+
N∑

ν=1

(−1)N+ν−1

ν!N !
Pν(v)

b\
a

PN (u)
∂N+ν−1f(u, v)

∂vν−1∂uN
du

∣∣∣∣
d+

c−

+

d\
c

b\
a

[
(−1)N−1

N !
PN (u)

∂Nf

∂uN
+

(−1)N−1

N !
PN (v)

∂Nf

∂vN

+
1

(N !)2
PN (u)PN (v)

∂2Nf

∂uN∂vN

]
du dv,

where, e.g., u = a− and v = b+ denote the appropriate one-sided limits.

The proof of the lemma follows by applying the one-variable version
twice and is left to the reader. The one-variable version may be found on
page 490 of [7], for example.

Corollary 1. Let m ∈ Z>0, α, β ∈ C with αβ − αβ 6= 0, and c > 0.
Then

∑

(m1,m2)∈Z2

e−c|m1α+m2β|2my−2m
=

∞\
−∞

∞\
−∞

e−c|uα+vβ|2my−2m
du dv + O(y−M )

as y → ∞ for any positive integer M .

Proof. Let

f(u, v) = e−c|uα+vβ|2my−2m
.

Then f is a rapidly decreasing function and thus we may apply Lemma 1,
noting that all the relevant sums and integrals converge, obtaining

∑

(m1,m2)∈Z2

f(m1, m2)

=

∞\
−∞

∞\
−∞

f(u, v) du dv +

∞\
−∞

∞\
−∞

[
(−1)N−1

N !
PN (u)

∂Nf

∂uN

+
(−1)N−1

N !
PN (v)

∂Nf

∂vN
+

1

(N !)2
PN (u)PN (v)

∂2Nf

∂uN∂vN

]
du dv.

We consider the second integral. An easy induction argument shows that

∂Mf(u, v)

∂uµ∂vν
= f(u, v)

M∑

j=1

y−2mjh
(µ,ν)
2mj−M(u, v),

where hn(u, v) is a homogeneous polynomial of degree n and where we set
this form equal to 0 if the “degree” is negative. Now let u = yu1 and v = yv1;
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then, in particular,

∞\
−∞

∞\
−∞

PN (u)
∂Nf

∂uN
du dv

= y2−N
∞\
−∞

∞\
−∞

PN (yu1)e
−c|u1α+v1β|2m

N∑

j=1

h
(N,0)
2mj−N(u1, v1) du1 dv1.

Therefore,
∞\
−∞

∞\
−∞

PN (u)
∂Nf

∂uN
du dv ≪ y2−N .

The other two terms are similarly ≪ y2−N . If we let N = M + 2, the
corollary is established.

Lemma 2. Let a be a nonzero fractional ideal of k, and let m ∈ Z>0.

Then
∑

µ∈a

e
− 2π√

|dk|
N(µ)my−1

=
y1/mI

Na
√

|dk|
1−1/m

+ O(y−M )

as y → ∞, for any M ∈ Z>0, and where

I =
(2π)1−1/m

m
Γ

(
1

m

)
.

The sum is over all elements of a and Nµ represents the norm from k to Q

of µ. In particular

∑

µ∈a

e
− 2π√

|dk|
N(µ)my−1

=






y

Na
+ O(y−M ) if m = 1,

y1/2

Na
π2−1/2|dk|−1/4 + O(y−M ) if m = 2.

Proof. Let {α, β} be an integral basis of a. Then

∑

µ∈a

e
− 2π√

|dk|
Nµmy−1

=
∑

(m1,m2)∈Z2

e
− 2π√

|dk|
|m1α+m2β|2my−1

.

By the corollary, we need only show that

∞\
−∞

∞\
−∞

e
− 2π√

|dk|
N(x1α+x2β)my−1

dx1 dx2 =
y1/mI

Na
√

|dk|
1−1/m

.

To this end, let

u + vi =
x1α + x2β

(y
√

|dk|)1/2m
, so u − vi =

x1α + x2β

(y
√
|dk|)1/2m

.
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Now (
u + vi

u − vi

)
=

1

(y
√
|dk|)1/2m

(
α β

α β

)(
x1

x2

)

and ∣∣∣∣det

(
α β

α β

)∣∣∣∣ = N(a)
√
|dk|

(see, e.g., [5, p. 188]). By elementary row reduction we get (u, v)t =B(x1, x2)
t

where

B =
1

(y
√
|dk|)1/2m

(
(α + α)/2 (β + β)/2

(α − α)/2i (β − β)/2i

)
.

But then notice that

|det(B)| =
1

2(y
√
|dk|)1/m

∣∣∣∣det

(
α β

α β

)∣∣∣∣.

Hence
∞\
−∞

∞\
−∞

e
− 2π√

|dk|
|x1α+x2β|2my−1

dx1 dx2 = |detB−1|
∞\
−∞

∞\
−∞

e−2π(u2+v2)m
du dv.

But
∞\
−∞

∞\
−∞

e−2π(u2+v2)m
du dv =

2π\
0

∞\
0

e−2πr2m
r dr dθ = 2π

∞\
0

e−2πr2m
r dr

=
(2π)1−1/m

2m
Γ

(
1

m

)
,

by changing first to polar coordinates and then changing to t = 2πr2m.

This establishes the lemma.

Lemma 3. The series
∑

µ∈O
µ 6=0

e
− 2π√

|dk|
Nµ/y

log Nµ = y log y + O(y)

as y → ∞.

Proof. Write

∑

µ∈O
µ 6=0

e
− 2π√

|dk|
Nµ/y

log Nµ = S1 + S2,

where
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S1 =
∑

µ∈O
µ 6=0

e
− 2π√

|dk|
Nµ/y

log y, S2 =
∑

µ∈O
µ 6=0

e
− 2π√

|dk|
Nµ/y

log

(
Nµ

y

)
.

Notice that
S1 = y log y + O(log y)

by Lemma 2.
Now consider S2. By Riemann–Stieltjes integration,

S2 =

∞\
1−

e
− 2π√

|dk|
u/y

log

(
u

y

)
dJ(u),

where
J(u) =

∑

µ∈O
Nµ≤u

1.

But J(u) = ̺u+O(u1/2) where ̺ is a constant depending only on the field k;
see, e.g., Lang [11, p. 132]. Hence,

S2 =

∞\
1

e
− 2π√

|dk|
u/y

log

(
u

y

)
d̺u −

∞\
1−

e
− 2π√

|dk|
u/y

log

(
u

y

)
d(J(u) − ̺u).

The first integral is ≪ y, by direct computation. In the second integral, we
integrate by parts and then make a change of variable, obtaining

∞\
1−

e
− 2π√

|dk|
u/y

log

(
u

y

)
d(J(u) − ̺u)

= (J(u) − ̺u)e
− 2π√

|dk|
u/y

log

(
u

y

)∣∣∣∣
∞

1−

−
∞\
1

(J(u) − ̺u) d

(
e
− 2π√

|dk|
u/y

log

(
u

y

))

≪ log y

∞\
1

(J(u) − ̺u)e
− 2π√

|dk|
u/y du

u

+
2π

y
√
|dk|

∞\
1

(J(u) − ̺u)e
− 2π√

|dk|
u/y

log

(
u

y

)
du

≪ log y

∞\
y−1

(J(yv) − ̺yv)e
− 2πv√

|dk|
dv

v

+
2π√
|dk|

∞\
y−1

(J(yv) − ̺yv)e
− 2πv√

|dk| log v dv ≪ y1/2 log y.

This establishes the result.
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We shall also need a variation of the previous lemma. Namely,

Lemma 4. For µ ∈ Ok − {0}, let fµ denote the conductor of χµ. Then

the series ∑

µ∈O
µ 6=0

e
− 2π√

|dk|
Nµ/y

log N fµ = y log y + O(y)

as y → ∞.

Proof. By subtracting the formula above from the one in Lemma 3, we
see that it suffices to show that

∑

µ∈O
µ 6=0

e
− 2π√

|dk|
Nµ/y

log

(
Nµ

N fµ

)
≪ y.

To this end, let

∑

µ∈O
µ 6=0

e
− 2π√

|dk|
Nµ/y

log

(
Nµ

N fµ

)
=

∞\
1−

e
− 2π√

|dk|
u/y

dα(u),

where α(x) =
∑

Nµ≤x log(Nµ/N fµ). We claim α(x) ≪ x. To see this, first
by the conductor-discriminant formula (see [4] or [2]), fµ = DK/k where
DK/k is the relative discriminant, K = k(

√
µ). But since K/k is a Kummer

extension, fµ can be determined fairly easily; cf. [4], [6], or [2]. In our case,
we can see that the fractional ideal (µ)/fµ = a2/b where b | (16). Moreover,
fµ = c0c1 where c0 is square-free and c1 | (32). Thus we have

α(x) ≪
∑

m,n
N(m2n)≤x

µ2(n) log Nm,

where m, n are integral ideals of k and µ is the usual generalization of the
Möbius µ-function to the semigroup of integral ideals of k. Now notice that

∑

Nn≤x

µ2(n) ≪
∑

Nn≤x

1 ≪ x

(see [11], for example). Therefore,
∑

m,n
N(m2n)≤x

µ2(n) log Nm =
∑

Nm≤√
x

log Nm
∑

Nn≤ x
Nm2

µ2(n) ≪
∑

Nm≤√
x

log Nm
x

Nm2

≪ x
∑

Nm≤√
x

log Nm

Nm2
≪ε xζk(2 − ε) ≪ x,

which establishes the claim.
Now, finally integrating by parts and then by a change of variables we

have
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∞\
1−

e
− 2π√

|dk|
u/y

dα(u) = e
− 2π√

|dk|
u/y

α(u)

∣∣∣∣
∞

1−
+

2π

y
√
|dk|

∞\
1

e
− 2π√

|dk|
u/y

α(u) du

≪ 1

y

∞\
1

e
− 2π√

|dk|
u/y

u du ≪ 1

y

∞\
1

e−vy2 dv ≪ y.

This establishes the lemma.

We assume the “Generalized Riemann Hypothesis (GRH) for k” in the
following lemma, i.e. the GRH holds for all abelian L-functions over k.

Lemma 5. Let k be any algebraic number field and let Cf be the ray

class group modulo f, i.e. the group of f-classes (see [10] or [11, Chapter VI]).
Denote the order of Cf by hf. Let m, n be real numbers with n 6= 0. Assuming

GRH for k, the sum

∑

p : p∈c
f(p)=1

a

(
Npn

x

)
Npm log Np =

1

hf

1

n
K

(
m + 1

n

)
x(m+1)/n

+ O(x(2m+1)/(2n) log2 x)

as x → ∞, where the sum is over all nonzero prime ideals of O which lie in

c ∈ Cf and have absolute residue degree f(p) = [O/p : Z/(p)] = 1.

Proof. By Riemann–Stieltjes integration, we have

∑

p :p∈c
f(p)=1

a

(
Npn

x

)
Npm log Np =

∞\
0+

a

(
un

x

)
um d

( ∑

Np≤u
p∈c

f(p)=1

log Np
)
.

Hence by the Prime Ideal Theorem, assuming GRH,
∑

Np≤u
p∈c

f(p)=1

log Np =
1

hf

u + E(u),

with E(u) ≪ u1/2 log2 u, where the implied constant depends only on the
field k and not on the class c; see [10]. Thus
∞\
0+

a

(
un

x

)
um d

( ∑

Np≤u
p∈c

f(p)=1

log Np
)

=
1

hf

∞\
0

a

(
un

x

)
um du +

∞\
0+

a

(
un

x

)
um dE(u).

In the first integral let v = un/x; then
∞\
0

a

(
un

x

)
um du =

1

n
x(m+1)/n

∞\
0

a(v)v(m+1)/n dv

v
=

1

n
K

(
m + 1

n

)
x(m+1)/n.
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Using integration by parts on the second integral, we obtain

∞\
0+

a

(
un

x

)
um dE(u)

= −n

x

∞\
0

E(u)a′
(

un

x

)
um+n−1 du − m

∞\
0

E(u)a

(
un

x

)
um−1 du

= − xm/n
∞\
0

E(x1/nv1/n)a′(v)v(m+n)/n dv

v

− m

n
xm/n

∞\
0

E(x1/nv1/n)a′(v)vm/n dv

v
≪ xm/nx1/2n log2 x,

as desired.

Lemma 6 (Transformation formula). Let p be a nonzero odd prime ideal

of O dividing the rational prime p > 0, but not dividing the discriminant dk

of k; let χ = χp, where χp(α) = (α/p).

If (p) = pp, then

∑

α∈O
χp(α)e

− 2π√
|dk|

Nα/y
=

y√
Np

∑

ν∈p/
√

dk

χp(ν)e
− 2π√

|dk|
Nν|dk|y/p2

.

If p is inert , then

∑

α∈O
χp(α)e

− 2π√
|dk|

Nα/y
=

y√
Np

∑

ν∈O
χp(ν)e

− 2π√
|dk|

Nνy/p2

.

Proof. First notice that if χ(Wk) 6= {1}, where Wk denotes the group
of roots of unity in k, then

∑
α∈Wk

χ(α) = 0 by a standard argument. But
then the assertion of the lemma is obvious as all sides of the equalities are 0.

Now assume χ(Wk) = {1}. If p = (p), let c = 1; otherwise, let c = p.
Notice then that (c, p) = 1 since by assumption p/p is unramified as dk 6≡ 0
mod p. Furthermore, let c = 2π

√
Nc/

√
|dk| and c′ = 2π|dk|/(

√
|dk|

√
Nc).

Then
∑

α∈O

(
α

p

)
e−c(Nα)t =

∑

̺∈O/p

(
̺

p

)∑

µ∈p

e−cN(µ+̺)t =
∑

̺∈O/p

(
̺

p

)∑

µ∈p

e
−c

N(µ+̺)
p

pt
,

where
∑

̺∈O/p is the sum over the cosets in O/p. Then by Hecke [5, pp. 189–

190],
∑

µ∈p

e
−c

N(µ+̺)
p

pt
=

1

pt
√

Np

∑

λ∈c/
√

dk

e
−c′ Nλ

p2t
+2πiTr( λ̺

p
)
.
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Consequently,

∑

α∈O

(
α

p

)
e−cNαt =

1

pt
√

Np

∑

λ∈c/
√

dk

e
−c′ Nλ

p2t

∑

̺∈O/p

(
̺

p

)
e
2πiTr( λ̺

p
)
.

Let now t
√

Nc = 1/y, in which case the last equality becomes

∑

α∈O

(
α

p

)
e
− 2π√

|dk|
Nα/y

=
y
√

Nc

p
√

Np

∑

λ∈c/
√

dk

e
− 2π√

|dk|
Nλ|dk|y/p2 ∑

̺∈O/p

(
̺

p

)
e
2πiTr( λ̺

p
)
.

Now we need to evaluate
∑

̺∈O/p

(
̺

p

)
e
2πi Tr( λ̺

p
)

for λ ∈ c/
√

dk. To this end, let λ = ν/
√

dk where ν ∈ c. We consider two
cases.

Case 1: Suppose pO = p. Notice that if ν ∈ p, then Tr(λ̺/p) =
Tr(ν̺/(p

√
dk)) ∈ Z. Thus

∑

̺∈O/p

(
̺

p

)
e
2πi Tr( λ̺

p
)
= 0

in this case. Next notice that Np = p2 and c = O. Let ω ∈ k − {0}. Then
write (ω) = ba−1(

√
dk)

−1 with a and b relatively prime integral ideals of O.
Let

C(ω) =
∑

µ moda

e2πiTr(µ2ω),

where the sum is over any system of representatives of O/a. By formula
(171) of [6], we have

∑

̺∈O/p

(
̺

p

)
e
2πiTr( ν̺

p
√

dk
)
= C

(
ν

p
√

dk

)
.

If ν ∈ O−p, then Satz 155 in [6] implies C(ν/(p
√

dk)) = (ν/p)C(1/(p
√

dk)).
But then Satz 163 of [6] yields

C(1/(p
√

dk))√
Np

=
C(−p/(4

√
dk))√

N(8)

(by choosing γ = 1/
√

dk). Now

C

(
− p

4
√

dk

)
=

∑

µ∈O/(4)

e
2πi Tr( −µ2p

4
√

dk
)
=

∑

µ∈O/(4)

e
2πi p

4
Tr( −µ2√

dk
)
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=
∑

µ∈O/(4)

e
(−1)(p−1)/22πi Tr( −µ2

4
√

dk
)
=






C
( −1

4
√

dk

)
if p ≡ 1 mod4,

C
( −1

4
√

dk

)
if p ≡ 3 mod4.

But C(−p/(4
√

dk)) is real, since C(1/(p
√

dk)) is real. (Recall that we are
assuming that χ(Wk) = {1}.) Thus the two cases above coincide. By [6,
page 243],

C

( −1

4
√

dk

)
=

√
N(8),

which implies that C(1/(p
√

dk)) =
√

Np = p. Therefore

∑

̺∈O/p

(
̺

p

)
e
2πi Tr( ν̺

p
√

dk
)
=

(
ν

p

)√
Np.

This yields the second part of the lemma.

Case 2: Suppose (p) = pp. Then Np = p,O/p ≃ Z/(p), and c = p. As
above, let λ = ν/

√
dk, but with ν ∈ p. Then

∑

̺∈O/p

(
̺

p

)
e
2πiTr( ν̺

p
√

dk
)
=

∑

b∈Z/(p)

(
b

p

)
e
2πi b

p
Tr( ν√

dk
)

=

(
Tr(ν/

√
dk)

p

) ∑

b∈Z/(p)

(
b

p

)
e2πib/p =

(
Tr(ν/

√
dk)

p

)√
p,

by well-known properties of rational Gauss sums (using the assumption
(−1/p) = 1 since χ(Wk) = {1}). Now let ω = ωk = (dk +

√
dk)/2 and thus

O = Z[ωk]. Let p(x) = (x − ω)(x − ω); thus p(x) = x2 − dkx + (d2
k − dk)/4.

Since p splits in O, we know that p(x) ≡ (x − a)(x − b) modp for some
a, b ∈ Z. But then p = (p, α) and p = (p, α) for some α = a + ωk (without
loss of generality). Since ν ∈ p, there are x, y ∈ Z such that

ν = px + αy = px +

(
a +

dk −
√

dk

2

)
y.

Then Tr(ν/
√

dk) = Tr(−y/2) = −y. Thus
(

Tr(ν/
√

dk)

p

)
=

(−y

p

)
=

(
y

p

)
,

again observing that (−1/p) = 1. Now,

ν = px + αy ≡ αy ≡
(

a +
dk +

√
dk

2

)
y −

√
dky ≡ −

√
dky mod p.

Hence (
ν

p

)
=

(−y
√

dk

p

)
=

(
y

p

)(√
dk

p

)
.
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Therefore, (
y

p

)
=

(
ν/

√
dk

p

)
,

and we see that
∑

̺∈O/p

(
̺

p

)
e
2πi Tr( ν̺

p
√

dk
)
=

(
ν/

√
dk

p

)√
Np.

This establishes the lemma.

We continue in this section with some arithmetical results about the
2-power residue symbol. Let C(4) be the ray class group of k modulo (4).
Hence, C(4) = I(4)/P(4), where I(4) is the group of fractional ideals prime
to 4 and P(4) the group of principal ideals in I(4) with generators γ ≡ 1

mod×4. See [11, Chapter VI], for details. Let H = {(γ) ∈ P (4) : γ ≡ ξ2

mod×4}. Finally, set C = I(4)/H and C(2) = {aH : a2 ∈ H}.
Lemma 7. Let k be an imaginary quadratic number field. Then the index

(C : C(2)) = (I(4) : I2(4)H) = 2e+1, where 2e is the index (Cl : Cl(2)) (notice

that e is the 2-rank of the class group of k).

Proof. The first equality is obvious. For the second, let K = k(
√

S),
where S = {µ ∈ k× : (µ) = a2 for some fractional ideal a of k×}. Then
[K : k] = 2e+1 (see [5, paragraph 4 on page 253]). On the other hand, by
Satz 171 of [5], the Artin map induces an isomorphism

I(4)/I2(4)H ≃ Gal(K/k)

where p 7→ (p, K/k), for any prime ideal p ∈ I(4). Thus the lemma follows.

We note for future reference that the prime ideals, p, in I2(4)H are
characterized by the following reciprocity law (for example see Hecke [5,
Satz 171]): (

µ

p

)
= 1,

for all µ ∈ k× for which (µ) = a2 for some fractional ideal a prime to p.

Lemma 8. Let k be an imaginary quadratic number field. Suppose that

p is a prime ideal of absolute degree 1 in I2(4)H, say pb2 = (γ) where b is

an integral ideal in I(4) and γ ∈ O with γ ≡ ξ2 mod4, and that p does not

divide ω = (dk +
√

dk)/2. Then
(

γ/
√

dk

p

)
= 1.

Proof. It suffices to evaluate (γ
√

dk/p). To this end, let γ = x+yω. First
notice that since γ = x + yω,

pb2 = NpNb2 = Nγ = x2 + xydk + y2(d2
k − dk)/4,
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with b = Nb, an odd integer. Then a straightforward computation yields

yγ
√

dk = 2(x + ydk/2)γ − 2pb2 − dky
2,

and therefore (
γ
√

dk

p

)
=

(−dky

p

)
=

(
y

p

)
,

since (dk/p) = 1 because f(p) = 1, and 1 = (−1/p) = (−1/p) by the
reciprocity law for the 2-power residue symbol. Hence we need to evaluate
(y/p). Notice that the representation of pb2 above implies pb2 ≡ x2 mod y.
Now we consider the following two cases.

Case 1. Suppose y is odd. Then since pb2 ≡ x2 mod y, 1 = (p/y) =
(y/p) by an extension of the quadratic law of reciprocity and since p ≡ 1
mod4.

Case 2. Suppose y is even, say y = 2ay0, with y0 odd. Since pb2 ≡ x2

mod y0, we have (y0/p) = 1 as above.

If a ≥ 3, so 8 | y, then p ≡ 1 mod8, for b2 ≡ 1 mod8, whence (2/p) = 1
and consequently (y/p) = (2/p)a(y0/p) = 1.

If a = 2, then obviously (y/p) = (4/p)(y0/p) = 1.

Now assume a = 1, so y = 2y0; then

p = x2 + 2xy0dk + y2
0(d

2
k − dk).

If dk is even, then dk ≡ 0 mod4. If furthermore, dk ≡ 0 mod8, then
p ≡ 1 mod8, whence (2/p) = 1, implying that (y/p) = 1. Now, if dk ≡ 4
mod8, then dk = 4d for some d ≡ −1 mod4. Hence, pb2 = x2 + 8xy0d +
y2
0(16d2−4d) ≡ 1−4d ≡ 5 mod8. But this cannot happen, since (2) = a2 so

by the above (2/p) = 1. But then 1 = (2/p) = (2/p), implying p ≡ 1 mod8.

If dk is odd, then dk ≡ 1 mod4, in which case p ≡ x2+2 mod4. Therefore,
p ≡ pb2 ≡ 3 mod4, contrary to our assumptions.

Finally, notice that if dk = −4d with d ≡ 1 mod4, then for p ≡ 5 mod8,
y must be even. Indeed, since γ ≡ ξ2 mod4 with say ξ = a1 + b1

√
−d,

a1, b1 ∈ Z, we see that ξ2 = a2
1 − db2

1 +2a1b1

√
−d, implying that y is even.

Lemma 9. Let χ1 be a character on C = Cm = I(m)/Pm for some

modulus m with ker χ1 = H1 and such that the conductor of χ1 is n (notice

n |m). Suppose H2 is a subgroup of Cm such that for H0 = H1 ∩H2 we have

H0 6= Hi for i = 1, 2. Then assuming GRH for k, we hve
∑

p∈bH2

Np≤x

χ1(p) log Np ≪ x1/2 log2 xNn,

as x → ∞, for any b ∈ I(m).
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Proof (sketch). By the usual orthogonality properties of characters and
Euler product expansion of L-functions,

∑

p∈bH2

χ1(p)

Nps
=

1

(C : H0)
χ1(b)

∑

c∈H2/H0

∑

χ∈Ĉ/H0

χ1χ(c) log L(s, χ) + O(s)

=
χ1(b)

(C : H0)

∑

c∈H2/H0

∑

χ∈Ĉ/H0

χ 6=1

χ1χ(c) log L(s, χ)

+
χ1(b)

(C : H0)
log ζk(s)

∑

c∈H2/H0

χ1(c) + O(s)

for σ > 1/2. But
∑

c χ1(c) = 0 by the assumptions of the lemma, and
log L(s, χ) is regular for σ > 1/2 since χ 6= 1 and assuming GRH for k. But
then the lemma follows from the explicit formula for log L(s, χ) following the
arguments of Landau [10, Sections 4 and 6], and Davenport [3, Section 20].

5. Main results. Throughout this section assume k is a complex qua-
dratic number field. Denote by dk its discriminant; by O = Ok its ring of
integers; by wk the cardinality of Wk, the group of units in k; by Cl = Cl(k)
its class group; and by h = h(k) the class number of k.

We now investigate the sum

∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D ∑

̺(α)

K(̺)x̺

as D → ∞, where the outer sum is over the nonzero elements of O and the
inner sum is over the nontrivial zeros of L(s, χα).

We now state and prove our main result.

Theorem 1. Assume GRH for k. Then as D → ∞ and either x → ∞
or x = 1,

∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D ∑

̺(α)

K(̺)x̺

=






−1
2K

(
1
2

)
Dx1/2 + 1

2K(1)IxD1/2 + a
(

1
x

)
D log D

+ O
(
D log D log x + Dx1/3 log x + a

(
1
x

)
D

)
if x = o(D),

0 + O(x log2 x) + O(Dx1/3 log x) if D = o(x),

where I = π2−1/2|dk|−1/4 and all the implied constants depend only on the

base field k and the kernel K.



Distribution of zeros of L-functions 223

Proof. We start by using the explicit formula in Proposition 1 to write
the above sum as

∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D ∑

̺(α)

K(̺)x̺ = A + B + C + O,

with

A = K(1)x
∑

α∈O
α 6=0

ε0(χα)e
− 2π√

|dk|
Nα/D

,

B = −
∑

p,n

a

(
Npn

x

)
(log Np)

∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

χα(pn),

C = a

(
1

x

) ∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

log
Nα|dk|

4π2
,

O = O
(
log x

∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

log Nα
)
.

We now break up B further as

B = B1 + B2 + B3 + B4,

where

B1 = −
∑

p

a

(
Np

x

)
(log Np)

∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

χα(p),

B2 = −
∑

p

a

(
Np2

x

)
(log Np)

∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

,

B3 =
∑

p

a

(
Np2

x

)
(log Np)

∑

α∈p
α 6=0

e
− 2π√

|dk|
Nα/D

,

B4 = −
∑

p,n
n≥3

a

(
Npn

x

)
(log Np)

∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

χα(pn).

By Lemma 3,
O ≪ D log D log x.

Next, by Lemma 2,

A = K(1)x
∑

α=2

α 6=0

e
− 2π√

|dk|
Nα/D

=
1

2
K(1)IxD1/2 − 1

2
K(1)x + O(xD−M ),
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with I = π2−1/2|dk|−1/4, and where α = 2 means that α ranges over all
squares of elements in O, since χα is principal if and only if α is a square.

By Lemma 3 again, we see that

C = a

(
1

x

)
D log D + O(D).

Now notice that

B3 =
∑

p

a

(
Np2

x

)
(log Np)

∑

α∈p
α 6=0

e
− 2π√

|dk|
Nα/D

=
∑

p

a

(
Np2

x

)
(log Np)

(
D

Np
+ O(1)

)
,

by Lemma 2. By Lemma 5 we have

B3 ≪ D + x1/2.

Since a(Npn/x) = 0 unless A ≤ Npn/x ≤ B (see the Preliminaries), we
see that

B4 ≪
∑

p,n
n≥3

a

(
Npn

x

)
(log Np)

∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

≪ D
∑

p,n
n≥3

a

(
Npn

x

)
log Np ≪ Dx1/3 log x,

by Lemmas 2 and 5.

Also by Lemmas 2 and 5, we have

B2 = −1

2
K

(
1

2

)
Dx1/2 + O(x1/2) + O(Dx1/4 log2 x).

Now we consider B1. We decompose B1 as B1 = Bi
1 + Bs

1, where

Bi
1 = −

∑

p
(dk/p)=−1

a

(
Np

x

)
(log Np)

∑

α∈O
e
− 2π√

|dk|
Nα/D

χα(p),

Bs
1 = −

∑

p
(dk/p)=1

a

(
Np

x

)
(log Np)

∑

α∈O
e
− 2π√

|dk|
Nα/D

χα(p).

By the transformation formula (Lemma 6),

Bt
1 = −

∑

p
(dk/p)=(−1)τ

a

(
Np

x

)
(log Np)

D√
Np

∑

ν∈a

(
ν

p

)
e
− 2π√

|dk|
Nν|dk|εD/p2

,
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where τ = 0 or 1, ap = a = p/
√

dk or O, and ε = 1 or 0, if t = s, i,
respectively.

We now consider two cases.

Case 1. Assume x = o(D). We first show that Bi
1 ≪ x1/2. To this end

notice that

D√
Np

∑

ν∈a

(
ν

p

)
e
− 2π√

|dk|
Nν |dk|εD/p2

=
D

p

∑

ν∈O

(
ν

p

)
e
− 2π√

|dk|
Nν D/p2

≪ D

p

∞∑

m=1

e
− 2π√

|dk|
mD/p2

κ(m),

where
κ(m) = #{ν ∈ a : m ≤ Nν < m + 1} ≪ m;

see, for example, Lang [11, Theorem 2, page 128] (and also notice that
κ(0) = 0). Thus

∞∑

m=1

e
− 2π√

|dk|
mD/p2

κ(m) ≪
∞∑

m=1

e
− 2π√

|dk|
mD/p2

m = o(1).

From this we see by Lemma 5 that Bi
1 ≪ ∑

p a(p2/x) log p ≪ x1/2.

Next we show that Bs
1 ≪ x. To this end, let π1 ∈ p−p2; then N(π1) = bp

for some positive integer b. Also set ν = µπ1/
√

dk. We then see that

D√
Np

∑

ν∈a

(
ν

p

)
e
− 2π√

|dk|
Nν|dk|εD/p2

≪ D√
p

∑

µ∈p/(π1)

e
− 2π√

|dk|
NµbD/p

= o(1).

Thus Bs
1 ≪

∑
p a(p/x) log p ≪ x.

Case 2. Assume D = o(x). First we consider Bi
1 and claim that Bi

1 ≪ x.
Since D = o(x),

Bi
1 ≪

∑

p

a

(
p2

x

)
(log p)

D

p

∑

ν∈O
e
− 2π√

|dk|
NνD/p2

≪
∑

p

a

(
p2

x

)
p log p ≪ x,

by Lemma 5.
Now consider Bs

1. From the above we know that

Bs
1 = −

∑

p
(dk/p)=1

a

(
p

x

)
(log p)

D√
p

∑

ν∈p/
√

dk

(
ν

p

)
e
− 2π√

|dk|
Nν|dk|D/p2

.

We decompose Bs
1 in the following way. By Lemma 7, C/C2 ≃ I(4)/I2(4)H

has order 2e+1, where e is the 2-rank of Cl. Hence

I(4) =

2e+1⋃

i=1

aiI
2(4)H
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for some ideals ai and where a1 = (1). Now we write

Bs
1 =

2e+1∑

i=1

B(i),

where

B(i) = −
∑

p∈aiI2(4)H
(dk/p)=1

a

(
p

x

)
(log p)

D√
p

∑

ν∈p/
√

dk

(
ν

p

)
e
− 2π√

|dk|
Nν|dk|D/p2

.

Now, consider B(1). To simplify the notation slightly, we denote by P
the set of prime ideals of absolute degree 1 contained in I2(4)H. Let p ∈ P,

say pb
2
p = (γp) for some (γp) ∈ H. Hence, pb2

p = (γp). Notice that then

pNb2
p = Nγp. We change the summation variable by letting ν = µγp/

√
dk

and thus obtain

B(1) = −
∑

p∈P
a

(
p

x

)
(log p)

D√
p

(
γp/

√
dk

p

) ∑

µ∈b−2
p

(
µ

p

)
e
− 2π√

|dk|
(Nµ)Nb2

pD/p
.

Now we break up B(1) further. To this end, notice that Cl/Cl2 ≃ Cl(2)

where Cl(2) = {c ∈ Cl : c2 = 1}. Then we write

B(1) = B(2) + B( 62)

where

B(2) = −
∑

p∈P
a

(
p

x

)
(log p)

D√
p

(
γp/

√
dk

p

) ∑

c∈Cl(2)

∑

µ∈b−2
p

(µ)=a2

a∈c

(
µ

p

)
e
− 2π√

|dk|
(Nµ)Nb2

pD/p
.

Finally, we split B(2) as

B(2) = B′(2) + B′′(2),

with

B′(2) = −wk

∑

p∈P
a

(
p

x

)
(log p)

D√
p

∑

c∈Cl(2)

∑

a∈c

b−1
p |a

e
− 2π√

|dk|
(Na2)Nb2

pD/p
.

Now, we evaluate B′(2) asymptotically. For each c ∈ Cl(2) let bc ∈ c be
such that if a ∈ c, then abc = (γ) for some γ ∈ bc. Notice that then there
is a bijection between the set {a ∈ c : b−1

p | a} and the set (of equivalence

classes) (bcb
−1
p − {0})/Wk given by

a 7→ (γ) = abc.
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In addition, notice that Nγ = NaNbc. From this and Lemma 2, it follows
that

B′(2) = −
∑

p∈P
a

(
p

x

)
(log p)

D√
p

∑

c∈Cl(2)

∑

γ∈bcb
−1
p

γ 6=0

e
− 2π√

|dk|
(D/p)Nγ2Nb2

p/Nb2
c

= −
∑

p∈P
a

(
p

x

)
(log p)

D√
p

∑

c∈Cl(2)

( √
p√
D

I − 1 + O((p/D)−M)

)

= −|Cl(2)|
∑

p∈P
a

(
p

x

)
(log p)

D√
p

( √
p√
D

I − 1 + O((p/D)−M)

)

− 2eI
√

D
∑

p∈P
a

(
p

x

)
log p + 2eD

∑

p∈P
a

(
p

x

)
log p√

p

+ O

(∑

p∈P
a

(
p

x

)
(log p)(p/D)−M ′

)
.

Now, by Lemmas 5 and 7,
∑

p∈P
a

(
p

x

)
log p =

1

2e+1
K(1)x + O(x1/2 log2 x),

∑

p∈P
a

(
p

x

)
log p√

p
=

1

2e+1
K

(
1

2

)
x1/2 + O(log2 x),

and moreover,
∑

p∈P
a

(
p

x

)
(log p)(p/D)M ′ ≪ 1.

Therefore,

B′(2) = −1

2
IK(1)xD1/2 +

1

2
K

(
1

2

)
x1/2D + O(D1/2x1/2 log2 x).

On the other hand, notice that

B′′(2) ≪
∑

p∈P
a

(
p

x

)
(log p)

D√
p

∑

µ∈b−2
p p

e
− 2π√

|dk|
(NµNb2)D/p

≪
∑

p∈P
a

(
p

x

)
log p√

p
≪ x1/2,

by Lemmas 2 and 5.
Now consider B( 62). For this expression we partition the sums differently.

Let c ∈ I2(4)H/P(4); pick an integral ideal ac ∈ c. Then if p ∈ c is a prime

ideal of absolute degree 1, we have p ∈ c−1, so pac = (αp) for (αp) ∈ P(4).
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Therefore by changing summation variable ν = µαp/
√

dk, we get

B( 62) = −D
∑

c∈I2(4)H/P(4)

∑

p∈c

a

(
p

x

)
log p√

p

(
αp/

√
dk

p

)

×
∑

µ∈a−1
c

(µ) 6=a2

(
µ

p

)
e
− 2π√

|dk|
Nac

D
p

Nµ
.

But since, by Lemma 8,
(αc/

√
dk

p

)
= 1, and since a(p/x) 6= 0 implies p/x < B

(see the Preliminaries), we obtain

B( 62) ≪ D
∑

(µ) 6=a2

∑

c∈I2(4)H/P(4)

µ∈a−1
c

e
− 2π√

|dk|
Nac

D
Bx

Nµ
∣∣∣∣
∑

p∈c

a

(
p

x

)
log p√

p

(
µ

p

)∣∣∣∣.

Now, Lemma 9 implies that
∑

p∈c

(
µ

p

)
log Np ≪ x1/2 log2(xNµ).

Hence the argument (using Riemann–Stieltjes integration) applied to B13 in
[14] implies

∑

p∈c

a

(
p

x

)
log p√

p

(
µ

p

)
≪ log2(xNµ).

Next notice that µ ∈ ⋃
c a−1

c so µ ∈ b−1 for some integral ideal b, e.g.
b =

∏
c ac. Hence

B( 62) ≪ D
∑

µ∈b−1

µ 6=0

e
− 2π√

|dk|

D
Bx

Nµ
log2(xNµ) ≪ x log2

(
x

D

)
.

Next, consider
∑2e+1

i=2 B(i). We partition the sum over p analogously to
the previous case. If c ∈ C(4) = I(4)/P(4), let ac ∈ c, so if p ∈ c, then
pac = (αp) for some (αp) ∈ P(4). Then as above

2e+1∑

i=1

B(i) ≪ D
∑

µ∈b−1

µ 6=0

∑

c∈C(4)

c6∈I2(4)H/P(4)

e
− 2π√

|dk|

D
Bx

Nµ
∣∣∣∣
∑

p∈c

a

(
p

x

)
log p√

p

(
µ

p

)∣∣∣∣

≪ x log2

(
x

D

)
,

arguing as above using Lemma 9 when µ is not a square in k, since then
{(µ/p) : p ∈ c} = {±1}. On the other hand, the sum over square µ con-
tributes ≪ D1/2x1/2 log2(x/D) ≪ x log2(x/D), again.
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Now suppose x = 1. Then by the explicit formula for primitive characters
(just above Proposition 1) and Lemma 4 we obtain

∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D ∑

̺(α)

K(̺)

=
∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

(a(1) log N fα + O(1)) = a(1)D log D + O(D).

This completes the proof of the main theorem.

Now we come to the first main corollary, which is a special case of the
theorem, but will be useful in studying the distribution of the nontrivial
zeros of the quadratic L-series. Define, for y ∈ R,

FK(y, D) =

(
1

2
K

(
1

2

)
D

)−1 ∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D ∑

̺(α)

K(̺)Diyγ ,

where ̺ = 1/2 + iγ. Then we have

Corollary 1. Assuming GRH for all abelian L-functions over k, as

D → ∞,

FK(y, D) =

{
−1 +

(
1
2K

(
1
2

))−1
D−y/2a(D−y) log D + o(1) if |y| < 1,

0 + o(1) if 1 < |y| < 2,

uniformly on compact subsets of (−2,−1) ∪ (−1, 1) ∪ (1, 2).

Proof. First in the main theorem dividing both sides by 1
2K

(
1
2

)
Dx1/2,

absorbing one term into the error, and combining two error terms we get
(

1

2
K

(
1

2

)
D

)−1 ∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D ∑

̺(α)

K(̺)x̺−1/2

=






−1 +
(

1
2K

(
1
2

))−1
x−1/2a

(
1
x

)
(log D)

(
1 + O

(
1

log D

))

+ O
(

x1/2

D1/2 + x−1/6 log D log x
)

if x = o(D),

0 + O(x1/2D−1 log2 x + x−1/6 log x) if D = o(x).

Now plugging in x = Dy yields, for y ≥ 0,

FK(y, D) =






−1 +
(

1
2K

(
1
2

))−1
D−y/2a(D−y)(log D)

(
1 + O

(
1

log D

))

+ O(D(y−1)/2 + D−y/6 log2 D) if y < 1,

0 + O(Dy/2−1 log2 D + D−y/6 log D) if y > 1.
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From this the corollary follows for y ≥ 0. (Take the compact set to be
[0, 1 − ε] ∪ [1 + ε, 2 − ε].) Finally, notice that FK(−y, D) = FK(y, D)
since the nontrivial zeros of our L-functions are symmetric about the real
axis.

Finally, we come to the second main corollary, which concerns the dis-
tribution of the nontrivial zeros close to the real axis.

Corollary 2. Suppose r(y) is an even continuous function with r(y)
and yr(y) in L1(R), such that its Fourier transform,

r̂(y) =

∞\
−∞

r(u)e−2πiyu du,

is also continuous and in L1(R), and has compact support in (−2, 2)r{±1}.
Then under GRH for all abelian L-functions over k, an imaginary quadratic

number field , as D → ∞,

D−1
∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

(
1

2
K

(
1

2

))−1 ∑

̺(α)

K(̺)r

(
γ log D

2π

)

= 2

∞\
−∞

(
1 − sin 2πy

2πy

)
r(y) dy + o(1),

where the implied constant depends only on the field k and the kernel K.

Proof. By Corollary 1 and since r̂(y) has compact support in (−2, 2)\
{±1},
∞\
−∞

FK(y, D)r̂(y) dy

=

∞\
−∞

(
−ξ[−1,1](y) +

(
1

2
K

(
1

2

))−1

D−y/2a(D−y) log D

)
r̂(y) dy + o(1),

where ξ[−1,1] is the characteristic function of [−1, 1]. But

∞\
−∞

ξ[−1,1](y)r̂(y) dy =

∞\
−∞

ξ̂[−1,1](y)r(y) dy

= 2

∞\
−∞

sin 2πy

2πy
r(y) dy.

On the other hand,
∞\
−∞

D−y/2a(D−y)r̂(y) dy =

∞\
−∞

(D−y/2a(D−y))∧r(y) dy.
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But

(D−y/2a(D−y))∧ =

∞\
−∞

D−β/2a(D−β)e−2πiyβ dβ.

By the change of variable t = D−β, this last integral equals

1

log D

∞\
0

a(t)t
1/2+2πi y

log D
dt

t

=
1

log D

∞\
0

a(t)t1/2 dt

t
+

1

log D

∞\
0

a(t)t1/2(t
2πi y

log D − 1)
dt

t
.

Notice that

t
2πi y

log D − 1 = exp

(
2πi

log t

log D
y

)
− 1 = 2πiy

log t

log D
exp

(
2πi

log t

log D
θy

)

for some θy between 0 and y. Therefore

t
2πi y

log D − 1 ≪ log t

log D
y,

so that
1

log D

∞\
0

a(t)t1/2(t
2πi y

log D − 1)
dt

t
≪ y

log2 D

where the implied constant is independent of y and D. Therefore,
∞\
−∞

(D−y/2a(D−y))∧r(y) dy

=
1

log D
K

(
1

2

) ∞\
−∞

r(y) dy + O

(
1

log2 D

∞\
−∞

yr(y) dy

)

=
1

log D
K

(
1

2

) ∞\
−∞

r(y) dy + O

(
1

log2 D

)
.

Thus,
∞\
−∞

(
−ξ[−1,1](y) +

(
1

2
K

(
1

2

))−1

D−y/2a(D−y) log D

)
r̂(y) dy

= 2

∞\
−∞

(
1 − sin 2πy

2πy

)
r(y) dy + O

(
1

log D

)
.

Consequently,
∞\
−∞

FK(y, D)r̂(y) dy = 2

∞\
−∞

(
1 − sin 2πy

2πy

)
r(y) dy + o(1).
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On the other hand,
∞\
−∞

FK(y, D)r̂(y) dy

= D−1
∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

(
1

2
K

(
1

2

))−1 ∑

̺(α)

K(̺)

∞\
−∞

eiαγ log Dr̂(y) dy

= D−1
∑

α∈O
α 6=0

e
− 2π√

|dk|
Nα/D

(
1

2
K

(
1

2

))−1 ∑

̺(α)

K(̺)r

(
γ log D

2π

)
,

since by Fourier duality

̂̂r (y) = r(−y) = r(y).

This establishes the corollary.

Acknowledgements. The authors would like to thank very much the
referee for recommending improvements in the way the main results were
presented.

References

[1] K. Barner, On A. Weil’s explicit formula, J. Reine Angew. Math. 323 (1981), 139–
152.

[2] H. Cohen, Advanced Topics in Computational Number Theory, Grad. Texts in Math.
193, Springer, New York, 2000.

[3] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74,
Springer, New York, 1980.

[4] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der

algebraischen Zahlkörper, 3. Auflage, Physica-Verlag, Würzburg, 1970.
[5] E. Hecke, Mathematische Werke, 2. Auflage, Vandenhoeck & Ruprecht, Göttingen,

1970.
[6] —, Vorlesungen über die Theorie der algebraischen Zahlen, 2nd ed., Chelsea, New

York, 1970.
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